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Preface

Purpose
Elementary Survey Sampling, Seventh Edition, is an introductory textbook on the de-
sign and analysis of sample surveys intended for students of business, the social sci-
ences, the health sciences, environmental studies, natural resource management, or
other areas that make extensive use of sampling. As such, we mean “survey” in the
broadest sense; applications include, for instance, measured data on selected sample
units, as well as responses from people to questionnaires. It is written to appeal to
students interested in the application of survey sampling, not the statistical theory
that underlies survey design and analysis; the only prerequisite is an elementary
course in statistics.

Approach

This book emphasizes the practical aspects of survey problems. It begins with brief
chapters on the role of sample surveys in the modern world. Thereafter, each chapter
introduces a sample survey design or estimation procedure followed by describing
the pertinent practical problem. These chapters are structured as follows:

• The methodology proposed for solving the problem is described, followed by de-
tails of the estimation procedure, including a compact presentation of the formulas
needed to complete the analysis. The formulas in each estimation procedure
have been programmed into an interactive Excel worksheet.

• In each instance, a practical example is worked out in complete detail. Each
worked example in the text is embedded in the relevant Excel worksheet, so the
student can study the material by both reading and seeing the formulas in action.

• Many exercises are provided at the end of each chapter to give students ample
opportunity to practice the techniques and stretch their grasp of ideas. All data
sets (excepting the very smallest) are available electronically on the accompa-
nying CD.

We have endeavored to avoid making this merely a cookbook. To justify many of
the formulas and to support the choice of particular sampling designs, we have
supplied explanations that appeal to students’ intuition. Simulations demonstrating
the properties of estimators are provided in a few places. Examples and exercises
have been selected from many fields of application. Answers given for some se-
lected exercises may be subject to small rounding errors because of the complexity
of some formulas.

ix
     



Sampling from Real Populations

The “Sampling from Real Populations” sections found at the end of most chapters in-
clude suggestions on how the student can become involved with real sampling prob-
lems. These problems may be large or small projects; we have found such projects to
be valuable learning experiences for students taking a sampling course. Working on
a real project forces students to think about every aspect of the survey and causes
them to realize that some ideas that sound simple in the textbook are not so easily
carried out in practice.

Organization

After a brief introductory chapter, the book provides a description of terms pertinent to
survey sampling, along with a discussion of the design of questionnaires and methods
of data collection (Chapter 2). Then, some of the ideas of introductory statistics are
related to basic issues of sample survey design and analysis (Chapter 3). Chapters 4,
5, 7, and 8 present the four most common sample survey designs—namely, simple
random sampling, stratified random sampling, systematic sampling, and cluster sam-
pling, respectively. Chapter 6 brings in the notion of using an auxiliary variable
through ratio, regression, and difference estimation. The remaining chapters deal
with two-stage cluster sampling and other specialized problems that occur in survey
sampling.

Practical aspects of conducting survey samples are emphasized, with sections on
sources of errors in surveys, methods of data collection, designing questionnaires,
and guidelines for planning surveys. Sampling with probabilities proportional to size
is introduced in Chapter 3 and applied to cluster sampling in Chapters 8 and 9. Chap-
ter 10 examines methods for estimating the population size (the number of people,
animals, or plants) in a given circumstance. Brief introductions to a selection of sup-
plemental topics are presented in Chapter 11. (All chapters contain many examples
of how the sampling concepts are used in practice.)

Chapter 12 contains a review of the main sampling designs and a set of exercises
that may require some thought in the selection of appropriate analyses. Appendix A
includes the mathematical derivations of many of the main results in the book. The
understanding of many of these derivations requires a working knowledge of ele-
mentary probability theory. SAS macros to implement methods from the book are
described in Appendix B; certain extensive data sets are detailed in Appendix C.

New to the Seventh Edition

What is new in the seventh edition? In survey sampling, the formulas for estimation
(especially variances of estimators) and sample size calculations can be, at best, te-
dious. With this revision, we provide a suite of interactive Excel tools that facilitate
computation. These tools allow students to see the formulas “in action,” which can
bring deeper understanding of their properties. In addition, by freeing the student
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from rote arithmetic, he or she can focus on the bigger picture of method selection,
properties of methods, and so on.

Beginning with Chapter 4, each chapter has an electronic section (a Word file),
which has links to the tools for all the formulas presented in that chapter. In addition,
all of the numerical examples for each chapter are built in to the relevant tools; the
reader can insert the data from the examples into the tool by a simple click on a but-
ton. In the text itself, an icon is displayed by relevant presentations of formulas and
by numerical examples to remind the reader of the availability of the tools. 

Acknowledgments

We are grateful to students of Gerow, whose enthusiastic use of and feedback on the
Excel tools inspired us. Particular thanks are due to Nancy Carter and her students
at the California State University at Chico, who used an early version of the toolkit
and contributed immensely to its advancement by their critical and thoughtful use of
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Survey sampling plays an increasingly important role in today’s information
society. We hope this book helps students design better surveys and understand the
subtleties of survey results presented to them. In short, our goal is to improve the flow
of knowledge from data.

Richard Scheaffer
Lyman Ott

Ken Gerow
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1

Introduction

“Twenty-two percent of Americans doubt that the Holocaust ever occurred,” blasted
a news statement in 1993. How could this be? How could so many doubt the occur-
rence of one of the most significant events of the twentieth century—and, perhaps, of
all time? The answer lies in the poll, or survey, itself and in the difficulty of commu-
nicating with language, which always produces some degree of imprecision. The
question actually asked by the Roper Organization was as follows:

Does it seem possible or does it seem impossible to you that the Nazi extermination
of the Jews never happened?

Among the respondents, 22% said “it seemed possible” and another 12% said they
did not know. Only 65% said it was “impossible it never happened.” The double neg-
ative in the question, it seems, confused the respondents to the point that they were
not sure how to phrase their answers. Picking up on this point, the Gallup Organiza-
tion conducted a follow-up poll that asked the question in more detailed form:

The term Holocaust usually refers to the killing of millions of Jews in Nazi death
camps during World War II. In your opinion, did the Holocaust: definitely happen,
probably happen, probably not happen, or definitely not happen?

Among the respondents to this poll, 83% said the Holocaust definitely happened and
another 13% said it probably happened. Only 1% said it definitely did not happen.
Quite a difference! In a separate poll, Gallup asked the Roper question again and
found that 37% of the respondents said it seemed possible that it never happened.

Polls and surveys increasingly guide political, research, and business decisions,
but they can be highly volatile and are little understood. An excellent study of current
trends in collecting and using data is the book Tainted Truth: The Manipulation of
Fact in America by Cynthia Crossen (1994, p. 14), in which she points out that

We are skeptical about statistical and factual information, but not as skeptical as we
think. . . . we respect numbers and we cannot help believing them. Yet, more and
more of the information we use to buy, elect, advise, acquit and heal has been
created not to expand our knowledge but to sell a product or advance a cause.

That’s what surveys do, they basically manufacture news.

1
     



We depend on data to make intelligent decisions, yet the data we see are often
tainted. An old saying on the use and misuse of computers was “garbage in–garbage
out,” but this has become “garbage in–gospel out” as more and more people get into
the numbers game. So what can we do? Part of the answer lies in education. Con-
sumers and producers of data with the serious, unbiased objective to get at the “truth”
must be educated in how surveys work, how good surveys can be designed, and how
survey data can be properly analyzed. That education is the purpose of this book.

Introductory courses stress that modem statistics is a theory of information with
inference as its objective. The target of our curiosity is a set of measurements, a pop-
ulation, that exists in fact or may be generated by repeated experimentation. The
medium of inference is the sample, which is a subset of measurements selected from
the population. We wish to make an inference about the population on the basis of
characteristics of the sample—or, equivalently, the information contained in the sam-
ple. For example, suppose a chain of department stores maintains customer charge
accounts. The amount of money owed by the company will vary from day to day as
new charges are made and some accounts are paid. Indeed, the set of amounts due to
the company on a given day represents a population of measurements of considerable
interest to the management. The population characteristic of interest is the total of all
measurements in the population or, equivalently, the daily total credit load.

Keeping track of the daily total credit associated with charge accounts may seem
to be a simple task for an electronic computer. However, the data must be updated
daily, and updating takes time. A simpler method for determining the total credit load
associated with the charge accounts is to randomly sample the population of accounts
on a given day, estimate the average amount owed per account, and multiply by the
number of accounts. In other words, we employ a statistical estimator to make an in-
ference about the total population. Elementary statistics tells us that this estimate can
be made as accurate as we wish simply by increasing the sample size. The resulting
estimate either is accompanied by a bound on the error of estimation or is expressed
as a confidence interval. Thus, information in the sample is used to make an inference
about the population.

Information from sample surveys affects almost every facet of our daily lives.
Such information determines government policies on, for example, the control of the
economy and the promotion of social programs. Opinion polls are the basis of much
of the news reported by the various news media. Ratings of television shows deter-
mine which shows are to be available for viewing in the future.

We usually think of the U.S. Census Bureau (http://www.census.gov/) as attempting
to contact every household in the country in order to count the population. But the de-
cennial census collects far more than simple counts. In the 2000 census, the short-
form questionnaire that went to all households had questions covering only tenure
(whether a housing unit is owned or rented), name, sex, age, relationship to house-
holder, Hispanic origin, and race. The long-form questionnaire, which went to a sam-
ple of one in six households, had the short-form questions plus additional questions
(40 or so) on such topics as the social characteristics of the population, marital
status, place of birth, citizenship, educational attainment, ancestry, language spoken
at home, veteran status, occupation, income, and housing conditions. The resulting
information is used by the federal government in determining allocations of funds to
states and cities. It is used by business to forecast sales, to manage personnel, and to
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Introduction 3

establish future site locations. It is used by urban and regional planners to plan land
use, transportation networks, and energy consumption. It is used by social scientists
to study economic conditions, racial balance, and other aspects of the quality of life.

The U.S. Bureau of Labor Statistics (BLS) (http://www.bls.gov/) routinely con-
ducts over 20 surveys. Some of the best known and most widely used are the surveys
that establish the consumer price index (CPI). The CPI is a measure of price change
for a fixed-market basket of goods and services over time. It is used as a measure of
inflation and serves as an economic indicator for government policies. Businesses
have wage rates and pension plans tied to the CPI. Federal health and welfare pro-
grams, as well as many state and local programs, tie their bases of eligibility to the
CPI. Escalator clauses in rents and mortgages are based on the CPI. So we can see
that this one index, determined on the basis of sample surveys, plays a fundamental
role in our society.

The CPI is based on a number of surveys. Consumer Expenditure Surveys pro-
vide information on the buying habits of American consumers, including data on
their expenditures, income, and consumer unit (families and single consumers) char-
acteristics. These are matched with prices for the goods and services found by way of
data collected in 87 urban areas throughout the country and from approximately
23,000 retail and service establishments. Data on rents are collected from approxi-
mately 50,000 landlords or tenants. 

One of the most noticeable of the BLS data collection efforts is the Current Pop-
ulation Survey (CPS), a monthly survey of households that provides a comprehen-
sive body of data on the labor force, employment, unemployment, and people not in
the labor force. Each month the CPS collects information on the labor force status of
the civilian noninstitutional population 15 years of age and older, although labor
force estimates are reported only for those 16 and older, using a probability sample
of approximately 60,000 households. Respondents are assured that all information
obtained is completely confidential and is used only for the purpose of statistical
analysis.

The BLS conducts other surveys. The National Compensation Survey provides
comprehensive measures of occupational earnings, compensation cost trends, and
benefit incidence for the purpose of measuring changes in labor costs and average
hourly employer cost per employee. National Longitudinal Surveys are designed to
gather information at multiple points in time on the labor market activities and other
significant life events of several groups of men and women and to serve as an impor-
tant tool for economists, sociologists, and other researchers. The Establishment
Survey collects information on employment hours and earnings for nonagricultural
business establishments. The survey on Occupational Outlook provides information
on future employment opportunities for a variety of occupations, projecting to
approximately ten years ahead. Details of the sampling and related methodologies
used by the BLS can be found in their Handbook of Methods. 

Opinion polls are constantly in the news, and the names Gallup and Harris have
become well known to everyone. These polls, or sample surveys, reflect the attitudes
and opinions of citizens on everything from politics and religion to sports and enter-
tainment. Gallup (http://www.gallup.com/) specializes in tracking the public’s atti-
tudes concerning virtually every political, social, and economic issue of the day, in-
cluding highly sensitive or controversial subjects. The organization prides itself in
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the fact that these polls have always been carried out independently and objectively,
with no polls paid for by special interest groups. Best known for the Harris Poll®,
Harris Interactive® (www.harrisinteractive.com) is a worldwide market research and
consulting firm that has pioneered the use of the Internet for market research.

The Nielson Company (http://www.nielsen.com/) uses sampling in a variety of
interesting and important ways. ACNielsen provides market research, information,
and analysis to the consumer products and service industries. Nielsen Media Re-
search, the famous TV ratings company, provides television-audience measurement
and related media research services. Nielsen NetRatings provides Internet-audience
measurement and analysis, an increasingly important component in the modern age.

Numerous research centers at universities are known for their expertise in sam-
pling, among them the National Opinion Research Center (NORC) at the University
of Chicago and the Survey Research Center (SRC) at the University of Michigan.
NORC (http://www.norc.uchicago.edu/) engages in a variety of studies for govern-
ment agencies, educational institutions, foundations, and private corporations (in-
cluding a study of the Florida voting fiasco of 2000) but is probably best known for
the General Social Survey (GSS). The GSS assesses social changes in contemporary
America through a standard core of demographic and attitudinal variables, plus top-
ics of special interest selected for rotation. The SRC (http://www.isr.umich.edu/src/)
specializes in interdisciplinary social science research involving the collection and
analysis of data from scientific sample surveys, with a good balance among basic re-
search, applied survey-based research, and the propagation of the scientific method
of survey research through teaching and training.

Businesses conduct sample surveys for their internal operations, in addition to
using government surveys for crucial management decisions. Auditors estimate ac-
count balances and check on compliance with operating rules by sampling accounts.
Quality control of manufacturing processes relies heavily on sampling techniques.

One particular area of business activity that depends on detailed sampling activ-
ities is marketing. Decisions on which products to market, where to market them, and
how to advertise them are often made on the basis of sample survey data. The data
may come from surveys conducted by the firm that manufactures the product or may
be purchased from survey firms that specialize in marketing data. The Market Re-
search Corporation of America, for example, provides many types of marketing data
through the use of surveys, but some of the more interesting results come from its
National Menu Census. This survey samples families and observes their eating pat-
terns for two weeks. As many as 4000 families may participate during a year. Data
are obtained on the number of times a particular food item is served, how it is served,
how many people eat the item, and many other details, including what happens to the
leftovers. Such details are important for product development and advertising.

Many interesting examples of the practical uses of statistics in general and sam-
pling in particular can be found in Statistics: A Guide to the Unknown (Tanur, 1989).
In this book, you might want to look at some of the methods and uses of opinion
polling discussed in the articles “Opinion Polling in a Democracy” by George Gallup
and “Election Night on Television” by R. F. Link. Those interested in wildlife
ecology should read “The Plight of the Whales” by D. G. Chapman. Find out how
interrailroad and interairline billing is handled economically through sampling by
reading “How Accountants Save Money by Sampling” by John Neter.

4 Chapter 1 Introduction
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Introduction 5

Because the objective of modern statistics is inference, you may question what
particular aspect of statistics will be covered in a course on sample survey design.
The answer to this question is twofold. First, we focus on the economics of purchas-
ing a specific quantity of information. More specifically, how can we design sam-
pling procedures that reduce the cost of a fixed quantity of information? Although
introductory courses in statistics acknowledge the importance of this subject, they
place major emphasis on basic concepts and on how to make inferences in specific
situations after the data have been collected. The second distinguishing feature of our
topic is that it is aimed at the particular types of sampling situations and inferential
problems most frequently encountered in business, the social sciences, and natural
resource management (timber, wildlife, and recreation) rather than in the physical
sciences.

Even the terminology of the social scientist differs from that of the physical sci-
entist. Social scientists conduct surveys to collect a sample, whereas physical scien-
tists perform experiments. Thus, we acknowledge that differences exist from one
field of science to another in the nature of the populations and the manner in which a
sample can be drawn. For example, populations of voters, financial accounts, or an-
imals of a particular species may contain only a small number of elements. In con-
trast, the conceptual population of responses generated by measuring the yield of a
chemical process is very large indeed. (You may recall that the properties of estima-
tors and test statistics covered in most introductory courses assume that the popula-
tion of interest is large relative to the sample.) Limitations placed on the sampling
procedure also vary from one area of science to another. Sampling in the biological
and physical sciences can frequently be performed under controlled experimental
conditions. Such control is frequently impossible in the social sciences, business, and
natural resource management. For example, a medical researcher might compare the
growth of rats subjected to two different drugs. For this experiment, the initial
weights of the rats and the daily intake of food can be controlled to reduce unwanted
variation in the experiment. In contrast, very few variables can be controlled in com-
paring the effect of two different television advertisements on sales for a given prod-
uct; no control is possible when studying the effect of environmental conditions on
the number of seals in the North Pacific Ocean.

In summary, this book is concerned with the peculiarities of sampling and infer-
ence commonly encountered in business, the social sciences, and natural resource
management. Specifically, we consider methods for actually selecting the sample
from an existing population and ways of circumventing various difficulties that arise.
Methods for designing surveys that capitalize on characteristics of the population are
presented along with associated estimators to reduce the cost for acquiring an esti-
mate of specified accuracy.

Chapter 2 presents some of the basic terminology of sampling, as well as a dis-
cussion of problems arising in sample survey design. Chapter 3 reviews some of the
basic concepts encountered in introductory statistics, including the fundamental
role that probability plays in making inferences. Simple random sampling, familiar
to the beginning student, is carefully presented in Chapter 4; it includes physical
procedures for actually selecting the sample. Subsequent chapters cover economical
methods for selecting a sample and associated methods for estimating population
parameters.

     



In reading this book, keep in mind that the ultimate objective of each chapter is
inference. Identify the sampling procedure associated with each chapter, the popula-
tion parameters of interest, their estimators, and the associated bounds on the errors
of estimation. Develop an intuitive understanding of and appreciation for the benefits
to be derived from specialized sampling procedures. Focus on the broad concepts and
do not become hypnotized by the formulas for estimators and variances that some-
times are unavoidably complicated. In short, focus on the forest rather than the trees.
Work some exercises, and the details will fall into place.

6 Chapter 1 Introduction

     



2

Elements of the Sampling Problem

2.1
Introduction

The objective of sample surveys is to make inferences about a population from in-
formation contained in a sample selected from that population. The inference often
takes the form of estimating a population mean (such as mean income per household)
or proportion (such as proportion of voters favoring a certain issue), and these are the
two types of problems that are discussed most in this book. We begin by considering
the particular problem of sampling from a finite collection of measurements (popu-
lation), and then observe what happens as the population size gets larger. In most
cases, the inference is in the form of an estimate of a population parameter, such as a
mean, total, or proportion, with a bound on the error of estimation. For those more
interested in methodology than theory, intuitive arguments are given whenever pos-
sible to justify the use of estimators.

In the first part of our discussion of the sampling problem (Section 2.2), we
introduce certain technical terms common to sample surveys. Next, in Section 2.3
we discuss how to select a sample from the population.

Each observation, or item, taken from the population contains a certain amount
of information about the population parameter or parameters of interest. Because in-
formation costs money, the experimenter must determine how much information he
or she should buy. Too little information prevents the experimenter from making
good estimates, whereas too much of it results in a waste of money. The quantity of
information obtained in the sample depends on the number of items sampled and on
the amount of variation in the data. This latter factor can be controlled somewhat by
the method of selecting the sample, called the design of the sample survey. The de-
sign of the survey and the sample size determine the quantity of information in the
sample pertinent to a population parameter, provided that accurate measurements are
obtained on each sampled element. Several sample survey designs are introduced in
Section 2.3.

If accurate measurements are not obtained on each element of the survey, then
other errors are introduced. Sources of these errors are discussed in Section 2.4.
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Accuracy of measurements can be enhanced by good questionnaire construction,
discussed in Section 2.5. Section 2.6 presents the main elements we should carefully
check when planning a survey.

2.2
Technical Terms

Technical terminology is kept to minimum in this book; however, certain common
terms must be defined. Let us introduce these terms by way of an example. In a cer-
tain community, an opinion poll was conducted to determine public sentiment toward
a bond issue in an upcoming election. The objective of the survey was to estimate the
proportion of voters in the community who favored the bond issue.

DEFINITION 2.1

An element is an object on which a measurement is taken. ■

In our example, an element is a registered voter in the community. The measure-
ment taken on an element is the voter’s preference on the bond issue. Because measure-
ments are usually considered to be numbers, the experimenter can obtain numerical data
by recording a 1 for a voter in favor of the bond issue and a 0 for a voter not in favor.

DEFINITION 2.2

A population is a collection of elements about which we wish to make an
inference. ■

The population in our example is the collection of voters in the community. The
characteristic (numerical measurement) of interest for each member of this popula-
tion is his or her preference on the bond issue.

An important task for the investigator is to carefully and completely define the
population before collecting a sample. The definition must include a description of
the elements to be included and a specification of the measurements to be taken be-
cause these two components are interrelated. For example, if the population in the
bond issue study consists of registered voters, then we may want to collect informa-
tion on whether or not each sampled person plans to vote in the upcoming election.
Sampling the desired target population is not always possible, and the investigator
may have to collect additional information so that answers can be provided for ques-
tions of interest. In our example, if the population available for sampling is a list of
residents of the community, then information about whether each sampled person is,
in fact, a registered voter should be collected.

DEFINITION 2.3

Sampling units are nonoverlapping collections of elements from the population that
cover the entire population. ■

8 Chapter 2 Elements of the Sampling Problem

     



In the bond issue example, a sampling unit may be a registered voter in the com-
munity. However, a more efficient process may be to sample households, which are
collections of elements, in order to obtain information on voter preferences. If house-
holds are the sampling units, they must be defined so that no voter in the population
can be sampled more than once and so that each voter has a chance of being selected
in the sample.

As the definition states, sampling units should be nonoverlapping. However, sit-
uations do arise in which the nonoverlapping condition is virtually impossible to
achieve. Field plot samples taken, for example, in studies of animal habitats are often
circular. The circular pattern is a convenient one to lay out and has advantages in
terms of the amount of walking necessary to study the plot. Obviously, circular plots
cannot cover a field without some overlap. The intent here is to suggest that the over-
lap should be as small as possible for efficient sampling.

If each sampling unit contains one and only one element of the population, then
a sampling unit and an element from the population are identical. This situation
arises if we sample individual voters rather than households within the community.

DEFINITION 2.4

A frame is a list of sampling units. ■

If we specify the individual voter as the sampling unit, a list of all registered vot-
ers may serve as a frame for a public opinion poll. Note that this frame will not in-
clude all the elements in the population because updating the list daily is impossible.
If we take the household as the sampling unit, then a telephone directory, a city di-
rectory, or a list of household heads obtained from census data can serve as a frame.

All these frames have some inadequacies. The lists will not be up to date. They
will contain many names of unregistered household heads, and hence a sample
drawn from the lists will contain many units that are not in the population. Also,
some registered voters may not appear on any of these lists. It is hoped, however, that
the gap between the frame and the population is small enough to permit inferences to
be made about the population on the basis of a sample drawn from the frame.

Some sampling schemes may involve multiple frames. In sampling voters, we
could start by sampling city blocks, then sampling housing units within those blocks,
and finally sampling voters within the selected housing units. One frame, then, is a list
of city blocks, and the second frame is a list of housing units within those blocks. The
second frame may not be available until the blocks are selected and studied in some
detail. As another example, estimation of crop yields in a state may involve sampling
from a list of growers to be interviewed and a list of fields to be objectively measured.

A frame needn’t be a list only. A map of an Arctic island might represent a study
area, from which random locations will be selected for estimating the abundance of
nesting geese on the island. Any suitable representation of the population of interest
that allows random selection of units can serve as a frame.

DEFINITION 2.5

A sample is a collection of sampling units drawn from a single frame or from multi-
ple frames. ■

2.2 Technical Terms 9

     



Data are obtained from the elements of the sample and used in describing the
population. Let the individual voter be our sampling unit and the list of registered
voters be our frame. In the public opinion poll, we contact a number of voters (the
sample) to determine their preference for the upcoming bond issue. We then use the
information obtained from these voters to make an inference about voter preference
throughout the community.

2.3
How to Select the Sample: The Design of the Sample Survey

The objective of sampling is to estimate population parameters, such as the mean or
the total, from information contained in a sample. As stated previously, the experi-
menter controls the quantity of information contained in the sample by the number of
sampling units he or she includes in the sample and by the method used to select the
sample data. How do we determine which procedure to use and the number of obser-
vations (sampling units) to include in the sample? The answer depends on how much
information we want to buy. If u is the parameter of interest and is an estimator of u,
we should specify a bound on our error of estimation; that is, we should specify that
u and differ in absolute value by less than some value B. Stated symbolically,

We also must state a probability, that specifies the fraction of times in
repeated sampling we require the error of estimation to be less than B. This condition
can be stated as

We will usually select and hence will be approximately .95
for bell-shaped distributions. Sample means and proportions, the statistics used most
widely in this book, exhibit bell-shaped distributions for reasonably large sample
sizes, even when the parent population is skewed.

After we obtain a specified bound with its associated probability , we
can compare different designs (methods of selecting the sample) to determine which
procedure yields the desired precision at minimum cost. 

Probability Sampling

The classical formulation of a statistical estimation problem, as described here and
in Chapter 3, requires that randomness be built into the sampling design so that
properties of the estimators can be assessed probabilistically. With proper random-
ness in the sampling, we can make statements such as “Our estimate is unbiased
and we are 95% confident that our estimate will be within 2 percentage points of
the true proportion.” Sample designs based on planned randomness are called prob-
ability samples. Virtually all of the remainder of this book deals with probability
samples; the main types of probability sampling designs are outlined here.

(1 - a)

(1 - a)B = 2suN,

P[Error of estimation<B] = 1 - a

(1 - a),

Error of estimation = ƒ u - uN ƒ <B

uN

uN
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The basic design (simple random sampling) consists of selecting a group of n
sampling units in such a way that each sample of size n has the same chance of being
selected. Thus, we can obtain a random sample of n eligible voters in the bond issue
poll by drawing names from the list of registered voters in such a way that each sam-
ple of size n has the same probability of selection. The details of simple random sam-
pling are discussed in Chapter 4. At this point, we merely state that a simple random
sample contains as much information on the community preference as any other sam-
ple survey design, provided all voters in the community have similar socioeconomic
backgrounds.

Suppose, however, that the community consists of people in two distinct income
brackets, high and low. Voters in the high bracket may have opinions on the bond
issue that are quite different from the opinions of voters in the low bracket. There-
fore, to obtain accurate information about the population, we want to sample voters
from each bracket. We can divide the population elements into two groups, or strata,
according to income and select a simple random sample from each group. The re-
sulting sample is called a stratified random sample.

Note that stratification is accomplished by using knowledge of an auxiliary vari-
able, namely, personal income. By stratifying on high and low values of income, we
increase the accuracy of our estimator. Ratio estimation is a second method for using
the information contained in an auxiliary variable. Ratio estimators not only use
measurements on the response of interest but also incorporate measurements on an
auxiliary variable. If the goal is to estimate the average yearly amount spent on en-
tertainment by households in a community, it might be best first to estimate the ratio
of entertainment expenses to household income and then to multiply this result by the
total annual household income for the community. Ratio estimation can also be used
with stratified random sampling.

Although individual preferences are desired in the survey, a more economical pro-
cedure, especially in urban areas, may be to sample specific families, apartment build-
ings, or city blocks rather than individual voters. Individual preferences can then be
obtained from each eligible voter within the unit sampled. This technique is called clus-
ter sampling. Although we divide the population into groups for both cluster sampling
and stratified random sampling, the techniques differ. In stratified random sampling, we
take a simple random sample within each group; in cluster sampling, we take a simple
random sample of groups and then sample items within the selected groups (clusters).

Sometimes, the names of individuals in the population of interest are available in
a list, such as a registration list, or on file cards stored in a drawer. For this situation,
an economical technique is to draw the sample by selecting one name near the be-
ginning of the list and every 10th or 15th name thereafter. If the sampling is conducted
in this manner, we obtain a systematic sample. As you might expect, systematic sam-
pling offers a convenient means of obtaining sample information; interestingly, in
addition to the convenience, it can sometimes yield more precise estimates than a
simple random sample (Chapter 7).

We know that observations cost money. Note that the cost of an observation may
vary from design to design, and even within a design, depending on the method of
data collection. The experimenter should choose the design that gives the desired
bound on error with the smallest number of observations (assuming the same cost per
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observation). However, if the cost per observation varies from design to design, the
experimenter should choose the design that gives the desired bound on the error of
estimation at a minimum cost.

Quota Sampling

Probability sampling has a certain amount of randomness built in so that estimator
bias or unbiasedness can be established and probability statements can be made
about the accuracy of the methods, but could we not do better if we did not random-
ize at all? Suppose we know that our school’s student body contains 60% men and
40% women. Rather than taking a simple random sample that almost certainly will
not contain exactly 60% men, why not select students one at a time until we get ex-
actly 60% men? Samples of the latter type are called quota samples. We now discuss
the performance of quota samples as compared to probability samples.

One of the best examples on which to compare probability sampling and quota
sampling is the U.S. presidential election polls, because the true outcome is eventu-
ally known (the accuracy of the poll can be seen) and both types of sampling have
been used over the years. During and before 1948, quota sampling was the favored
method of political pollsters. The thinking was that results would be more accurate if
the sample contained ratios of sex, age, income, education, and other factors related
to political persuasion that perfectly mirrored the ratios for those same factors in the
population as a whole. That thinking was first seriously questioned after the famous
presidential election of 1948, in which the underdog Harry Truman defeated the
heavily favored Thomas E. Dewey. The results of three famous polls of the time
(Crossley, Gallup, and Roper) are shown in Table 2.1. Data in the table show that all
three polls seriously overestimated the popular vote for Dewey, yet the quota samples
had been designed well, as we see in Table 2.2. The polls achieved ratios of sex, age,
education, color, and veteran status quite close to those found in the U.S. population.
(A notable exception may be education, in which the “grade school or less” category
is seriously underrepresented in the polls.)

Quota sampling was not the only reason for the failure of the polls in 1948, but it
certainly was a major contributor. Why? A major reason for poor results from quota
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TABLE 2.1
The election polls of 1948

Percentage of total presidential vote 

Dewey Truman Thurmond Wallace Total*

National vote 45.1 49.5 2.4 2.4 99.4
Crossley 49.9 44.8 1.6 3.3 99.6
Gallup 49.5 44.5 2.0 4.0 100.0
Roper 52.2 37.1 5.2 4.3 98.8

*Exclusive of percentages for minor candidates. Gallup percentages calculated on total vote for four principal
candidates.

SOURCE: F. Mosteller, The Pre-election Polls of 1948. Copyright © 1949, Social Sciences Research Council, New York.

     



sampling is that the final selection of the respondent is left up to the subjective judg-
ment of the interviewer rather than being determined objectively (as by a random
number generator). Interviewers in quota sampling tend to be given general instruc-
tions (“Find two men and three women in your block, and make sure four are over
25 years of age and one is under 25.”). Interviewers in probability sampling are given
names or addresses already selected by a randomization device, without human sub-
jectivity. Let us speculate, then, on why Republicans were overrepresented in the
quota samples of 1948. Perhaps Republicans tended to be better educated or to have
higher incomes than Democrats. Thus, there might have been a preponderance of
them in the better sections of town, and they might have been the more attractive in-
dividuals to seek out in a crowd. Even unintentionally, interviewers under the quota
sampling rules could be easily drawn toward choosing too many Republicans.

There is a more subtle reason exists for the failure of quota samples. Table 2.2
shows that Gallup and Roper tried to set quotas for six variables. But there are many
more variables (perhaps hundreds more) that might affect voter preference in a pres-
idential election. What about attitudes toward foreign powers, health care, taxes, or
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TABLE 2.2
Comparison of Gallup and Roper samples with U.S. population

Percentages 

Population Gallup Roper
estimate Oct. 14 sample Oct. 25 sample

Sex
Male 49.1* 50.5 50.1
Female 50.9 49.5 49.9

Age
21–34 34.3 29.6 36.3
35–49 30.9 34.4 30.8
50 and over 34.8 35.9 32.9

Education (last school attended)
Grade school or less 43.5 35.3 27.5
High school 43.4 46.8 48.8
College 13.0 17.9 23.7

Color
White 96.1 95.0 97.4
Negro 3.9 5.0 2.6

Veteran status
Male veterans 14.2 13.3 18.3
All others 85.8 86.7 81.6

Labor union membership of males
Member 17.5 23.1
Non Member 82.5 76.9

Number of respondents 2972 3501

*Population aged 21 years and over as of November 1948.

SOURCE: See Table 2.1.

     



even sports? What about national origin, marital status, and income level? It is im-
possible to control all such factors in quota, or any, sampling designs. The random-
ization inherent in probability sampling helps balance out factors that cannot be con-
trolled or possibly even measured directly. A random selection of students from your
school may result in approximately 60% men and, at the same time, show propor-
tions of fraternity members, in-state residents, and married students approximately
equal to the corresponding population ratios, even though no one controlled for these
factors, whereas setting a quota for 60% men might disturb the balance on other
equally important factors. Randomization thus provides balance in uncontrolled (and
uncontrollable) factors to a much greater extent than does quota sampling.

Quota sampling failed in 1948. But what about other years? Table 2.3 shows the
results of Gallup presidential election polls from 1936 (when the poll began) to 1984.
Quota sampling was used prior to and including 1948, whereas probability sampling
has been used since 1952. Note that all the polls from 1936 to 1948 produced an un-
derestimate of the Democratic vote, but the outcomes were so clear that the correct
winner could still be predicted until the very close election of 1948. After 1948, no
clear pattern has emerged between Democratic and Republican vote percentages, as
compared to the winners. However, the errors involved (the differences between the
estimated and true percentages) are generally smaller. In fact, the Gallup poll reports
that their average error in 24 national election polls prior to 1950 was 2.3%, whereas
their average error in 17 national election polls after 1950 was only 1.5%. This im-
proved accuracy is being accomplished with smaller sample sizes. The 1948 Gallup
poll had a sample size of 3250, whereas most modem polls aim for 1500 or fewer
respondents.

To complete the saga of the 1948 election, another example is pertinent. The
Washington State Public Opinion Laboratory conducted two polls prior to the
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TABLE 2.3
Gallup poll accuracy

Year Gallup final survey Election result

1936 55.7% Roosevelt (D) 62.5% Roosevelt
1940 52.0% Roosevelt (D) 55.0% Roosevelt
1944 51.5% Roosevelt (D) 52.3% Roosevelt
1948 44.5% Truman (D) 49.9% Truman
1952 51.0% Eisenhower (R) 55.4% Eisenhower
1956 59.5% Eisenhower (R) 57.8% Eisenhower
1960 51.0% Kennedy (D) 50.1% Kennedy
1964 64.0% Johnson (D) 61.3% Johnson
1968 43.0% Nixon (R) 43.5% Nixon
1972 62.0% Nixon (R) 61.8% Nixon
1976 48.0% Carter (D) 50.0% Carter
1980 47.0% Reagan (R) 50.8% Reagan
1984 59.0% Reagan (R) 59.2% Reagan

The figure shown is the winner’s percentage of the Democratic Republican vote, except in the elections of 1948, 1968,
and 1976. 

SOURCE: G. Gallup, Jr., The Gallup Poll, Public Opinion 1984. Copyright © 1985, Scholarly Resources Inc.,
Wilmington, DE.

     



election, one using quota and one using probability sampling. The results are shown
in Table 2.4. Are you surprised?

How does the Gallup poll work today? A statement from the American Institute
of Public Opinion (the Gallup organization) is given below. In it, you see an empha-
sis on randomness and objectivity that was sadly lacking prior to 1948. Whatever
else you might learn from a book on sampling methods, keep in mind the necessity
for randomization in the sampling design. The Gallup poll statement is followed by
a briefer one from the New York Times.

How Gallup Poles are Conducted
Public opinion polls would have less value in a democracy if the public—the very
people whose views are represented by the polls—didn’t have confidence in the
results. This confidence does not come easily. The process of polling is often
mysterious, particularly to those who don’t see how the views of 1,000 people can
represent those of hundreds of millions.

The Sampling Issue Probability sampling is the fundamental basis for all survey
research. The basic principle: a randomly selected, small percent of a population of
people can represent the attitudes, opinions, or projected behavior of all of the peo-
ple, if the sample is selected correctly.

The fundamental goal of a survey is to come up with the same results that would
have been obtained had every single member of a population been interviewed. For
national Gallup polls, in other words, the objective is to present the opinions of a
sample of people which are exactly the same opinions that would have been ob-
tained had it been possible to interview all adult Americans in the country.

The key to reaching this goal is a fundamental principle called equal probability
of selection, which states that if every member of a population has an equal proba-
bility of being selected in a sample, then that sample will be representative of the
population. It’s that straightforward.

Thus, it is Gallup’s goal in selecting samples to allow every adult American an
equal chance of falling into the sample. How that is done, of course, is the key to the
success or failure of the process.

Selecting a Random Sample The first one thousand people streaming out of a
Yankees game in the Bronx clearly aren’t representative of all Americans. Now con-
sider a group compiled by selecting 1,000 people coming out of a Major League
Baseball game in every state in the continental United States – 48,000 people! We
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TABLE 2.4
The Washington state poll of 1948 

Actual Washington Probability
state vote sample Quota sample

Dewey 42.7 46.0 52.0
Truman 52.6 50.5 45.3
Wallace 3.5 2.9 2.5

     



now have a much larger group—but we are still no closer to representing the views
of all Americans than we were in the Bronx. We have a lot of baseball fans, but,
depending on the circumstances, these 48,000 people may not even be a good repre-
sentative sample of all baseball fans in the country—much less all Americans, base-
ball fans or not.

When setting out to conduct a national opinion poll, the first thing Gallup does
is select a place where all or most Americans are equally likely to be found. That
wouldn’t be a shopping mall, or a grocery store, an office building, a hotel, or a
baseball game. The place nearly all adult Americans are most likely to be found is in
their home. So, reaching people at home is the starting place for almost all national
surveys.

By necessity, the earliest polls were conducted in-person, with Gallup interview-
ers fanning out across the country, knocking on Americans’ doors. This was the stan-
dard method of interviewing for nearly fifty years, from about 1935 to the mid 1980s,
and it was a demonstrably reliable method. Gallup polls across the twelve presiden-
tial elections held between 1936 and 1984 were highly accurate, with the average
error in Gallup’s final estimate of the election being less than 3 percentage points.

By 1986, a sufficient proportion of American households had at least one tele-
phone to make telephone interviewing a viable and substantially less expensive al-
ternative to the in-person method. And by the end of the 1980s the vast majority of
Gallup’s national surveys were being conducted by telephone. Today, approximately
95% of all households have a telephone and every survey reported in this book is
based on interviews conducted by telephone.

Gallup proceeds with several steps in putting together its poll with the objective
of letting every American household, and every American adult have an equal
chance of falling into the sample.

First we clearly identify and describe the population that a given poll is attempt-
ing to represent. If we were doing a poll about baseball fans on behalf of the sports
page of a major newspaper, the target population might simply be all Americans
aged 18 and older who say they are fans of the sport of baseball. If the poll were
being conducted on behalf of Major League Baseball, however, the target audience
required by the client might be more specific, such as people aged twelve and older
who watch at least five hours worth of Major League Baseball games on television,
or in-person, each week.

In the case of Gallup polls which track the election and the major political, so-
cial and economic questions of the day, the target audience is generally referred to as
“national adults.” Strictly speaking the target audience is all adults, aged 18 and
over, living in telephone households within the continental United States. In effect, it
is the civilian, noninstitutionalized population. College students living on campus,
armed forces personnel living on military bases, prisoners, hospital patients and oth-
ers living in group institutions are not represented in Gallup’s “sampling frame.”
Clearly these exclusions represent some diminishment in the coverage of the popula-
tion, but because of the practical difficulties involved in attempting to reach the in-
stitutionalized population, it is a compromise Gallup usually needs to make.

Next, we choose or design a method which will enable us to sample our target
population randomly. In the case of the Gallup Poll, we start with a list of all house-
hold telephone numbers in the continental United States. This complicated process
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really starts with a computerized list of all telephone exchanges in America, along
with estimates of the number of residential households those exchanges have at-
tached to them. The computer, using a procedure called random digit dialing (RDD),
actually creates phone numbers from those exchanges, then generates telephone
samples from those. In essence, this procedure creates a list of all possible house-
hold phone numbers in America and then selects a subset of numbers from that list
for Gallup to call.

It’s important to go through this complicated procedure because estimates are
that about 30% of American residential phones are unlisted. Although it would be a
lot simpler if we used phone books to obtain all listed phone numbers in America
and sampled from them (much as you would if you simply took every 38th number
from your local phone book), we would miss out on unlisted phone numbers, and in-
troduce a possible bias into the sample.

The Number of Interviews or Sample Size Required One key question faced by
Gallup statisticians: How many interviews does it take to provide an adequate cross
section of Americans? The answer is, not many – that is, if the respondents to be in-
terviewed are selected entirely at random, giving every adult American an equal
probability of falling into the sample. The current US adult population in the conti-
nental United States is 187 million. The typical sample size for a Gallup poll which
is designed to represent this general population is 1,000 national adults.

The actual number of people which need to be interviewed for a given sample is
to some degree less important than the soundness of the fundamental equal probabil-
ity of selection principle. In other words – although this is something many people
find hard to believe – if respondents are not selected randomly, we could have a poll
with a million people and still be significantly less likely to represent the views of
all Americans than a much smaller sample of just 1,000 people – if that sample is
selected randomly.

To be sure, there is some gain in sampling accuracy which comes from increas-
ing sample sizes. Common sense – and sampling theory – tell us that a sample of
1,000 people probably is going to be more accurate than a sample of 20. Surpris-
ingly, however, once the survey sample gets to a size of 500, 600, 700 or more, there
are fewer and fewer accuracy gains which come from increasing the sample size.
Gallup and other major organizations use sample sizes of between 1,000 and 1,500
because they provide a solid balance of accuracy against the increased economic
cost of larger and larger samples. If Gallup were to – quite expensively – use a sam-
ple of 4,000 randomly selected adults each time it did its poll, the increase in accu-
racy over and beyond a well-done sample of 1,000 would be minimal, and generally
speaking, would not justify the increase in cost.
SOURCE: How Polls Are Conducted by Frank Newport, Lydia Saad, and David Moore, from Where America
Stands, 1997, Wiley. Available at: http://www.gallup.com/help/FAQs/poll1.asp.

How the New York Times/CBS Poll Was Conducted
February 14, 2003. The latest New York Times/CBS News Poll is based on tele-
phone interviews conducted Monday through Wednesday with 747 adults through-
out the United States. The sample of telephone exchanges called was randomly se-
lected by a computer from a complete list of more than 42,000 active residential
exchanges across the country. Within each exchange, random digits were added to
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form a complete telephone number, thus permitting access to listed and unlisted
numbers alike. Within each household, one adult was designated by a random proce-
dure to be the respondent for the survey. The results have been weighted to take
account of household size and number of telephone lines into the residence and to
adjust for variation in the sample relating to geographic region, sex, race, age, and
education. In theory, in 19 cases out of 20, the results based on such samples will
differ by no more than four percentage points in either direction from what would
have been obtained by seeking out all American adults. For smaller subgroups the
margin of sampling error is larger.

In addition to sampling error, the practical difficulties of conducting any survey
of public opinion may introduce other sources of error into the poll. Variation in the
wording and order of questions, for example, may lead to somewhat different results.

2.4
Sources of Errors in Surveys

Sample surveys are afflicted with many types of errors, some of which arise because
only a sample from the population is intended for measurement and because, even
for the sampled elements, data may be incomplete or incorrect. Experts in sample
survey design and practice have classified survey errors in a variety of ways, but one
of the most complete and most informative comes from Groves (1989). His scheme
has been modified for use here.

Survey errors can be divided into two major groups: errors of nonobservation,
where the sampled elements make up only part of the target population, and errors of
observation, where recorded data deviate from the truth. Errors of nonobservation
can be attributed to sampling, coverage, or nonresponse. Errors of observation can be
attributed to the interviewer (data collector), respondent, instrument, or method of
data collection.

Errors of Nonobservation

Generally, the data observed in a sample do not precisely mirror the data in the pop-
ulation from which that sample was selected, even if the sampling and measuring are
done with extreme care and accuracy. This deviation between an estimate from an
ideal sample and the true population value is the sampling error that is produced sim-
ply because this is a sample and not a census. Sampling error can be measured theo-
retically and estimated from the sample data for probability samples. The error of es-
timation discussed in Section 2.3 and in Chapter 3 is one way of assessing the size of
this error. It is important to note that sampling error can be reduced by good survey
designs and appropriate choice of sample size. Thus, the investigator has some con-
trol over this component of error; methods to control it are the subject of most of the
remainder of this book.

In almost all surveys, the sampling frame does not match up perfectly with the
target population, leading to errors of coverage. For telephone surveys, telephone di-
rectories are inadequate because of unlisted numbers. For mail surveys of property
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owners, the most recent list of addresses available at the county courthouse will be
outdated because some nonresident owners have moved and some have sold their
property recently. For surveys of hunters or anglers, lists of license purchases are in-
adequate because children are not required to purchase a license. This lack of cover-
age introduces an error into the sampling process, an error that is not easily measured
or corrected in many surveys. This coverage problem should be clearly elucidated in
the report on the data analysis so that those using the results of the study can see
clearly how the sampled population differs from the target population.

Probably the most serious of all the nonobservational errors, however, is nonre-
sponse. This is a particularly difficult and important problem in surveys that attempt
to collect information directly from people through some form of interview. Nonre-
sponse rates are easily obtained because the investigator knows both the sample size
and the number of responses to the survey, and sometimes these rates are used to
judge the quality of a survey. This is a mistake because a small nonresponse rate
could still cause a survey to miss an important part of the population, say, all people
over age 70. Data from a survey with a high nonresponse rate could still be informa-
tive if the nonrespondents looked like the respondents in all important characteris-
tics. The important consideration here is the nature of the nonrespondents. A good
survey must attempt to obtain some information on this group in order to measure
how far from the respondent group it may be.

Nonresponse arises in one of three ways: the inability to contact the sampled el-
ement (person or household, for example), the inability of the person responding to
come up with the answer to the question of interest, or refusal to answer. Data must
be collected from precisely those elements that were selected by the randomization
scheme used in the design of the survey. An interviewer must not substitute a next-
door neighbor who just happens to be home at 3:00 p.m. for the person actually se-
lected for the sample. This type of substitution might lead to a survey that is biased
because too many families with children or too many retired people or too many peo-
ple who work at night are being interviewed. In addition to these obvious biases, hap-
hazard substitutions alter the probabilistic structure of the design and may make it
impossible to estimate the sampling error.

The inability of the interviewed person to answer the question of interest is a se-
rious problem, particularly questions that deal with fact. A question on opinion can
have a “don’t know” option, and the survey design can account for a certain percent-
age being in this category. (More discussion of the “don’t know” option comes later
in this chapter.) A survey on the economic impact of businesses on a community,
however, can be seriously biased if a few of the larger businesses do not know how
much they spend on transportation. This is the type of question, however, for which
an answer can be found by deeper checking.

The most serious aspect of the nonresponse problem today is refusal to answer.
Perhaps because of the proliferation of surveys, because of fear related to increases
in crime, and, no doubt, because of a variety of other reasons, people are refusing to
answer survey questions in ever-increasing numbers. Actually, many surveys report
that their response rates are as good as ever and have not decreased in recent years.
On closer scrutiny, however, this maintenance of response rates is often due to an in-
creased effort to replace the refusals with others who will respond. Figure 2.1 shows
the nonresponse rates for the National Health Interview Survey, an annual survey
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conducted for the federal government, from 1967 through 1985. The overall nonre-
sponse rate appears to be fairly steady, but the refusals, when broken down by type,
show a marked increase over the years. Figure 2.2 shows a similar pattern for the
Current Population Survey. (The cyclic effect of the nonresponse rates for the Cur-
rent Population Survey is due to some months having much more detailed question-
naires than others.) These increases in nonresponse rates are for government surveys
done on a regular basis; the situation is worse for many commercial surveys and for
those done sporadically.

What do survey designers and analysts know about those who tend to refuse to
answer surveys? The highest refusal rates occur among the elderly and the poorly ed-
ucated, although this is not uniformly true for all surveys. This pattern seems to exist
overall in ethnic and salary groups. Single-person households are more likely to re-
fuse an interview than multiple-person households, but this issue is confounded with
the elderly issue because the elderly belong to many single-person households. These
groups, the poorly educated and the elderly, often feel that surveys suggest someone
else (often the government) is attempting to gain more power over them and they are
relatively powerless. Thus, they will not give those in “authority” any more ammu-
nition. Of course, the proliferation of surveys is causing a tremendous intrusion on
privacy for all groups, especially when most people include sales calls (which may
begin with a comment about conducting a survey) with the serious surveys. If a sur-
vey produces a high refusal rate, it behooves the investigator to find some informa-
tion on those refusing to answer in order to reduce a potentially great bias.

Careful planning can lower refusal rates. Alerting the respondents in advance, by
a letter or a telephone call, that they have been selected for a survey may help improve
the response rate. This is especially true if the letter is from a prestigious organization
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FIGURE 2.1
Nonresponse rates for the National Health Interview Survey, 1967–1985
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(in the eyes of the potential respondents), if it explains that the survey can be benefi-
cial to them and to others, and if the letter explains why it is important that the very
person selected must respond in order to make the survey valid. In general, a poten-
tial respondent does not see why his or her next-door neighbor cannot be substituted.
(After all, he is home all the time and loves to talk.) Explaining the nature of random
sampling in nontechnical language sometimes helps. Long introductions about the
technical merits of the survey and its outcomes, however, are not seen as beneficial.

Groves et al. (2002) give a comprehensive assessment of what is known about
nonresponse and effective ways to mitigate its effect. A few of their main points are
summarized here. Surveys are governed by principles of social exchange. Small ges-
tures (personalized letters, reminder letters, or tokens of appreciation) can help reap
big response rates because a major goal is to build trust between the interviewer and
the respondent. In fact, authority is not all it’s cracked up to be. One study showed a
26% compliance rate when the words “university” and “scientific research” were in-
voked compared to a 54% compliance rate with a personal appeal (“I would like your
help.”)

Topic saliency improves the response rate because respondents may want to give
their opinions on important matters, especially if they belong to a group that can be
potentially advantaged (or disadvantaged) by the results of a survey. A bias possibil-
ity lurks here, however. Interviewer effects can be huge, and experienced interview-
ers can work to bring saliency to a topic, and thereby improve response rates. They
can “tailor” the nature of the interview to information provided by the respondent.
The social skills of the interviewer appear to be more important than attributes such
as age, race, and sex.

Length of the interview, especially in telephone interviews, is a critical determi-
nant of response rate. In one study a mention of the fact that the interview would con-
tinue for about 15 minutes got a 36% compliance rate, whereas a mention of a 10-
minute interview got a 43% compliance rate, and no mention of time at all got a 66%
compliance rate.
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FIGURE 2.2
Nonresponse rates for the Current Population Survey, 1955–1986
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Errors of Observation

Once a person (or an object) is in place and ready to be “measured,” there are still
more errors that can creep into the survey. These errors can be classified as due to
the interviewer, the respondent, the measurement instrument, or the method of data
collection.

Interviewers have a direct and dramatic effect on the way a person responds to a
question, as previously mentioned. Reading a question with inappropriate emphasis
or intonation can force a response in one direction or another. Most people who agree
to an interview do not want to appear disagreeable and will tend to side with the view
apparently favored by the interviewer, especially on questions for which the respon-
dent does not have a strong opinion. Friendly interviewers have more success, of
course, than the overtly forceful ones. How gender issues affect interviews is not
clear, but male interviewers get a higher rate of cooperation from male respondents
than do female interviewers. In general, interviewers of the same gender, racial, and
ethnic groups as those being interviewed are slightly more successful.

Respondents differ greatly in their motivation to answer correctly and in their
ability to do so. Each respondent must understand the entire question and be clear
about the options for the answer. Sometimes, flashcards showing the question in
written form help this process in personal interviews. This means that questions must 
be clearly phrased and the questionnaire should not be too long because people 
will quickly tire of the interview. (Section 2.5 is devoted to questionnaire design.)
Obtaining an honest response to sensitive questions, such as questions on business or
sexual practices, is particularly difficult and may require special techniques (see
Chapter 11). An attempt to place response errors into categories suggests that most
are due to either recall bias (the respondent simply does not remember correctly),
prestige bias (the respondent exaggerates a little on income or hunting success), in-
tentional deception (the respondent will not admit breaking a law or has a particular
gripe against an agency), or incorrect measurement (the respondent did not under-
stand the units and reported feet instead of inches or did not understand the definition
of children and reported grandchildren as well).

The incorrect measurement issue is related to the measurement instrument as a
source of error. In any measurement question, the unit of measurement must be
clearly defined, whether it be inches on a tape measure, pounds on a scale, or glasses
of water (where a “glass” could be any standard size such as 12 ounces). Inaccurate
responses are often caused by errors of definition in survey questions. Some exam-
ples are the following: (1) The word children must be clearly defined. (2) What does
the term unemployed mean? Should the unemployed include those who have given
up looking for work, teenagers who cannot find summer jobs, and those who have
lost part-time jobs? (3) Does education include only formal schooling or technical
training, on-the-job classes, and summer institutes as well? Items to be measured
must be precisely defined and be unambiguously measurable.

The interviewer, the respondent, and the instrument are brought together in vari-
ous ways, depending on the method of data collection. The most commonly used
methods of data collection in sample surveys are personal interviews and telephone
interviews. These methods, with appropriately trained interviewers and carefully
planned callbacks, commonly achieve response rates of 60–75%; sometimes, these
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rates can be even higher. A mailed questionnaire sent to a specific group of interested
people can achieve good results, but response rates for this type of data collection are
generally so low that all reported results are suspect. Frequently, objective informa-
tion can be found from direct observation rather than from an interview or mailed
questionnaire. These four types of data collection are discussed next.

Personal Interviews

Data are frequently obtained by personal interviews. For example, we can use per-
sonal interviews with eligible voters to obtain a sample of the public sentiments to-
ward a community bond issue. The procedure usually requires the interviewer to ask
prepared questions and to record the respondent’s answers. The primary advantage of
these interviews is that people will usually respond when confronted in person. In
addition, the interviewer can note specific reactions and eliminate misunderstandings
about the questions asked. The major limitations of the personal interview (aside
from the cost involved) concern the interviewers. If they are not thoroughly trained,
they may deviate from the required protocol, thus introducing a bias into the sample
data. Any movement, facial expression, or statement by the interviewer can affect the
response obtained. For example, a leading question such as “Are you also in favor of
the bond issue?” may tend to elicit a positive response. Finally, errors in recording
the response can also lead to erroneous results.

Telephone Interviews

Information can also be obtained from individuals in the sample through telephone
interviews. Surveys conducted through telephone interviews are less expensive than
those conducted through personal interviews, due to the elimination of travel ex-
penses. The investigator can also monitor the interviews to be certain the specified
interview procedure is being followed.

A major problem with telephone surveys is the establishment of a frame that
closely corresponds to the population. Telephone directories have many numbers that
do not belong to households, and many households have unlisted numbers. A few
households have no phone service, although lack of phone service is now only a
minor problem for most surveys in the United States. A technique that avoids the
problem of unlisted numbers is random digit dialing. In this method, a telephone ex-
change number (the first three digits of the seven-digit number) is selected, and then
the last four digits are dialed randomly until a fixed number of households of a spec-
ified type are reached. This technique seems to produce unbiased samples of house-
holds in selected target populations and avoids many of the problems of trying to
sample a telephone directory.

With random digit dialing in a residential survey, only approximately 20% of the
numbers will lie within the frame of interest. Most of the remaining 80% will be un-
used numbers or numbers belonging to businesses and institutions. The rate of usable
numbers can be improved by using random digit dialing to locate clusters (blocks of
numbers). Once a residential number is identified, more residences can be selected
from the same cluster by leaving the first eight digits the same and randomizing only
the last two. This improves the proportion of usable responses because telephone
companies assign numbers in blocks.
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A study of postelection attitudes and voting behavior (Bergsten, 1979) used this
clustered technique. It found that only approximately 23% of first-stage calls resulted
in usable residential numbers; with the clustering technique, however, the percentage
of usable residential numbers rose to approximately 57%. This technique therefore
can pay big dividends in savings of time and money. Incidentally, in this same study,
trained interviewers (those with over six months of interviewing experience) pro-
duced a 77% response rate, whereas those with less training produced only a 67%
response rate.

Telephone interviews generally must be kept shorter than personal interviews be-
cause respondents tend to get impatient more easily when talking over the telephone.
With appropriately designed questionnaires and trained interviewers, telephone in-
terviews can be as successful as personal interviews. (See Schuman and Presser
(1981) for more details.)

Self-Administered Questionnaires

Another useful method of data collection is the self-administered questionnaire, to be
completed by the respondent. These questionnaires usually are mailed to the individ-
uals included in the sample, although other distribution methods can be used. The
questionnaire must be carefully constructed if it is to encourage participation by the
respondents.

The self-administered questionnaire does not require interviewers, and thus, its
use results in savings in the survey cost. The savings in cost is usually brought at the
expense of a lower response rate. Nonresponse can be a problem in any form of data
collection, but since we have the least contact with respondents in a mailed ques-
tionnaire, we frequently have the lowest rate of response. The low response rate can
introduce a bias into the sample because the people who answer questionnaires may
not be representative of the population of interest. To eliminate some of this bias,
investigators frequently contact the nonrespondents through follow-up letters, tele-
phone interviews, or personal interviews.

In today’s technological age, web surveys are very popular and are improving in
quality due to standardized software, user-friendly interfaces, high-speed transmis-
sion, and low cost. (See http://websm.org for references on web surveys.) But nonre-
sponse and incorrect response problems are even more serious than with other modes
of sampling. E-mailed invitations to participate in a survey and follow-up memos are
easily ignored, in addition to all the technical glitches that can cause problems along
the way. The responses that are completed tend to be completed quickly, so the
follow-up time frame has to be shortened compared to what it would be for a mailed
questionnaire. On the other hand, the young and more technically astute tend to re-
spond first, so enough time must be allowed for others to respond so as to not seri-
ously bias the results.

Direct Observation

The fourth method for collecting data is direct observation. For example, if we were
interested in estimating the number of trucks that use a particular road during the
4–6 p.m. rush hours, we could assign a person to count the number of trucks passing
a specified point during this period. Possibly, electronic-counting equipment could
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also be used. The disadvantage in using an observer is the possibility of errors in
observation.

Direct observation is used in many surveys that do not involve measurements on
people. The U.S. Department of Agriculture, for instance, measures certain variables
on crops in sections of fields in order to produce estimates of crop yields. Wildlife bi-
ologists may count animals, animal tracks, eggs, or nests in order to estimate the size
of animal populations.

A closely related notion is that of getting data from objective sources that are not
affected by the respondents themselves. Health information can sometimes be ob-
tained from hospital records and income information from employer’s records (espe-
cially for state and federal government workers). This approach may take more time
but may yield large rewards in important surveys.

Reducing Errors in Surveys

Both errors of nonobservation and errors of observation can seriously affect the ac-
curacy of a survey. Errors cannot be eliminated from a survey, but their effects can be
reduced by careful adherence to a good sampling plan. Some major points in reduc-
ing survey errors are presented next.

Callbacks

Nonresponse can be reduced by having a carefully prepared plan for callbacks on
sampled elements. A fixed number of callbacks should be required for each sampled
element, and these callbacks should be on different days of the week and at different
hours of the day. A specific method for determining an appropriate number of call-
backs will be discussed in Chapter 11. That some responses be obtained on at least a
subset of the original nonrespondents is important so that large biasing factors can be
eliminated. For example, in surveying opinions on gun-control legislation, we would
want to make sure that all the nonrespondents were not people who favor gun control
but also not strongly enough to bother responding to a questionnaire.

If a survey requires interviews, the interview times for the original contact and
the callbacks should be planned carefully so as to maximize the response rate with a
minimum number of callbacks. Studies of optimum interview times have been made,
and the results of one such study are presented in Table 2.5. Note that the highest pro-
portions are in the early evening hours, Sunday through Tuesday. (Have you ever
been called by a pollster during your dinner hour?)

It is no secret that it is now getting more difficult to find anyone at home to re-
spond to surveys, due to the open workforce and mobile society in which we live.
Figure 2.3 shows the results of three studies, completed in 1960, 1971, and 1976, that
compare at-home rates. Note that the 1976 curve is much lower than the others at all
hours of the day.

Some interesting patterns in response rates can be seen in results of studies con-
ducted on exit polls. Most exit polls in the United States were conducted by Voter
News Service (VNS), a consortium of ABC, the Associated Press, CBS, CNN, FOX,
and NBC, until the service was disbanded in 2003, after the election debacles of 2000
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FIGURE 2.3
Proportion of households in which at least one person aged 14 or older was at home
(weekdays)
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TABLE 2.5
Proportion of households in which at least one person age 14 or older was at home 

Proportion by day of week

Time of day Sun. Mon. Tue. Wed. Thu. Fri. Sat.

8:00–8:59 A.M. (B) (B) (B) (B) (B) (B) (B)
9:00–9:59 A.M. (13) (13) (13) .55 .28 .45 (B)
10:00–10:59 A.M. (B) .47 .42 .38 .45 .40 .55
11:00–11.59 A.M. .35 .41 .49 .46 .43 .50 .62
12:00–12.59 P.M. .42 .53 .49 .56 .45 .55 .60
1:00–1:59 P.M. .49 .44 .50 .48 .43 .51 .63
2:00–2:59 P.M. .49 .50 .52 .47 .45 .45 .59
3:00–3:59 P.M. .54 .47 .49 .54 .50 .50 .65
4:00–4:59 P.M. .52 .58 .55 .57 .57 .56 .53
5:00–5:59 P.M. .61 .67 .65 .67 .59 .57 .56
6:00–6.59 P.M. .75 .73 .72 .68 .65 .64 .59
7:00–7:59 P.M. .73 .74 .75 .64 .61 .57 .66
8:00–8:59 P.M. (13) .51 .51 .59 .74 .52 (B)
9:00–9:59 P.M. (B) (B) (B) .64 (B) (B) (B)

(B) � base less than 20.

SOURCE: M. F. Weeks et al. (1980).

     



and 2002. Nevertheless, although it was working fine, it produced good data on
response rates by age, race, and gender for a very specific kind of face-to-face inter-
view. Table 2.6 shows response rates collected over the years.

Here we can see that the 60+ group is less likely to respond than are the younger
age groups. No real difference is observed in response rates between white and non-
white. Females tend to respond at slightly higher rates than males. Overall, there is a
decrease in response rates over the years. These patterns are similar to those seen in
other types of surveys, whether they be face to face, telephone, or mail.

Rewards and Incentives

Sometimes, an appropriate tactic for encouraging responses is to offer a reward for
responding. This reward may be a cash payment to a person who agrees to participate
in a study. In studies of consumer products, a participant may be given a supply of
the product. The rewards should be offered to potential participants in a study only
after they have been selected for the sample by some objective procedure. To take as
a sample those who respond to an advertised reward is usually not appropriate, be-
cause those who respond under such inducements may not be representative of the
target population. Monetary incentives work: Prepaid monetary incentives are more
effective than promised ones, monetary incentives are more effective than gifts, and
response rates increase with increasing amounts of money. An obvious potential for
bias is present, however.

Incentives to respond are particularly helpful for samples from groups that have
a particular interest in the problem under study. Insured motorists may be more will-
ing to respond to a questionnaire on automobile insurance if a cover letter from the
state insurance commissioner’s office states that the results may help to promote
lower rates. Hunters will respond to a questionnaire on game management practices
if they are assured that the results may improve hunting conditions. Many similar ex-
amples can be given, but the important point is that people are more likely to respond
to a survey if they see some potential benefit coming from the results.
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TABLE 2.6
Exit poll response rates (percentage) by voter age, race, and gender

1992 1994 1996 1998
(n = 88,230) (n = 103,188) (n = 133,018) (n = 101,302)

Age
18–29 63.4 55.6 57.5 51.0
30–59 65.5 58.1 58.1 55.7
60� 49.0 47.5 43.9 46.2

Race
White 61.7 55.5 54.2 52.2
Black/Hispanic 61.0 51.1 57.4 54.8

Gender
Male 60.1 54.6 53.8 52.0
Female 62.9 55.2 55.6 53.1

     



Trained Interviewers

The skill of the interviewer is directly related to the quantity and quality of data re-
sulting from a survey, whether the interview is in person or over the telephone. Good
interviewers can ask questions in such a way as to encourage honest responses and
can tell the difference between those who really don’t know the answer and those
who are simply reluctant to answer. Newly recruited interviewers should practice on
typical respondents like those they might meet in the field. These practice sessions
should be under the watchful eye of experienced interviewers, who can then evaluate
the interview and suggest improvements in interview technique.

Data Checks

Completed questionnaires should be scrutinized carefully by someone other than the
interviewer to see that the form has been filled out correctly. At this stage, and again
later if data have been entered into a computer, a predesigned system of data checks
should be made to spot obvious errors in information.

The ranges of measurements can be checked to sort out the cases in which, say,
the age of a person is listed as 1040, a married adult is listed as nine years old, or a
family is reported to have 53 children under the age of 12. Data can be cross-checked
in a well-designed questionnaire to find out, for example, whether the respondent’s
reported age agrees with the reported year of birth. Simple arithmetic facts—for in-
stance, proportions must be between 0 and 1 and the hours per day assigned to dif-
ferent work tasks cannot sum to more than 24—can be included in these data checks.
Checking data quickly, so that questionable responses can be corrected while the re-
spondent is still available, is very important to the success of a sample survey.

After all responses have been collected and the data are being analyzed, addi-
tional data checks can be employed. The survey results should be representative of the
population, and, sometimes, sample data can be checked against known facts for the
population to see whether potential problem areas exist. For example, if the popula-
tion is 50% female but the sample is only 10% female, there may be serious errors in
summary measurements that average over males and females. If the average income
for survey respondents is well below the reported average from other sources for the
target population, then large errors may show up in summary measurements on vari-
ables related to income. Some potential problems may be solved by augmenting the
sample or by changing the form of analysis, but even if they cannot be solved, any
inconsistencies should be pointed out in the final analysis.

Questionnaire Construction

After sample selection, the most important component of a well-run, informative,
and accurate sample survey is a properly designed questionnaire. This subject is the
topic of Section 2.5.

One of the classic errors in opinion-polling history came about because of non-
sampling errors related to nonresponse and poor selection of a frame. The Literary
Digest attempted to predict the outcome of the 1936 presidential election by sending
postcard questionnaires to 10 million people selected, evidently, from subscribers to
the Digest, telephone directories, and automobile owners. The 2,376,523 returned
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cards showed Landon a winner over Roosevelt by 57% to 43%. However, Roosevelt
won the election by 62.5% to 37.5%. The large error may have been partly due to the
frame being weighted toward higher-income people, but, certainly, the high nonre-
sponse rate was a significant factor.

According to the account in his 1972 book The Sophisticated Poll Watcher’s
Guide, George Gallup polled a subsample of 3000 of the 10 million polled by the
Digest and predicted that the Digest poll would show 56% for Landon and 44% for
Roosevelt. Furthermore, another Gallup poll predicted that Roosevelt would win
with 56% of the vote. The error in the Gallup poll was still sizable but much smaller
than the error in the Digest poll, even though the Digest had many more respondents.
For further details on this interesting case, read the article by Maurice C. Bryson
listed in the references in Appendix A.

2.5
Designing a Questionnaire

As stated earlier, one objective of any survey design is to minimize the nonsampling
errors that may occur. If a survey is to obtain information from people, many poten-
tial nonsampling errors should be considered and, it is hoped, controlled by the care-
ful design of the questionnaire. We briefly discuss questionnaire construction in this
section, but it is a very important topic and should be investigated further by those at-
tempting to design complex questionnaires for surveys. An excellent reference, and
the one on which we rely extensively for the discussion that follows, is Schuman and
Presser (1981, 1996). Some major concerns in questionnaire construction are out-
lined in the following sections.

Question Ordering

Respondents to questionnaires generally try to be consistent in their responses to
questions. Respondent consistency may cause the ordering of the questions to affect
the responses, sometimes in ways that seem unpredictable to the inexperienced in-
vestigator. An example discussed in Schuman and Presser (1981, 1996) illustrates the
point. An experiment was conducted with the following two questions:

A. Do you think the United States should let Communist newspaper reporters
from other countries come in here and send back to their papers the news as
they see it?

B. Do you think a Communist country like Russia should let American newspa-
per reporters come in and send back to America the news as they see it?

For surveys in 1980 in which the questions appeared in the order (A, B), 54.7% of the
respondents answered yes to A and 63.7% answered yes to B. For surveys in which
the questions appeared in the order (B, A), 74.6% answered yes to A and 81.9%
answered yes to B. So the evidence suggests that asking question B first puts the
respondents in a more lenient frame of mind toward allowing Communist reporters

2.5 Designing a Questionnaire 29

     



into the United States. In other words, those who answered yes to B, when it was
asked first, tried to be consistent and also answer yes to a similar question, A. Thus,
the context in which a question is asked is very important and should be understood
and explained in the analysis of questionnaire data.

Order is also important in the relative positioning of specific versus general ques-
tions. Respondents may be asked the following questions:

A. Will you support an increase in state taxes for education?

B. Will you support an increase in state taxes?

It would not be unusual to find more people supporting B if asked in the order (B, A)
than if asked in the order (A, B). If question A is asked first, people who support taxes
for education and answer A affirmatively may think that B implies an increase in
taxes not necessarily going to education, and they may then say no to this question.
If B is presented first, the same people who support more taxes for education may
answer affirmatively because they have not yet seen a specific question on taxes for
education.

In a survey conducted in 1979, over 60% of the respondents reported that they
were very happy in their marriage. The interesting part of the study was how that af-
fected their response to a question about their general happiness. When the general
happiness question came before the marital happiness question, 52% responded that
they were very happy. When the general happiness question came after the marital
happiness question, only 38% responded that they were very happy. It seems that the
respondents were happier with their marriages than with life in general, and thinking
about the marriage question first lowered the happiness factor on life in general.

The effect of question ordering may not be as strong as in these examples for
questions involving strongly held positions or beliefs, as illustrated in a comparison
study of the following questions:

A. Would you say that most doctors in this country are interested in the public
good, or are most doctors just out to make a lot of money?

B. Would you say that most lawyers in this country are interested in the public
good, or are most lawyers just out to make a lot of money?

The percentage of responses favoring the “public good” side of doctors was approx-
imately 48% when the doctor question was asked first and 52% when the doctor
question was asked second. The percentage of responses favoring the “public good”
side of lawyers was about 26% when the lawyer question was asked first and 30%
when the lawyer question was asked second. Neither of the differences is statistically
significant for sample sizes used here (approximately 1500).

The attitude toward a question in a survey is very often set, or changed, by pre-
ceding questions that bear on the same topic. Schuman and Presser report that more
crime victimization was reported by respondents when the question on victimization
occurred after a series of questions on crime than when it occurred by itself. Evi-
dently, the questions on crime helped the person responding to remember small inci-
dents when he or she was a victim of crime, incidents that might otherwise have been
forgotten. Attitudes toward government can be quite negative after a series of ques-
tions emphasizing government waste and inefficiency, and they can be much more
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positive after a series of questions emphasizing the necessary and timely functions
government performs.

In a series of questions involving ratings, the first question is often considered in
a different light from those that follow, and it tends to receive more extreme ratings.
For example, suppose a person is to rate a number of possible vacation sites, with
each one receiving a numerical rating from 1 to 10, 10 being very good. If the first
site looks good to the respondent, it will tend to be rated close to 10 and the others
will tend to be rated lower. If the first site looks unattractive, it will tend to be rated
close to 1 and the others will tend to be rated higher. Thus, among the group of good
sites, each will tend to receive its highest ratings when it appears first on the list. Sim-
ilarly, each bad site will tend to receive its lowest rating when it appears first on the
list. Evidently, the first item on the list is used as a reference point, and other items
are rated up or down relative to the first item.

For many survey questions, the order of the possible responses (or choices) to a
particular question is as important as the position of the question on the question-
naire. If a person being interviewed is presented with a long list of possible choices
or if each possible choice is wordy or difficult to interpret, then the person is likely to
respond with the most recent choice (the last one on the list). If a respondent must
choose items from a long written list, then the items appearing toward the top of the
list have a selection advantage. For example, consider the election of candidates for
office from a long slate: those toward the top of the list tend to get elected. In a list of
simple choices, such as strongly agree, agree, disagree, and strongly disagree in an
attitude survey, alternatives tend to receive their highest frequency of response when
listed first. That is, the proportion who strongly agree will tend to be higher when that
option is a first choice rather than when it is a fourth choice.

Researchers attempting to design a questionnaire should be aware of the common
ordering problems for question and response. They should attempt to counter poten-
tial difficulties by considering the following techniques:

1. Printing questionnaires with different orderings for different subsets of the
sample

2. Using show cards or repeating the question as often as necessary in an interview
so that the question and possible answers are clearly understood

3. Carefully explaining the context in which a question was asked in the analysis of
the survey data

Open versus Closed Questions

Because questionnaires today are often designed to be electronically scored after
completion, with the data in a form for computer handling, most questions are closed
questions. That is, each question has either a single numerical answer (such as age of
the respondent) or fixed number of predetermined choices, one of which is to be
selected by the respondent.

Even though closed questions allow for easy data coding and analysis, some
thought should be given to open questions, in which the respondent is allowed to
freely state an unstructured answer. The open question allows the respondent to
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express some depth and shades of meaning in the answer. But it can cause great dif-
ficulties in analysis because answers may not be easily quantified and may be nearly
impossible to compare across questionnaires. In contrast, the closed question may
not always provide the appropriate alternatives, and the alternatives listed may,
themselves, influence the opinion of the person responding. Once a questionnaire has
been completed, however, the data handling is fairly routine, and valid statistical
summaries of reported answers are easily constructed.

A typical open question, similar to ones actually used in Gallup polls, is as follows:

What is the most important problem facing the United States today?

This question can provide meaningful results as it is because many people will
choose similar problems as being most important. However, their choices could be
forced into predetermined categories by the following closed question:

The most important problem facing the United States today is (check one)

A. National security

B. Crime

C. Inflation

D. Unemployment

E. Budget deficits

We can see that any closed form of this question will limit the alternatives and may
force a respondent into an answer that would not necessarily be a first choice.

A study of open versus closed questions in the context of what people prefer in
their job gave the results shown in Table 2.7.
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TABLE 2.7
Closed versus Open Questions

Closed Form Open Form

This next question is on the 
subject of work. Would you please This next question is on the subject 
look at this card and tell me which of work. People look for different 
things on the list you would most things in a job. What would you 
prefer in a job? most prefer in a job?

1. High income 12.4% 1. Pay 11.5%
2. No danger of being fired 7.2% 2. Security 6.7%
3. Working hours are short; lots of 3.0% 3. Short hours; lots of free time 0.9%

free time
4. Chances for advancement 17.2% 4. Opportunity for promotion 1.8%
5. The work is important and gives 59.1% 5. Stimulating work 21.3%

a feeling of accomplishment
6. Pleasant or enjoyable work 15.4%
7. Work conditions 14.9%
8. Satisfaction/liking the job 17.0%

     



The five categories of the closed form do not exactly line up with categories on
the open form, but they come close enough to make some broad comparisons. Al-
though income and job security have similar percentages, the other three closed-form
categories fared quite differently on the open form, and the latter produced a number
of important choices not listed on the closed form. Clearly, the open form produced
valuable insights that could have been used to design a better closed-form question
for later use.

A good plan, then, for designing a closed question with appropriate alternatives
is to use a similar open question on a pretest; then choose as the fixed alternatives
those that most nearly represent the choices expressed in the open answers. To come
up with a short list of alternatives from the open-ended answers will not always be
easy, but this approach will provide more realistic alternatives than could be obtained
from mere speculation.

Response Options

On almost any question that can be posted, someone being interviewed will want to
say that he or she doesn’t know or has no opinion. Because such responses give no
useful information about the question and essentially reduce the sample size, typical
survey practice is to avoid using these options. The respondent is forced to make a
choice from among the listed informative answers, unless the interviewer decides
that such a choice simply cannot be made.

However, to force people to make decisions on questions they know nothing
about seems inappropriate. Thus, a good questionnaire will provide screening ques-
tions to determine whether the respondent has enough information to form an opin-
ion on certain issues. If so, the main question is asked without a no-opinion option.
If not, the question may be skipped.

In other words, questions about which nearly everyone has enough information
to form some opinion, such as questions on stricter enforcement of speed-limit laws
for drivers, should be stated without a no-opinion option. Questions of a specific,
narrow, or detailed nature, such as questions on a recently passed city ordinance,
should be prefaced by screening questions to see whether the respondent has any in-
formation on the subject.

What about the “Don’t Know” (DK) option in closed-form questions? Table 2.8
shows two results from a group of studies on this issue; other questions and other
studies give similar results.

Although the responses were ordered the same way in each question, with or
without the DK option, some percentages changed markedly. It appears that many
people will give an opinion when forced to, but may look for an easier way out when
not forced.

Even after the no-opinion option is eliminated from a question, there remains the
problem of deciding how many options to allow. Frequently, questionnaires attempt
to polarize opinion on one side or the other, as in the following question:

Do you think the enforcement of traffic laws in our city is too strict or too
lenient?
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Here no middle ground is offered. One reason for not allowing a middle choice, such
as “just right the way things are,” is that respondents may take this choice far too
often as an easy way out. The two-choice option forces the person responding to
think about the direction of the response, but the interviewer should explain that var-
ious degrees of strictness or leniency can be taken into account. “Which pole am I
closest to?” is the point that the respondent is urged to consider. Of course, if we want
to categorize the degree of strictness or leniency in this question, then more than two
options can be presented. However, questionnaire designers usually wish to keep the
number of options as small as possible.

Wording of Questions

Even for questions in which the number of response options is clearly determined,
the designer should be concerned about the phrasing of the main body of the ques-
tion. Yes–no questions such as

Do you favor the use of capital punishment?

should be asked in a more balanced form, such as

Do you favor or oppose the use of capital punishment?
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TABLE 2.8
Comparing “Don’t Know” Options

Too harshly 5.6% Too harshly 4.6%
Not harshly enough 77.8% Not harshly enough 60.3%
About right (volunteered) 9.7% About right (volunteered) 6.1%
DK (volunteered) 6.8% Not enough information to say 29.0%

Are smart 37.0% Are smart 28.9%
Don’t know what they 58.1% Don’t know what they 49.7%

are doing are doing
DK (volunteered) 4.8% No opinion 21.4%

Do you feel that almost all of the people running
the government are smart people, or do you think
that quite a few of them do not know what they
are doing, or do you not have an opinion on that?

Do you feel that almost all of the people running
the government are smart people, or do you think
that quite a few of them do not know what they
are doing?

In general, do you think the courts in this area
deal too harshly or not harshly enough with 
criminals, or you don’t have enough information
about the courts to say?

In general, do you think the courts in this area
deal too harshly or not harshly enough with
criminals?

     



Some questions have strong arguments and counterarguments woven into them.
Schuman and Presser (1981, p. 186) show results for a comparison of the following
questions:

A. If there is a union at a particular company or business, do you think that all the
workers there should be required to be union members, or are you opposed to
this?

B. If there is a union at a particular company or business, do you think that all the
workers there should be required to be union members, or should it be left to
the individual to decide whether or not he or she wants to be in the union?

Among individuals presented with question A, 32.1% responded that workers
should be required to be union members; but among those presented with question B,
only 23.0% responded in this way. Question B has a stronger counterargument in the
second phase of the question. People with no strong feelings either way are particu-
larly susceptible to strong arguments or counterarguments within the body of the
question. Again, questions should be asked in a balanced form, with little argument
or counterargument within the text of the question.

Do you agree that courts are too lenient with criminals?

This question will receive many more yes responses than it should simply because
that response seems to agree with the interviewer’s notion of the correct response.
Leading questions should be rephrased in a balanced form, as discussed earlier in this
subsection.

Responses to many questions can be drastically altered just by an appropriate, or
inappropriate, choice of words. Schuman and Presser (1981, p. 277) report on stud-
ies of the following questions:

A. Do you think the United States should forbid public speeches against
democracy?

B. Do you think the United States should allow public speeches against
democracy?

In one study, those presented with question A gave 21.4% yes responses, whereas
those presented with question B gave 47.8% no responses. People are somewhat re-
luctant to forbid public speeches against democracy, but they are much more willing
to not allow such speeches. Forbid is a strong word and elicits a negative feeling that
many cannot favor. Allow is a much milder word and doesn’t elicit strong feelings.
The important point to remember is that the tone of the question, set by the words
employed, can have a significant impact on the responses.

Questions also must be stated in clearly defined terms in order to minimize
response errors. A question such as

How much water do you drink?

is unnecessarily vague. It may be reworded as follows:

Here is an eight-ounce glass. (Hold one up.) How many eight-ounce glasses of
water do you drink each day?
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If total water intake is important, the interviewer must remind the person that coffee,
tea, and other drinks are mostly water.

Similarly, a question such as

How many children are in your family?

is too ambiguous. It may be restated as follows:

How many people under the age of 21 live in your household and receive more
than one-half of their financial support from you?

Again, the question must be specific, with all components well defined.
In designing a questionnaire, we must always remember that people do not re-

member factual information very well. An interesting study in this area is reported by
Bradburn et al. (1987). Three main points in the article are as follows:

1. Do not count on people to remember even the simplest facts. One study reports
that only 31% of respondents correctly recalled their savings account balance,
and only 47% got it correct when allowed to consult their records.

2. People do not generally determine frequencies of events by simple counting. If
asked “How many times have you visited a doctor in the past year?,” they will
tend to establish a rate for a shorter period of time and then multiply. For exam-
ple, a certain respondent may think she visits a doctor about once a month and
then multiply by 12 to get an annual figure. If asked “How many times have you
eaten at a restaurant in the past month?,” an interviewee may decompose the
event into breakfast, lunch, and dinner, and approximate an answer for each meal
before adding them back together.

3. People tend to telescope events that they remember well into a shorter time
frame. Thus, an automobile accident or a reward on the job may seem to be more
recent than it actually is. Similarly, events that are not recalled easily may seem
to have occurred longer ago than they actually were.

Knowledge of these facets of human behavior can be helpful in designing a good
questionnaire. We can, for example,

1. Ask questions about facts in more than one way, seek out more than one source,
or use direct observations as much as possible

2. Help with the decomposition process by decomposing the questions we ask (such
as asking about water, soft drink, beer, and coffee consumption rather than sim-
ply asking about drink consumption)

3. Relate questions about events in relationship to important milestones in life
(such as “Was the hospital visit before or after you moved to this address?”;
“Was it before or after your daughter left for college?”) to compensate for the
telescoping

Responses will always contain some errors, but careful questioning can reduce these
errors to a point at which the results are still useful.

Many more items could be discussed on the topic of questionnaire construction.
But the items presented here are the most important ones, and each should be con-
sidered very carefully before sampling is begun.
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2.6
Planning a Survey

We now review and extend some ideas presented in previous sections in the form of
a checklist. Each item on the checklist should be carefully considered in the planning
of any survey.

1. Statement of objectives. State the objectives of the survey clearly and concisely
and refer to these objectives regularly as the design and the implementation of the
survey progress. Keep the objectives simple enough to be understood by those
working on the survey and to be met successfully when the survey is completed.

2. Target population. Carefully define the population to be sampled. If adults are to
be sampled, then define what is meant by adult (all those over the age of 18, for
example) and state which group of adults are included (all permanent residents of
a city, for example). Keep in mind that a sample must be selected from this pop-
ulation and define the population so that sample selection is possible.

3. The frame. Select the frame (or frames) so that the list of sampling units and the
target population show close agreement. Keep in mind that multiple frames may
make the sampling more efficient. For example, residents of a city can be sam-
pled from a list of city blocks coupled with a list of residents within blocks.

4. Sample design. Choose the design of the sample, including the number of sample
elements, so that the sample provides sufficient information for the objectives of
the survey. Many surveys have produced little or no useful information because
they were not properly designed.

5. Method of measurement. Decide on the method of measurement, usually one or
more of the following methods: personal interviews, telephone interviews,
mailed questionnaires, or direct observations.

6. Measurement instrument. In conjunction with step 5, carefully specify how and
what measurements are to be obtained. If a questionnaire is to be used, plan the
questions so that they minimize nonresponse and incorrect response bias.

7. Selection and training of fieldworkers. Carefully select and train fieldworkers.
After the sampling plan has been clearly and completely set up, someone must
collect the data. Those collecting data, the fieldworkers, must be carefully taught
what measurements to make and how to make them. Training is especially im-
portant if interviews, either personal or telephone, are used because the rate of re-
sponse and the accuracy of responses are affected by the interviewer’s personal
style and tone of voice.

8. The pretest. Select a small sample for a pretest. The pretest is crucial because it
allows you to field-test the questionnaire or other measurement device, to screen
interviewers, and to check on the management of field operations. The results of
the pretest usually suggest that some modifications must be made before a full-
scale sampling is undertaken.

9. Organization of fieldwork. Plan the fieldwork in detail. Any large-scale survey in-
volves numerous people working as interviewers, coordinators, or data managers.

2.6 Planning a Survey 37

     



The various jobs should be carefully organized and lines of authority clearly
established before the survey is begun.

10. Organization of data management. Outline how each datum is to be handled for
all stages of the survey. Large surveys generate huge amounts of data. Hence, a
well-prepared data management plan is of utmost importance. This plan should
include the steps for processing data from the time a measurement is taken in the
field until the final analysis is completed. A quality control scheme should also be
included in the plan in order to check for agreement between processed data and
data gathered in the field.

11. Data analysis. Outline the analyses that are to be completed. Closely related to
step 10, this step involves the detailed specification of which analyses are to be
performed. It may also list the topics to be included in the final report. If you
think about the final report before a survey is run, you may be more careful in
selecting items to be measured in the survey.

If these steps are followed diligently, the survey will be off to a good start and should
provide useful information for the investigator.

2.7
Summary

The objective of a sample survey is to make inferences about the population of inter-
est from information contained in a sample. The population consists of the body of
data about which we wish to make an inference and is composed of elements or bits
of information. Nonoverlapping collections of elements from the population are
called sampling units. The frame is a list of sampling units that we use to represent
the population. The sample is a collection of sampling units drawn from the frame.
Using the sample data, we can estimate certain population parameters and place
bounds on our error of estimation.

The quantity of information obtained from the sample can be controlled by the
number of sampling units drawn and the sample design or method of data collection
used. Some of the designs introduced are simple random sampling, stratified random
sampling, cluster sampling, and systematic sampling. Each is discussed in detail in
later chapters. The best design for a given problem is the one that provides the nec-
essary precision in terms of a bound on the error of estimation for a minimum cost.

After the design has been selected, there are various methods of collecting the
sample data. Personal interviews, telephone interviews, direct observations, and
questionnaires have been discussed and assessed as means of collecting the sample
data. Each method has its advantages and limitations.

We have discussed the actual construction of questionnaires. Again, we empha-
size the importance of obtaining information in the sample that is representative of
the population. This problem is of prime significance when we consider methods of
data collection.
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Exercises 2.1 An experimenter wants to estimate the average water consumption per family in a city.
Discuss the relative merits of choosing individual families, dwelling units (single-family
houses, apartment buildings, and so on), and city blocks as sampling units. What would
you use as a frame in each case?

2.2 On a tree farm, a forester wants to estimate the total number of trees with diameters
exceeding 12 inches. A map of the farm is available. Discuss the problem of choosing
appropriate sampling units and an appropriate frame.

2.3 A safety expert is interested in estimating the proportion of automobile tires with unsafe
tread. Should he use individual cars or collections of cars, such as those in parking lots,
as sampling units? What could he use as a frame?

2.4 An industry is composed of many small plants located throughout the United States. An
executive wants to survey the opinions of the employees on the vacation policy of the
industry. What do you suggest she use as sampling units? As a frame?

2.5 A state department of agriculture desires to estimate the number of acres under corn
plantation within the state. Suggest possible sampling units and frames.

2.6 A political scientist wants to estimate the proportion of adult residents of a state who
favor a unicameral legislature. Discuss possible units and frames. Also, discuss the rela-
tive merits of personal interviews, telephone interviews, and mailed questionnaires as
methods of data collection.

2.7 Discuss the relative merits of using personal interviews, telephone interviews, and
mailed questionnaires as methods of data collection for each of the following situations:
a. A television executive wants to estimate the proportion of viewers in the country who

are watching her network at a certain hour.
b. A newspaper editor wants to survey the attitudes of the public toward the type of

news coverage offered by his paper.
c. A city commissioner is interested in determining how homeowners feel about a

proposed zoning change.
d. A county health department wants to estimate the proportion of dogs that have had

rabies shots within the last year.

2.8 Discuss problems associated with question ordering. Give a list of two or three questions
for which you think order is important and explain why.

2.9 Discuss the use of open versus closed questions. Give an example of an appropriate open
question. Give an example of how a similar question could be closed. What are the
advantages of closed questions?

2.10 Give an example of a question that contains a weak counterargument. Give an example
of a question that contains a strong counterargument.

2.11 Discuss the use of a no-opinion option in a closed question.

2.12 Give an example of a question that could force a response in a certain direction because
of its strong wording.

2.13 Discuss the importance of proper data management techniques and quality control in a
survey.
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2.14 Discuss the importance of having a pretest.

2.15 Why is the response rate an important consideration in surveys? Discuss methods for
reducing the nonresponse rate.

2.16 Respondents commonly receive telephone calls from people taking surveys during the
evening dinner hour. Those planning the survey probably think that many potential
respondents will be home at that time. Discuss the pros and cons of this approach.

2.17 You are hired to estimate the proportion of registered Republicans in your county who
favor an increase in the number of nuclear weapons owned by the United States. How
would you plan the survey? (Go through the eleven steps of Section 2.6, realizing that
steps 4–11 cannot be followed completely at this time.)

2.18 A Yankelovich, Skelly, and White poll taken in the fall of 1984 showed that one-fifth of
the 2207 people surveyed admitted to having cheated on their federal income taxes. Do
you think that this fraction is close to the actual proportion who cheated? Why? (Discuss
the difficulties of obtaining accurate information on a question of this type.)

2.19 In a Gallup youth survey (Gainesville Sun, February 13, 1985), 414 high school juniors
and seniors were asked the following question: What course or subject that you have
studied in high school has been the best for preparing you for your future education or
career? In their responses to this question, 25% of the students chose mathematics and
25% chose English. Do you think this is a good question with informative results?

2.20 A survey by Group Attitudes, Inc., was said to measure attitudes of Americans toward
college (Gainesville Sun, September 9, 1982). The polling firm mailed questionnaires to
4200 people across the United States and received 1188 responses. Approximately 55%
of those polled said they had major concerns about being able to pay for their child’s col-
lege education. Would you regard this figure as highly reliable and representative of the
true proportion of Americans with this concern? (What groups of people are likely to
respond to such a question?)

2.21 Readers of the magazine Popular Science (August 1990) were asked to phone in (on a
900 number) their responses to the following question: “Should the United States build
more fossil-fuel generating plants or the new so-called safe nuclear generators to meet
the energy crisis of the 90s?” Of the total call-ins, 86% chose the nuclear option. What
do you think about the way the poll was conducted? What do you think about the way the
question was worded? Do you think the results are a good estimate of the prevailing
mood of the country?

2.22 “Food Survey Data All Wrong?” This was the headline of a newspaper article
(Gainesville Sun, September 11, 1991) on a report from the General Accounting Office
(GAO) of the U.S. government related to the Nationwide Food Consumption Survey.
The survey of 6000 households of all incomes and 3600 low-income households is in-
tended to be the leading authority on who consumes what foods. Even though the origi-
nal households were randomly selected, the GAO said the results were questionable be-
cause only 34% of the sampled households responded. Do you agree? What is the nature
of the biases that could be caused by the low response rate?

2.23 “Why did they take my favorite show off the air?” The answer lies, no doubt, in low
Nielsen ratings. What is this powerful rating system, anyway? Of the 95.1 million house-
holds in America, Nielsen Media Research randomly samples 4000 on which to base
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their ratings. The sampling design is rather complex, but at the last two stages it involves
randomly selecting city blocks (or equivalent units in rural areas) and then randomly se-
lecting one household per block to be the Nielsen household. The rating for a program is
the percentage of the sampled households that have a TV set on and tuned to the pro-
gram. The share for a program is the percentage of the viewing households that have a
TV set tuned to the program, where a viewing household is the one that has at least one
TV set turned on.

a. How many households are equivalent to 1 rating point?
b. Is 1 share going to be larger or smaller than 1 rating point?
c. For the week starting with April 19, 1992, 60 Minutes was the top-rated show, with a

rating of 21.7. Explain what this rating means.
d. Discuss potential biases in the Nielsen ratings, even with the randomization in the

selection of households carefully built in.

2.24 How does Nielsen determine who is watching which show? The determination comes
from the data recorded in a journal by members of a Nielsen household. When a person
begins to watch a show, he or she is supposed to log on. Computer vision researchers at
the University of Florida are developing a peoplemeter that uses computer image recog-
nition to passively, silently, and automatically record who is watching each show. Dis-
cuss the potential for this electronic device to reduce bias in the Nielsen ratings. Are
there any new problems that might be caused by this device?

2.25 A serious quality-of-life issue in today’s world is the threat of HIV infection and AIDS.
Good decisions on how to battle this threat must come from sound data, but data on such
a personal issue are difficult to obtain. Improvements are being made in data collection,
however, as is seen in a study reported in Science (J. Catania et al., “Prevalence of AIDS-
Related Risk Factors and Condom Use in the United States,” November 13, 1992). In
this study, a random sample of 2673 U.S. residents between the ages of 18 and 75 was
selected by random digit dialing. A larger sample of 8263 residents was randomly se-
lected from high-risk cities. Some demographic characteristics of the resulting samples
are shown next.

a. One of the main purposes of using randomization is to ensure that the sample is rep-
resentative of the target population, of which there are two in this study. For the tar-
get population of the United States as a whole, census data for the year of the study

High-risk cities National 

Percentage Number Percentage Number

Women 57.9 4785 58.4 1561
Men 42.1 3478 41.6 1112
African American 33.8 2795 13.5 360
Hispanic 20.7 1711 8.3 222
White 42.7 3525 75.9 2030
Other 2.8 230 2.3 61
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tells us that 51% are female, 12% are African American, and 9% are Hispanic. How
well did the randomized survey do in fairly representing these groups?

b. Why are the percentages for the target population of high-risk cities much different
from the census figures?

2.26 Refer to Exercise 2.25. The agreement between the percentages for the randomized study
and the actual population percentages for various groups of people may allow us to have
more confidence in the main results of the survey, which are the percentages of various
HIV-related risk groups as shown next.

a. For the nation as a whole, what percentage of those between the ages of 18 and 75 are
at risk for HIV infection? What is the percentage for the high-risk cities? (Actually,
these percentages go much higher if sexual practices for more than the past year are
taken into account.)

b. The percentages can be used as estimates of probabilities for anticipating what might
happen in certain situations. For example, if a national firm is to hire 1000 workers
across the country, how many would they expect to be at risk for HIV infection? What
happens to this expected value if the firm hires all 1000 workers in high-risk cities?

2.27 Bias is the tendency for a whole set of responses to read high or low because of some in-
herent difficulty with the measurement process. (A chipped die may have a bias toward
6s, in that 6 comes up much more often than we would expect.) In the study of HIV-
related risk groups (Exercise 2.25), as part of a telephone interview, people in the survey
were asked intimate questions about their personal lives. Is there a possibility of bias in
the responses? If so, in which direction? Will randomization in selecting the respondents
help reduce potential bias related to the sensitive questions? Will randomization in
selecting the respondents help reduce any potential bias?

2.28 The Teenage Attitudes and Practices Survey obtained completed questionnaires, either
by telephone or by mail, from a randomly selected group of 9965 respondents between
the ages of 12 and 18 living in households across the country. One type of question asked

National High-risk cities

Risk group Percentage Number Percentage Number

Multiple partners* 7.0 170 9.5 651
Risky partner 3.2 76 3.7 258
Transfusion recipient 2.3 55 2.1 144
Multiple partner and 1.7 41 3.0 209

risky partner
Multiple partner and 0.0 1 0.3 20

transfusion recipient
Risky partner and 0.2 4 0.3 19

transfusion recipient
All others 0.7 16 0.7 51
No risk 84.9 2045 80.4 5539

*Past 12 months.
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the teenagers being interviewed about the perceived behavior of their peers. The
teenagers answering the questions are classified as

NS = Never smoked

EX = Experimenter with smoking

FS = Former smoker

CS = Current smoker

One question was, “Do your peers care about keeping their weight down?” The data shown
are the population projections (in thousands) calculated from the sample responses.

a. Why would a question be formed in terms of peer behavior rather than as a direct
question to the person being interviewed?

b. Approximately how many teenagers in the United States never smoked (as of 1989)?
c. What proportion of teenagers think their peers care a lot about keeping their weight

down?
d. Approximately how many teenagers are current smokers in the United States? What

proportion of them think their peers care a lot about keeping their weight down?
e. Among those that care a lot about keeping their weight down, what proportion have

never smoked? What proportion are current smokers?
f. Do you think perceived peer attitudes toward keeping weight down are associated

with the smoking status of the teenager? Calculate appropriate proportions to justify
your answer.

2.29 Another question on the survey of teenagers was, “Do your peers care about staying away
from marijuana?” The population projected frequencies (in thousands) are as shown next.

a. What proportion of those who never smoked think their peers care a lot about staying
away from marijuana?

b. What proportion of the current smokers think their peers care a lot about staying
away from marijuana?

Care about staying away from marijuana 

NS EX FS CS

A lot 7213 2693 75 857
Somewhat 2482 1861 109 1102
A little 744 542 27 298
Don’t care 1878 1550 119 1312

Care about keeping weight down 

NS EX FS CS

A lot 6297 3613 197 2114
Somewhat 2882 1677 90 793
A little 1441 625 16 354
Don’t care 1709 822 33 377
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c. Among those who think their peers care a lot about staying away from marijuana,
what proportion have never smoked?

d. Among those who think their peers don’t care about staying away from marijuana,
what proportion have never smoked?

e. Do you think perceived peer attitudes toward staying away from marijuana are asso-
ciated with the smoking status of the teenager? What proportions help justify your
answer?

2.30 Additional questions on the Teenage Attitudes and Practices Survey were asked directly
of those being interviewed. Some data are reported in the form of percentages rather than
frequencies. Two examples follow:

a. How were these percentages calculated? What do they mean? Are these percentages
joint, marginal, or conditional?

b. Do the opinions on whether or not cigarette smoking helps reduce stress appear to be
associated with the smoking status of the person responding? Write a paragraph
justifying your answer.

c. Do the opinions whether physicians are against smoking appear to be associated with
the smoking status of the person responding? Write a paragraph justifying your
answer.

2.31 Balance of questions makes logical sense but does not always have a strong impact on
the results. Its impact is increased by the strength of a counterargument. The following
two comparisons were drawn in one study reported by Schuman and Presser (1996):

A1: If there is a serious fuel shortage this winter, do you think there should be a
law requiring people to lower the heat in their homes?

B1: If there is a serious fuel shortage this winter, do you think there should be a law
requiring people to lower the heat in their homes, or do you oppose such a law?

Do you believe cigarette smoking
helps reduce stress?

NS EX FS CS

Yes 12.0 18.7 29.8 46.5
No 84.9 78.5 68.9 51.7
Don’t know 3.0 2.5 1.6 1.6

Do you believe almost all doctors
are strongly against smoking?

NS EX FS CS

Yes 80.1 78.8 80.1 80.5
No 17.3 18.8 17.3 16.7
Don’t know 2.5 2.3 2.6 2.6
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Another study in a later year compared these forms:

A2: If there is a serious fuel shortage this winter, do you think there should be a
law requiring people to lower the heat in their homes, or do you oppose such a
law? (Same as the B1 form).

B2: If there is a serious fuel shortage this winter, do you think there should be a
law requiring people to lower the heat in their homes, or do you oppose such a
law because it would be too difficult to enforce?

Within each pair of questions, which one do you think received the lower percentage of
responses favoring the law? Explain your reasoning.

How do you rate the place you live in, or the one you would like to live in? Each year MONEY
magazine publishes a ranking of “best” places to live. The article below, from the September
1994 issue of the magazine, explains their methodology, and the data following show some re-
sults for the 1994 ranking.* Read the article carefully and review the data. Then, write a cri-
tique of the article, pointing out the strengths and weaknesses of this method. Would you move
to Raleigh, North Carolina, on the basis of this ranking?

Our basic survey methodology remains unchanged. We hired Beta Research, a Syos-
set, NY, polling firm, to ask a statistically valid sample of MONEY subscribers (me-
dian age: 48; median household income: $75,320) what qualities they value in a
place to live. Specifically, this year, in rating the importance of 43 factors on a scale
of 1 to 10, they said their top priorities were a low crime rate, clean water, clean air
and plentiful doctors. (For the complete list, see page 132.)

Next with assistance from Fast Forward, a Portland, Ore, demographic consult-
ing firm, we collected the most timely data available on each of the 300 largest U.S.
metropolitan statistical areas, as defined by the U.S. Office of Management and Bud-
get. The data come from the government as well as from private firms (housing per-
mits from the U.S. Housing Markets report; cost-of-living figures from the American
Chamber of Commerce Researchers Association; hospitals with low mortality rates
from the Consumers’ Guide to Hospitals; environmental rankings from The Green
Index; top restaurants from The Mobile Guide; and the abundance of orchestras from
Symphony magazine). Century 21 again provided an exclusive list of the current
prices and property taxes for a typical three-bedroom home in each area, plus price
trends from a year ago. Thirteen of this year’s metro areas, all Boston and New York
City suburbs, weren’t ranked last year because OMB no longer classified them as
stand-alone metro areas but folded them into the major city nearby. This year they
returned as separate entities to our list.

Finally, we awarded points to metro areas based on how well they delivered the
attributes subscribers value the most. The results were then consolidated into nine
broad categories: health, crime, economy, housing, education, transportation,
weather, leisure, and arts and culture. With the completed rankings in hand,
MONEY reporters visited the top 10 and bottom five places to personally assess
attractions and drawbacks our statistics might have missed.

Critical
Thinking
with Real
Data
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Reader’s Poll: You now rate low crime over a clean environment Our readers
have a new No. 1 concern when choosing a place to live. Reflecting the public’s
growing outcry for improved safety, the desire for a low crime rate edged out
clean water, the leading factor for the past four years. Clean air came in third
again. In all we asked readers to rate the importance of 43 factors on a scale 
of 1 to 10, that they might value in a community. Two we added this year scored
strongly: future job growth (7.7) and a racially diverse population (6.3). Also,
you were more concerned this year than last about sunny weather and the
prospects for higher local taxes. But good schools, nearby skiing, low house
prices and proximity to major league sports teams mattered less to you 
compared with a year ago.

Characteristic Mean Score Characteristic Mean Score

Low crime rate 9.1 Low unemployment rate 7.0
Clean water 9.0 Short commutes 6.9
Clean air 8.8 Sunny weather 6.5
Plentiful doctors 8.6 Close to a big airport 6.5
Many hospitals 8.5 Low risk of natural disasters 6.5
Strong state government 8.0 Close to relatives 6.5
Low income taxes 8.0 Near national forests or parks 6.5
Low property taxes 7.9 Low house prices 6.3
Housing appreciation 7.8 Racially diverse population 6.3
Affordable medical care 7.7 Near places of worship 6.3
Future job growth 7.7 Near a big city 5.9
Good schools 7.6 Museums nearby 5.4
Low risk of state tax rise 7.6 Good public transportation 5.3
Inexpensive living 7.5 Proximity to major league sports 5.0
Recession resistance 7.5 Local symphony orchestras 5.0
Low sales taxes 7.5 Zoos or aquariums 4.6
Recent job growth 7.3 Near amusement parks 4.2
Close to colleges 7.2 Close to skiing area 3.6
Affordable car insurance 7.2 Proximity to minor league sports 3.6
High civic involvement 7.2 Far from nuclear reactors 2.7
Near lakes or ocean 7.1 Lack of hazardous waste 1.6
High marks from ecologists 7.1

SOURCE: Beta Research, Syosset, N.Y. 
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Comparing Our Top 10 Although no metro area sweeps top honors across the
board, No. 1 ranked Raleigh/Durham/Chapel Hill, NC scores extremely well in four
of nine broad categories. We award 100 points for the best score of all 300 places in
each category. Rochester, Minn. came in second by excelling in the health, crime,
education and transit categories, and No. 6 Stamford/Norwalk achieves its perfect
arts score because of proximity to New York City. No. 9 Sioux Falls, Utah’s No. 3
Provo/Orem and No. 4 Salt Lake City/Ogden boast humming economies. So does
No. 7 Gainesville, though its crime rate is a drag. No. 5 San Jose shines in weather,
health, leisure and arts, owing to nearby San Francisco’s impressive medical facilities.
No. 10 Albuquerque is blowing the roof off its housing market, and No. 8 Seattle
nosed out San Jose in leisure.
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3

Some Basic Concepts of Statistics

3.0
Tools

Interactive Excel tools for studying concepts from this chapter can be found on the
CD that accompanies this book. In the Chapter Three Tools folder of the CD, you
will find a Word file named “Section 3.0 (tools).” Therein links have been provided
to the relevant computational tools for this chapter. In the text, we use an icon (pic-
tured on the left) as a reminder for equations for which we have built tools. Also, data
for some of the chapter exercises are available via a link in that section.

3.1
Introduction

Knowledge of the basic concepts of statistics is a prerequisite for a study of sample
survey design. Thus, in this chapter, we review some of these basic concepts and
extend some to situations unique to sampling.

The ultimate objective of statistics is to make inferences about a population from
information contained in a sample. The target of our inference, the population, is a
set of measurements, finite or infinite, existing or conceptual. Hence, the first step in
statistics is to find a way to phrase an inference about a population or, equivalently,
to describe a set of measurements. Thus, ways to summarize key information about
populations, both infinite and finite, and about samples from those populations are
the first basic concepts to be discussed.

The second step in statistics is to consider how inferences can be made about the
population from information contained in a sample. For this step, we must consider
probability distributions of sample quantities, or sampling distributions. Knowledge
of probability distributions associated with the sample allows us to choose proper
inference-making procedures and to attach measures of goodness to such inferences.
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The method of inference primarily employed in business and the social sciences
is estimation. We may wish to estimate the total assets of a corporation, the fraction
of voters favoring candidate Jones, or the number of campers using a state park dur-
ing a given period of time. Hence, we must understand the basic concepts underlying
the selection of an estimator of a population parameter, the method for evaluating its
goodness, and the concepts involved in interval estimation. Because the bias and the
variance of estimators determine their goodness, we need to review the basic ideas
concerned with the expectation of a random variable and the notions of variance and
covariance.

The subsequent sections follow the outline just given. We begin with a discussion
of summarizing information in populations and samples for the infinite population
case and follow that with a discussion of the finite population case. We then review
the probabilistic model for the repetition of an experiment. We explain how the
model can be used to infer the characteristics of a population and discuss random
variables, probability distributions, and sampling distributions. Finally, we present
the basic concepts associated with point and interval estimation.

3.2
Summarizing Information in Populations and Samples:
The Infinite Population Case

Grasping the essential characteristics of a large set of measurements by looking at a
listing of the numbers is not easy, so we usually must summarize the measurements
through the use of graphical or numerical techniques. Even though all the measure-
ments in a study population are generally not available, we may still be able to as-
sume some reasonable graphical shape for the relative frequency distribution of this
population. Of course, we can always construct a frequency or relative frequency his-
togram for a sample, because the sample measurements are known, and use it to
make an empirical assessment of the shape of the population.

Once a relative frequency distribution has been established for a population, we
can, by using probability arguments, calculate summarizing numerical measures
such as the mean, variance, and standard deviation. Similar quantities can be calcu-
lated directly from sample measurements.

For purposes of illustration, let’s assume that a population consists of a large
number of integers, 0, l, 2, . . . , 9, in equal proportions. We may think of these inte-
gers as written on slips of paper and mixed up in a box, as stored in a table (such as
a random number table), or as generated in a computer file. Because all integers
occur in equal proportions, the relative frequency histogram, which shows the distri-
bution of the population measurements, is as shown in Figure 3.1.

These relative frequencies can be thought of in probabilistic terms. If one number
is selected at random (for example, if someone reaches into the box and blindly pulls
out one piece of paper), then the probability that the selected number will be a 4 is
1/10. Suppose one number is to be selected at random from the population under
study, and let its value be denoted by y. Then the possible values for y (0, 1, 2, . . . , 9
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in this case) and the probabilities associated with those values (1/10 for each in this
case) constitute the probability distribution for the random variable y. The probability
associated with y is sometimes denoted by . Thus, for this population,

The numerical measures used to summarize the characteristics of a population are
defined as expected values of y or a function of y. By definition, the expected value
of y, , is given by

where the summation is over all values of y for which .
For the population and random variable y under study,

We can see that E(y) is equal to the average value, or mean value, of all the
measurements in our conceptual population. In general, a population mean will be
denoted by m, and it follows that

where y is the value of a single measurement chosen at random from the population.
The variability of measurements in a population can be measured by the vari-

ance, which is defined as the expected value, or average value, of the square of the

m = E(y)
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1
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FIGURE 3.1
Distribution of population containing integers 0 through 9 with equal frequency
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deviation between a randomly selected measurement y and its mean value m. Thus,
the variance of , is given by

For the population used for illustration in this section,

Variance V(y) is commonly denoted by s2.
The standard deviation (SD) is defined as the square root of the variance, and it

is denoted by . For the specific population under discussion,

In statistical studies, the population of interest consists of unknown measure-
ments; hence, we can only speculate about the nature of the relative frequency
histogram or the size of m and s. To gain some information about the population, we
select a sample of n measurements and study the properties of this sample. We then
infer characteristics of the population from what we observe in the sample. The
sample measurements, in general, will be denoted by yl, y2, . . . , yn.

Following the pattern set for summarizing the information in a population, we
can calculate the mean, the variance, and the SD of a sample. These numerical
descriptive measures are given, respectively, by

Note that s2 has the divisor instead of n.
For the population of integers 0, 1, . . . , 9 in equal proportion, a sample of

measurements was selected. Each of the 10 measurements was selected atn = 10

(n - 1)

 s = 2s2

 s2
=

a
n

i=1
(yi - y)2

n - 1

 y =

1

na
n

i=1
yi
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random. (Think of drawing 10 slips of paper out of a box containing a large num-
ber of slips, each marked with an integer between 0 and 9.) The sample measure-
ments were

6, 9, 3, 8, 1, 7, 8, 8, 4, 0

For this sample

Uses for these sample quantities are discussed in the next two sections, but we
can see that might form a reasonable approximation to m if m were unknown. Sim-
ilarly, s2 might form a reasonable approximation to s2 if s2 were unknown, and s
might form a reasonable approximation to s.

Because the sample mean is one of the most widely used statistics, it is essential
to know two of its other properties, namely, its mean and variance. For randomly se-
lected samples from infinite populations, mathematical properties of expected value
can be used to derive the facts that

and

It can also be shown that the variance of the sample mean can be estimated
unbiasedly by

Vn (y) =

s2

n
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s2

n
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y
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3.3
Summarizing Information in Populations and Samples:
The Finite Population Case

The previous section develops results for random sampling from a population con-
sidered to be infinite. In such situations each sampled element has the same chance
of being selected and the selections are independent of one another. (The chance of
getting a 2 in sampling from a random number table is always 0.1, even if we are con-
sidering the 15th selection in a random sample, and this probability is not affected by
what happened in the previous 14 selections.) These conditions are not satisfied for
most sampling problems because the population being sampled is usually finite
(although its size, N, may be very large). In addition, estimates often can be improved
by varying the probabilities with which units are sampled from the population. Sup-
pose, for example, we want to estimate the total number of job openings in a city by
sampling industrial firms from within that city. (Estimating a total makes sense only
when the population under study is finite.) Typically, many such firms will be small
and employ few workers, whereas some firms will be large and employ many work-
ers. In a random sample of firms, the size of firms is not taken into account and a typ-
ical sample will consist of mostly small firms. The number of job openings, however,
is heavily influenced by the large firms. Thus, it seems that the estimate of the num-
ber of job openings could be improved by giving the large firms a greater chance to
appear in the sample. Illustrations of the basic principles of probability sampling are
provided next, beginning with sampling with replacement to assure independence
among sample selections and then moving on to the more practical situation of sam-
pling without replacement. These general ideas are adapted to specific sampling
designs in later chapters.

Suppose the population consists of the set of elements {u1, u2, . . . , uN} and a
sample of n elements is to be selected with replacement, so that the sampled elements
are selected independently of one another. Further, let {d1, d2, . . . , dN} represent the
respective probabilities of selection for the population elements. That is, di is the
probability that ui is selected on any one draw. For the case of random sampling with
replacement, each di is simply 1/N.

If n elements are sampled in this way and these elements are denoted by
{y1, y2, . . . , yn}, then each yi is really one of the us. To simplify notation, we can
think of rearranging the ds so that, after the sample is selected, di is the probability of
selecting the value from the us that yi actually assumes. An unbiased estimator of the
population total, t, is given by 

This estimator is unbiased for any choices of di, but it is clearly in the best interest of
the experimenter to choose these di values so that the variances of the estimators are
as small as possible. Some specific choices are investigated in the illustrations that
follow. Suppose, for the moment, that the value of yi is known for each of the N units
in the population. Thus, the population total is also known. Under these conditions,

tN =

1

na
n

i=1

yi

di
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we can select each unit for the sample with probability proportional to its actual
measured value yi, assuming all measurements are positive. That is, we can make

. Under these conditions

Thus, every estimates exactly.
Now it is impossible to know the values yi for every unit in the population before

sampling. (If they were known, no sampling would be necessary.) Hence, the optimal
choice of selection probabilities is not possible, but it does provide a criterion for
selecting di values that can be used in sampling. The best practical way to choose the
di is to choose them proportional to a known measurement that is highly correlated
with yi. In the problem of estimating the total number of job openings, firms can be
sampled with probabilities proportional to their total work force, which should be
known fairly accurately before the sample is selected. The number of job openings
per firm is not known before sampling, but it should be highly correlated with the
total number of workers in the firm.

To show how the sampling process works numerically, assume a population of
elements, {1, 2, 3, 4}. For a single value selected at random from this popula-

tion, E(y) = 2.5 and . For random samples of size 
and . Suppose we decide to sample n = 2 elements with vary-
ing probabilities and choose d1 = .1, d2 = .1, d3 = .4, and d4 = .4. To accomplish this
sampling, we can choose a random digit from the random number table and take our
first sampled element to be

1 if the random digit is 0

2 if the random digit is 1

3 if the random digit is 2, 3, 4, or 5

4 if the random digit is 6, 7, 8, or 9

The process is then repeated for the second sampled element. (Note that the same el-
ement can be selected twice.) This choice for the di values gives the smaller values in
the population (1, 2), the smaller chance of getting selected in the sample, and the
larger values (3, 4), an appreciably larger chance of getting selected. Note that these
probabilities are not exactly proportional to size, but they do tend in that direction.
Table 3.1 contains a listing of the ten possible samples, the probability of obtaining
each sample, and the estimate produced from each sample. The sample {1, 2} re-
sults if our first random digit is a 0 and our second random digit is a 1 or if our first
is a 1 and our second is a 0. The value for this sample then becomes

All values are given in Table 3.1. From that information we see that
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and so for this example is demonstrated to be an unbiased estimator of . Also, 

The fourth column of Table 3.1 shows the estimated variance of , which is
calculated from the formula

In terms of the weighted variables (yi�di), this formula looks like the standard
estimated variance of an average, s2�n. It turns out that the expected value of 
across all possible samples is 6.250, which demonstrates that is an unbi-
ased estimate of . (This property holds in general for estimators of this type.)

Sampling with replacement allows the theory to work out easily, but it is an
inefficient and unrealistic method for most practical sampling situations. So let’s
investigate how these procedures procedure for estimating a total can be adapted 
to sampling without replacement. Suppose the sampling scheme calls for sampling
two elements from the population {1, 2, 3, 4}, with a goal of estimating the popula-
tion total. When sampling without replacement, the chance of selecting any one
population element changes with each draw. For example, selecting the 3 on the first
random draw has probability 1�4, but the probability of selecting the 3 on the second
draw changes according to what happens on the first draw. (It will be either 0 or 1�3.)
Often we can calculate 

pi � P(the ith element in the population, ui, is selected in the sample)

Recall that di is the probability that ui is selected on any one draw, but these
values now change with the draw. To get around this problem, we replace di by the
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TABLE 3.1
Probability sampling with replacement

Probability of
Sample sample

{1,2} .01 15 25.0000
{1,3} .08 35/4 1.5625
{1,4} .08 10 0
{2,3} .08 55/4 39.0625
{2,4} .08 15 25.0000
{3,4} .32 35/4 1.5625
{1,1} .01 10 0
{2,2} .01 20 0
{3,3} .16 15/2 0
{4,4} .16 10 0

VN (tN)tN

     



average probability that ui is selected across the n draws that will occur in a sample,
pi�n. Making this substitution, the estimator of the population total simply becomes

Common language for this estimator says that each yi is weighted by the reciprocal of its
probability of selection. Letting weights be denoted by w, the estimator takes the form

where wi � 1�pi. Some illustrations follow.
Taking the simplest model first, suppose the samples of size n � 2 are taken com-

pletely at random so that every element has an equal chance of being selected on the
first draw and every element that is left has an equal chance of being selected on
the second draw. That will produce six equally likely samples of size 2, as listed in
Table 3.2, and each sample will have probability 1�6 of being the one selected.
Notice that each of the four population elements appears in exactly three possible
samples, so that pi, the probability that a specific population element is selected in a
sample, is 1�2 for each element. That makes all of the weights, wi , equal to 2 and the
estimates are easy to calculate. 

Now, suppose that the probabilities that an element is selected on the first draw
are unequal and, in fact, are as given in the “with replacement” sampling illustration
used earlier. (These are .1, .1, .4, and .4, respectively, for the four population ele-
ments.) The probabilities associated with any one specific sample are now more cum-
bersome to calculate, but the calculations can proceed along the lines demonstrated
for the {1,3} sample of Table 3.2:

P({1,3}) � P[(1 on first draw, 3 on second) or (3 on first draw, 1 on second)]
� P[(1 on first draw, 3 on second) � P[(3 on first draw, 1 on second)]
� (.1)(.4�.9) � (.4)(.1�.6) � .1111

Adding up the probabilities for the three samples that contain the element 1, we
see that p1 � .2444. Similarly, p2 � .2444, p3 � .7555, and p4 � .7555. Thus, the

tNe

tN = a
n

i=1
wiyi

tN = a
n

i=1

yi

pi

56 Chapter 3 Some Basic Concepts of Statistics

TABLE 3.2
Probability sampling without replacement

Probability of
Probability of sample, sample, unequal

Sample equal weights weights

{1,2} 1/6 6 .0222 12.2748
{1,3} 1/6 8 .1111 8.0624
{1,4} 1/6 10 .1111 9.3860
{2,3} 1/6 10 .1111 12.1540
{2,4} 1/6 12 .1111 13.4776
{3,4} 1/6 14 .5333 9.2652
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weights are w1 � 4.0916, w2 � 4.0916, w3 � 1.3236, and w4 � 1.3236. From these,
is a simple calculation.
It is straightforward to show that , a demonstration of an

unbiasedness principle that holds in general for estimators of this type. The proba-
bility distributions of Table 3.2 also allow the calculation of the variances for the two
estimators, and these turn out to be 

and 

Recall that the variance of the unequal probability estimator when sampling with
replacement was 6.250. In terms of precision, the “without replacement” estimator
will do better than the “with replacement” estimator under the same probability
structure. But it is possible for a “with replacement” estimator to have smaller vari-
ance than a “without replacement” estimator if the probabilities of selection differ for
the two schemes. 

Sampling with varying probabilities will lower the variance of an estimator, thus
allowing for more precise estimates, if the probabilities are proportional, or approxi-
mately proportional, to the size of the sampled measurements. If, however, the prob-
abilities are improperly chosen, then this method can have larger variance than one
using equal weighting. Suppose, for example, in samples of size n � 2 from {1, 2, 3, 4},
we choose d1 � .4, d2 � .4, d3 � .1, and d4 � .1. Then is still an unbiased estimator
of the population total, but its variance is 81.25! 

Unfortunately, there exists no easy method of obtaining an unbiased estimator
of the variance of from the data in a single sample in the “without replacement”
unequal probability sampling designs. We can, however, find good estimates for a
variety of designs employing equal probabilities of selection, and those designs are
the subject of the next few chapters.

3.4 
Sampling Distributions

In the following chapters, sample quantities such as are used extensively for mak-
ing inferences about unknown population quantities; hence, we must study the
properties of certain functions of sample observations. This study begins with a
numerical illustration, which can then be generalized to cover a wide variety of
sampling situations.

Consider the population discussed in Section 3.2 in which the integers 0, 1, . . . , 9
were represented in equal proportions. Fifty samples each of size n � 10 were
selected from this population, each sample chosen in a manner similar to the method
used for the one sample selected in Section 3.2. Table 3.3 lists the sample means y for
these 50 samples in an ascending order.

Figure 3.2 shows a frequency histogram for the 50 sample means. This distribu-
tion is an approximation to the theoretical sampling distribution of ; it shows how
the values tend to be distributed when repeated samples are taken. The samplingy

y

y

tN

tN

V(tN u) = 2.7212

V(tNe) = 6.667

E(tN e) = E(tN u) = 10
tNu
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distribution can be thought of as a probability distribution for . Note that the distri-
bution of tends to center close to the population mean of m � 4.5, has much
less spread (or variability) than the original population measurements, and has a
mound shape rather than the flat shape of the population distribution.

From elementary statistics, we know that the sampling distribution of for 
random samples should have a mean of m, a standard deviation of , and a
shape like that of a normal curve (a symmetric, bell-shaped curve). This display of
50 sample means has an average of 4.22 (which is close to m � 4.5) and a standard
deviation of .79 (which is close to ). Also, the frequency
histogram has an approximate bell shape, although it is not quite symmetric. These
facts concerning the behavior of sample means are important in the development of
inference procedures.

From known properties of the normal curve, it follows that approximately 68%
of the values of , in repeated sampling, should fall within 1 SD of the mean of the
sampling distribution of . Approximately 95% of the values of , in repeated
sampling, should fall within 2 SD of the mean. Checking these statements for the
observed sample of 50 , we see that

4.22 ; 0.79 or (3.43, 5.01)

y

yy
y

s/1n = 2.9/110 = .92

s/1n
y

y
y
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TABLE 3.3
Sample means for 50 samples, each of size 

2.3 3.6 4.1 4.3 4.8
2.6 3.7 4.1 4.3 4.8
2.6 3.7 4.1 4.4 4.8
3.2 3.7 4.1 4.5 4.9
3.3 3.8 4.2 4.7 5.0
3.4 3.9 4.3 4.7 5.1
3.5 4.0 4.3 4.7 5.3
3.5 4.1 4.3 4.8 5.5
3.6 4.1 4.3 4.8 6.0
3.6 4.1 4.3 4.8 6.6

n = 10

FIGURE 3.2
Distribution of sample means from random digits, n = 10
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contains 39 out of 50 (78%) of the values in the sample, and

4.22 ; 2(0.79) or (2.64, 5.80)

contains 45 out of 50 (90%) of the y values. These percentages are reasonably close
to the theoretical values of 68% and 95%. (Remember, we’ve  seen only an approxi-
mation, based on 50 samples, to the true sampling distribution of .)

If the sampling distribution of some sample quantity does not follow a normal
distribution, at least approximately, then relative frequency interpretations can still
be obtained from Tchebysheff’s theorem. This theorem states that, for any k � 1, at
least (1 – 1�k2) of the measurements in any set must lie within k SD of their mean.
For example, setting k � 2 yields that at least 

of any set of measurements must lie within 2 SD of their mean. Usually, this fraction
is much greater than .

The high percentage of measurements falling within 2 SD of the mean, from
either the normal distribution or Tchebysheff’s theorem, suggests that the range of
any set of measurements usually encompasses a little more than 4 SD. Put another
way, the standard deviation of a set of measurements can be approximated as one-
fourth of the range of that set of measurements.

The discussion of sampling distributions thus far has assumed that the population
from which the samples were selected was essentially infinite. But we may want to
work with populations of N measurements, where N may be relatively small. Does
the approximate normality of the sampling distribution of still hold? Results of an
empirical investigation into this question follow.

The data in Table 3.4 show a selection of the brain weights of what will be con-
sidered to be a population of 68 animals (perhaps all in the same zoo [we include the

y

3
4

c1 - a 1

2
b2 d = a1 -

1

4
b =

3

4

y

y
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TABLE 3.4
Brain weights of selected animals

Brain weight Brain weight 
Species (in grams) Species (in grams)

1 African elephant 5712 35 North American opossum 6.3
2 African giant pouched rat 6.6 36 Nine-banded armadillo 10.8
3 Arctic fox 44.5 37 Owl monkey 15.5
4 Arctic ground squirrel 5.7 38 Pig 180
5 Asian elephant 4603 39 Rabbit 12.1

. . . . . . . . . . . . . . . . . .
31 Mole rat 3 65 Seal 442
32 Mountain beaver 8.1 66 Walrus 1126
33 Mouse 0.4 67 Porpoise 1735
34 Musk shrew 0.33 68 Blue whale 6800

SOURCE: T. Allison and D. V. Cicchetti, “Sleep in Mammals: Ecological and Constitutional Correlates,” Science 194 (1976): 732–734.
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FIGURE 3.4
Distributions of sample means from brain weight data
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Distribution of brain weights of animals
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zookeeper]). A histogram showing the highly skewed distribution of these weights is
given in Figure 3.3. Assuming for the moment that these brain weights are unknown,
suppose a random sample of animals is to be selected for the purpose of estimating
the mean brain weight of the population. Figure 3.4 shows distributions of the sam-
ple means for samples of size 5 and of size 40 taken from this population. Notice that
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for samples of size 5, much of the skewness of the population still persists, and the
classical methods of statistics will not work well in this situation. Evidence of skew-
ness in the distribution of the sample means disappears by the time the sample size
reaches 40. Note that these data are available for your study via electronic sampling
tools in Chapters 4 and 11 (bootstrapping). Consult the electronic Sections 4.0 and
11.0 for details. 

For small samples, then, it is important that distribution of the population data
from which the sample is to be selected has a somewhat normal shape, or at least one
that is not too highly skewed. This can often be accomplished by transforming the
data to a different scale. The logarithm is a very useful transformation to consider for
data that have a distribution with a long tail in the positive direction. Figure 3.5 shows
the distribution of the natural log of the brain weights. For this transformed popula-
tion, even small samples will produce sampling distributions that are nearly normal
in shape, as can be seen in Figure 3.6(a) and (b). It might not look like the sampling
distribution for n � 60 (out of N � 68 measurements in the population) is anything
close to normal, but the blow-up of this histogram provided in Figure 3.7 shows some
semblance of normality. It should be noted, however, that the tails of this distribution
are somewhat shorter than would be expected for a truly normal distribution. For
finite populations, then, we have two sample-size issues to consider. The sample
should be large enough to ensure approximate normality of the sampling distribution
of sample means, but not so close to the population size that the sampling distribu-
tion becomes truncated. If the latter situation ensues, methods more general than
the ones discussed in this book can be used. Obviously, if n � N, no statistical in-
ference is necessary for estimating the population mean. In summary, n, N, and
N–n should all be fairly large in order for the inferential methods used in later
chapters to work well. 

FIGURE 3.5
Distribution of ln (brain weights)
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FIGURE 3.6
Sampling distributions of sample means from ln(brain weights)
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b. Box plots

The box plots in Figure 3.6(b) show that the sampling distributions all center near
2.98, the mean of the population of ln(brain weights), but have decreasing variation
as the sample size increases. In the infinite-population case, the standard deviations
of the sampling distributions of sample means should be approximately . Will
this same rule hold in the case of finite populations? Table 3.5 shows the summary

s/1n

     



data for the sampling distributions displayed in Figure 3.6. (Note that s � 2.686 for
the population of log-transformed brain weights.) The standard deviations of the
sampling distributions are close to what the theory predicts for small samples, but are
smaller than the theoretical value for the larger samples. In fact, the disparity grows
as the sample size increases to approach the population size. Fortunately, there is a
finite population adjustment (applied in the last row of Table 3.5) that will bring these
standard deviations back in line with a theoretical rule; that adjustment is one of the
main points of the next chapter. 

3.5
Covariance and Correlation

Often an experiment yields more than one random variable of interest. For example,
a psychologist measures more than one characteristic per individual in a study of
human behavior. Typical variables might be a measure of intelligence y1, a personality
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FIGURE 3.7
Sampling distribution of sample means; n = 60

2

4

6

8

10

12

14

16

18

20

22
C

ou
nt

0 200 400 600 800
Sample means

TABLE 3.5
Summary statistics for sampling distributions of sample means

Statistic

Mean 3.127 2.904 2.977 2.989
Standard deviation 1.200 0.718 0.248 0.113

1.201 0.849 0.425 0.347
Adjusted 1.156 0.748 0.273 0.119s>1n
s>1n

n = 60n = 40n = 10n = 5

     



measure y2, and other variables representing test scores or measures of physical char-
acteristics. Often we are interested in the simple dependence of pairs of variables,
such as the relationship between personality and intelligence or between college
achievement and college board scores. Particularly, we ask whether data representing
paired observations of y1 and y2 on a number of people imply a dependence between
the two variables. If so, how strong is the dependence?

Intuitively, we think of dependence of two random variables y1 and y2, as implying
that one, say y1, either increases or decreases as the other, y2, changes. We confine our
attention here to two measures of dependence, the covariance and the simple coefficient
of linear correlation, and use Figure 3.8(a) and (b) to justify choosing them as meas-
ures of dependence. These graphs represent plotted points for two (random) samples
of n � 10 experimental units drawn from a population. Measurements of y1 and y2

were made on each experimental unit. If all of the points lie on a straight line, as
indicated in Figure 3.8(a), y1 and y2 are obviously dependent. In contrast, Figure 3.8(b)
indicates little or no dependence between y1 and y2.
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FIGURE 3.8
Plotted points of two samples

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y 2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
y1

0

0 2 4 6 8 10 12 14 16 18 20 22

10

20

30

40

50

60

70

80

x 2

x1

a. Strong positive dependence 

b. Little dependence

     



Suppose we actually know m1 and m2, the means of y1 and y2, respectively, and
locate these points on the graphs in Figure 3.8. Now locate a plotted point on Figure
3.8(a) and measure the deviations, (y1 � m1) and (y2 � m2). Note that both deviations
assume the same algebraic sign for a particular point; hence, their product, (y1 � m1)
(y2 � m2), is positive. This result is true for all plotted points on Figure 3.8(a). Points
to the right of (y1, y2) will yield pairs of positive deviations, whereas points to the left
will produce pairs of negative deviations, and the average of the product of the devi-
ations will be “large” and positive. If the linear relation indicated in Figure 3.8(a) had
sloped downward to the right, all corresponding pairs of deviations would have been
of the opposite sign, and the average value of (y1 � m1)(y2 � m2) would have been a
large negative number.

The situation just described does not occur for Figure 3.8(b), where little or no
dependence exists between y1 and y2. Corresponding deviations, (y1 � m1) and 
(y2 � m2), will assume the same algebraic sign for some points and opposite signs for
others. Thus, their product will be positive for some points, negative for others, and
will average to some value near zero.

Clearly, then, the expected (average) value of (y1 � m1)(y2 � m2) provides a
measure of the linear dependence of yl and y2. This quantity, defined over the two cor-
responding populations associated with y1 and y2, is called the covariance of y1 and
y2. We denote the covariance of y1 and y2 by

cov(y1, y2) � E[(y1 � m1)(y2 � m2)]

The larger the absolute value of the covariance of y1 and y2, the greater the linear
dependence between y1 and y2. Positive values indicate that y1 increases as y2

increases; negative values indicate that y1 decreases as y2 increases. A zero value of
the covariance indicates no linear dependence between y1 and y2.

Unfortunately, to use the covariance as an absolute measure of dependence is
difficult because its value depends on the scale of measurement. Consequently, to
determine, at first glance, whether a particular covariance is “large” is difficult. We
can eliminate this difficulty by standardizing its value, using the simple coefficient of
linear correlation. Thus, the population linear coefficient of correlation,

(where s1 and s2 are the standard deviations of y1 and y2, respectively), is related to
the covariance and can assume values in the interval �1 � r � 1. The sample
coefficient of correlation is used as an estimator of r; this is discussed in Chapter 6. 

3.6 
Estimation

The objective of any sample survey is to make inferences about a population of in-
terest on the basis of information obtained in a sample from that population. Infer-
ences in sample surveys are usually aimed at the estimation of certain numerical

r =

cov(y1, y2)

s1s2
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characteristics of the population, such as the mean, total, or variance. These numeri-
cal descriptive measures of the population are called parameters.

An estimator is a function of observable random variables, and perhaps other
known constants, used to estimate a parameter. For example, the sample mean 
can be used as an estimator of the population mean m. The sample mean is an es-
timator because it is a function of sample observations. Note that , however, is a
random variable and has a probability distribution, or sampling distribution, that
depends on the sampling mechanism, as pointed out in Section 3.4. Some of the
possible values that can take on will be close to m, and others may be quite far
from m on either the positive or the negative side. If we are to take a sample and
calculate a specific value as our best estimate of m, we would like to know that, on
the average, generates values that center around m and are in general quite close
to m. Thus, we want to select a sampling plan that ensures us that and

is “small.”

In general, suppose is an estimator of the parameter u. Two properties that we
would like to possess are as follows:

1.

2. is small

An estimator possessing property 1 is said to be unbiased. As for property 2, we
do not discuss minimum-variance unbiased estimators in this book, but we do
compare unbiased estimators on the basis of their variances. If two unbiased esti-
mators are available for u, we generally give preference to the one with the smaller
variance.

To summarize, this book investigates a number of combinations of sampling plans
and estimators that give rise to unbiased estimators with small variance.

Although the probability distributions of , a common estimator, depend on the
sampling mechanism and the sizes of the sample and the population, in many
instances the sample mean tends to have a bell-shaped symmetric distribution known
as the normal distribution.

Once we know which estimator of u we are using in a situation and something
about its probability distribution, we can assess the magnitude of the error of estima-
tion. We define the error of estimation to be . How good will a single esti-
mate be? We cannot state that an observed estimate will be within a specified dis-
tance of u, but we can, at least approximately, find a bound B such that

for any desired probability 1 � a, where 0 � a � 1. If has a normal distribution,
then , where za�2 is the value cutting off an area of (a�2) in the right-hand
tail of the standard normal distribution. The table values of za�2 are given in Table A.1
of Appendix A. If 1 � a �.95, then z.025 � 1.96, or approximately 2. Because many
estimators we use throughout the text are not precisely normally distributed for many
values of n and N and because Tchebysheff’s theorem states that at least 75% of the
observations for any probability distribution will be within 2 SD of their mean, we
use as a bound on the error of estimation (or margin of error). This value gives2s

uN

B = za/2suN

uN

P(|uN -  u|<B) = 1- a

|uN - u|

y

V(uN) = s
uN
2

E(uN) = u

uN
uN

V(y)
E(y) = m

y

y

y
y

y
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for the approximately normal cases and in
any case. Note that for a normally distributed , a bound to satisfy any desired proba-
bility (1 � a) can be found through use of Appendix A, Table 1.

If , then . In this form, 
is called a confidence interval for uwith confidence coefficient (1 � a).

The quantity � B is called the lower confidence limit, and � B is called the upper
confidence limit.

In most sampling problems, the population standard deviation is unknown and
has to be estimated by a sample standard deviation. In such situations the constriction
of confidence interval estimates of means usually relies on the student t distribution
rather than on the normal distribution (using t-scores rather than z-scores as multipli-
ers for calculating the margin of error). In this book we use a 2 SD margin of error,
which is based on the approximate z-score for a 95% confidence interval, almost ex-
clusively. This standard works rather well for most problems and keeps the inference
part of the discussions simple as we delve more deeply into sampling designs. In
real-world applications the sample sizes are usually so large that the z-score method
works extremely well. 

3.7 
Summary

This chapter has presented a capsule review of the basic concepts of statistics. Mak-
ing an inference about a population requires a method for describing a set of meas-
urements and, consequently, a discussion of both graphical and numerical descriptive
measures. Two very useful numerical descriptive measures for both samples and
populations are the mean and the standard deviation. Although the mean is an easily
understood measure of center, the standard deviation acquires meaning as a measure
of variation only when interpreted by using Tchebysheff’s theorem or some specific
distribution such as the normal distribution.

Another important concept is the role that probability plays in making inferences
about a population. The probabilist reasons from a known population to a sample. In
contrast, the statistician uses probability as the vehicle to make inferences about a
population from information contained in a sample. Although a good background in
probability is desirable, knowledge of the basic concepts of probability and the use
of probability in inference making provide a sufficient background for understanding
this book.

Random variables and their probability distributions are presented to provide a
background for describing the properties of estimators of population parameters. The
notions of sampling distributions, expectations, covariance, and correlation assist in
evaluating the properties of estimators.

The estimation of population parameters is the primary method of inference mak-
ing used in sample survey methods. The concept of a point estimator with its corre-
sponding measure of goodness (bound on the error of estimation) is presented and is
used as the method of inference in all subsequent chapters.

uNuN
(uN -  B, uN + B )

P(|uN - B<u<uN + B) = 1-  aP(|uN -  u|<B) = 1- a

uN
P(|uN -  u|<B)>.75P(|uN -  u|<B) = .95
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a. What is a good summary number for typical calories per serving for these drinks?
What is a good summary number for the variation in the calories per serving?

b. What is a good summary number for typical cost per serving for these drinks? What
is a good summary number for the variation in costs per serving?

Exercises Some of the exercises are relatively data-intensive; refer to the electronic Section 3.0 for links
to those data in Excel files.

3.1 Give a definition of statistics and discuss the role of statistics in modern society.

3.2 What is the difference between a statistic and a parameter?

3.3 What is an estimator?

3.4 What is a sampling distribution?

3.5 How do we evaluate the goodness of an estimator? 

3.6 Describe two desirable properties of an estimator.

3.7 What is an unbiased estimator?

3.8 What is the error of estimation?

3.9 The factors that affect our lives and the lives of those around us are variable, but they tend
to be characterized by a typical value. Most people have approximately 13 years of for-
mal schooling. Most workers are on the job for approximately 40 years before they re-
tire. There are approximately four people in a typical family, and that family most likely
has two cars. On a summer day, the temperature will be around 80 degrees Fahrenheit,
and on a winter day around 35 degrees Fahrenheit. The winning football team may score
around 21 points, the winning basketball team around 90 points, and the winning
baseball team around 5 runs. The newborn baby weighs approximately 8 pounds. So, you
see, all of us have a set of “typical” values by which we make judgments every day.
Discuss a variety of typical values that are useful in your life. Where did you learn
these values? Do you think the values are correct, or nearly so?

3.10 How can we choose one brand of sports drink over another? Perhaps knowing the
number of calories and price will help. The data below show this information for the
leading liquid sports drinks. One 8-ounce serving is the basic unit for both calories
and cost.
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Brand Calories (C) Cost in dollars (D)

1. 10-K 60 .22
2. All Sport 70 .24
3. Daily’s 1st Ade 60 .26
4. Exceed 70 .34
5. Gatorade 50 .26
6. Hydra Fuel 66 .52
7. Nautilus Plus 60 .22
8. Powerade 67 .24
9. Snapple Snap-Up 80 .35

SOURCE: Consumer Reports, August 1993.

     



Exercises 69

c. Does the total of the calories column provide useful information? How about the total
of the cost column?

d. Suppose Hydra Fuel is eliminated from the list. What impact does that have on the
average calories per serving? On the standard deviation of calories per serving? On
the average cost per serving? On the standard deviation of the cost per serving?

e. Which drink has the maximum influence on the average calories per serving? What
reasoning did you use in making this choice?

3.11 Some of the sports drinks come in powdered form or in “light” versions.
a. Exceed powder comes in a 32-serving container for $9.43 and has 70 calories/

serving. Gatorade powder has a 32-serving size for $3.59 and has 60 calories per
serving. Is it fair to include the powdered drinks on the same list with the liquid
drinks and to figure their values into the averages? Why, or why not?

b. All Sport Lite has 2 calories per serving, at a cost of 24¢ per serving. Gatorade Light
has 25 calories per serving, at a cost of 26¢ a serving. Will adding the light varieties
to the list have much of an effect on the average cost per serving? Will adding the
light varieties have much of an effect on the standard deviation of cost per serving?

c. Will adding the light varieties have much of an effect on the average calories per serv-
ing? Will adding the light varieties have much of an effect on the standard deviation
of calories per serving? Describe the nature of this effect.

d. Can you think of a way to choose a typical value for the calories that is less affected
by the two low values for the light varieties?

3.12 Many animals are in danger of extinction. One way to see the extent of the problem is to
study the numbers of animals on the endangered species list. The following data show
the numbers of endangered species for various groups of animals. The count is the total
number of endangered species within the group. Thus, there are 37 mammals on the en-
dangered species list within the United States and 249 others in the rest of the world.

United United States Foreign 
Group States and foreign only

Mammals 37 19 249
Birds 57 16 153
Reptiles 8 8 64
Amphibians 6 0 8
Fishes 55 3 11
Snails 12 0 1
Clams 50 0 2
Crustaceans 10 0 0
Insects 13 2 4
Arachnids 3 0 0

SOURCE: The World Almanac, 1994.

a. If you wanted to summarize these data for the United States in a single number, what
number do you think would be the most meaningful? Why?

b. If you wanted to summarize the situation for endangered mammals worldwide, in-
cluding the United States, what number do you think would be the most meaningful?
Why?

     



70 Chapter 3 Some Basic Concepts of Statistics

c. Does the average of the numbers in the United States column have a useful interpre-
tation? Explain.

d. Write a paragraph summarizing the information in the data set. Make use of the sum-
mary numbers you chose in parts (a) and (b).

3.13 When a few data points are repeated in a data set, the results are often arrayed in a fre-
quency table. For example, a quiz given to each of 25 students was graded on a four-point
scale (0, 1, 2, 3), 3 being a perfect score. The results are as follows.

Score (X) Frequency (F) Proportion (P)

3 16 .64
2 4 .16
1 2 .08
0 3 .12

a. Show how the average score can be calculated by using the frequencies.
b. Show how the average score can be calculated by using the proportions.
c. Calculate the standard deviation of these scores.

3.14 According to the U.S. Census Bureau, the distribution of family sizes in the United States
for the year 2000 is as shown in the following table. (The term “family” refers to a group
of two or more people related by birth, marriage, or adoption and residing together in a
household. The term “household’’ refers to all people who occupy a “housing unit,’’ that
is, a house, an apartment, or other group of rooms, or a single room that constitutes “sep-
arate living quarters.”)

Size of family Number of families Percentage
(for 2000) (in thousands) of families

2 31,455 44.3
3 16,073 22.9
4 14,496 20.0
5 6526 08.6
6 2226 02.8
7* 1249 01.4

*This category is actually “7 or more,” but very few families have more than
7 members.

That is, 44.3% of the families in the United States have two members, whereas only 2.8%
have six members. (Families with more than seven children are very rare.)
a. Find the mean family size, approximately, from this distribution of family sizes. Will

this approximation be too large or too small? Explain.
b. Find the approximate standard deviation of the family sizes.
c. Suppose Nielsen randomly selects 400 families from this population. Describe, as

closely as you can, the shape, center, and spread of the 400 data values that might
occur in the sample.

d. Nielsen is actually interested in the mean number of persons per family in samples of
400 families. Describe, as closely as you can, the shape, center, and spread of the dis-
tribution of possible values of the sample mean in random samples of 400 families.
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Percentage of seniors Average total
State who took the test score

New Jersey 85 1016
Connecticut 84 1026
Massachusetts 82 1038
. . . . . . . . .
North Dakota 4 1215
South Dakota 4 1176
Mississippi 4 1116

3.15 The table below gives a selection of the average SAT score for the 2002–2003 school
year for each state, along with the percentage of high school seniors who took the test
(See electronic Section 3.0 for access to full data).
a. Plot the points with percentage on the horizontal axis and average score on the verti-

cal axis. Describe the relationship between these two variables and suggest reasons
for the pattern you see. 

b. Guess a value for the correlation coefficient here. If possible, check your guess against
the calculated correlation coefficient. Does correlation appear to be a good measure of
the strength of the relationship between these two variables? Explain your answer.

3.16 Suppose probability samples of size n � 2 are selected from {1, 2, 3, 4} with probabili-
ties d1 � .4, d2 � .4, d3 � .1, and d4 � .1. Demonstrate that is still an unbiased esti-
mator of the population total, but its variance is 81.25.

3.17 In the without replacement sampling example of Table 3.2, demonstrate that an unbiased
estimate of the population size, N, is provided by

3.18 The table below provides data for the 2001 school year on some K–12 education vari-
ables as well as populations for the New England states. For samples of size n � 2 taken
with probabilities proportional to the populations of the states, find all possible estimates
of the total number of teachers in the New England states and demonstrate that the esti-
mator is unbiased. Do this for
a. Sampling with replacement
b. Sampling without replacement

a
n

i=1
wi

tN

Total students Total teachers Expenditure per Population
State (1000) (1000) pupil (100,000)

Connecticut 570 42 10,127 35
Maine 206 17 8232 13
Massachusetts 973 69 9509 64
New Hampshire 207 15 7286 13
Rhode Island 158 11 9315 11
Vermont 101 8 9153 6

Totals 2215 162 142

     



3.19 In Exercise 3.18, would the estimates change much if the sampling were done with prob-
abilities proportional to the total number of students rather than to the state populations?
Give a valid reason for your answer without calculating the actual estimates. 

3.20 Expanding on Exercise 3.18, data on K–12 education variables and populations for all
50 states are available via links in Electronic Section 3.0. Using a sample size of n � 5,
select repeated random samples without replacement from this population of states and
calculate the mean number of teachers per state for each sample. Plot the sample means,
thereby generating a simulated sampling distribution for the sample mean for samples
of size 5.
a. Describe the shape of the simulated sampling distribution. Does it look normal? Why

or why not?
b. Calculate the standard deviation for the set of generated sample means. Is it close to

the theoretical value of 

If not, why?

3.21 Suppose a population consists of measurements denoted by u1, u2, . . . , uN. A single
observation y is chosen at random from this population. Show that

where m is the population mean.

3.22 For sampling with replacement, use the mathematical properties of expectation to show
that
a.

b.

3.23 Sample surveys use randomization to select samples from a fixed and well-defined (we
hope) population for the purpose of estimating population parameters. On the other hand,
experiments use randomization in the assignment of treatments to experimental units for
the purpose of balancing the nontreatment factors that might affect those units. The goal
is to make treatment groups as alike as possible before treatments are assigned, one treat-
ment to a group. The following set of exercises is about an experiment. This subject will
not be covered in the remaining chapters of this book, but it may be helpful in under-
standing of sample surveys to see how they differ from experiments. 

Does aspirin really help prevent heart attacks? During the 1980s, approximately 22,000
physicians over the age of 40 agreed to participate in a long-term health study for which
one important question was to determine whether aspirin helps lower the rate of heart at-
tacks (myocardial infarctions). The treatments in this part of the study were aspirin or
placebo, and the physicians were randomly assigned to one treatment or the other as they
entered the study. The method of assignment was equivalent to tossing a coin and send-
ing the physician to the aspirin arm of the study if a head appeared on the coin. After the
assignment, neither the participating physicians nor the medical personnel who treated

E[VN (tN )] = V(tN )

E(tN ) = t

s2
= V(y) =

1

Na
N

i=1
(ui - m)2

s

1n
=

63,650

15
= 28,465
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them knew who was taking aspirin and who was taking placebo. This is called a double-
blind experiment. (Why is the double blinding important in a study such as this?) The
physicians were observed carefully for an extended period of time, and all heart attacks,
as well as other problems, that might have occurred were recorded. All data can be sum-
marized in two-way tables.

Other than aspirin, many variables could have an effect on the rate of heart attacks for the
two groups of physicians. For example, the amount of exercise they get and whether they
smoke are two prime examples of variables that should be controlled in the study so that
the true effect of aspirin can be measured. The table below shows how the subjects even-
tually divided according to exercise and cigarette smoking.

Exercises 73

Aspirin Placebo

Exercise vigorously
Yes 7910 7861
No 2997 3060

Cigarette smoking
Never 5431 5488
Past 4373 4301
Current 1213 1225

SOURCE: “The Final Report on the Aspirin Component of the Ongoing Physician’s
Health Study,” The New England Journal of Medicine 231, 3 (1989):129–135.

a. Do you think the randomization scheme did a good job in controlling these variables?
Explain.

b. Are you concerned about the results for aspirin being unduly influenced by the fact
that most of the aspirin takers were also nonsmokers? Explain.

c. Are you concerned about the placebo group possibly having too many members who
did not exercise? Explain.

3.24 The study discussed in Exercise 3.23 reports that 139 heart attacks developed among
the aspirin users and 239 in the placebo group. This was said to be a significant result
in favor of aspirin as a possible prevention for heart attacks. To demonstrate this differ-
ence, place the data on heart attacks in an appropriate two-way table. (Remember, the
22,000 participants were about evenly split between aspirin and placebo.) What are the
appropriate conditional proportions to study if we want to compare the rates of heart
attacks for the two treatment groups? Do these proportions turn out to be different?

3.25 Heart attacks aren’t the only cause for concern in the Physician’s Health Study. Another
is that too much aspirin can cause an increase in strokes. Among the aspirin users in the
study, 119 had strokes during the observation period. Within the placebo group, only 98
had strokes. Place these data on an appropriate two-way table and comment on the asso-
ciation between aspirin use and strokes, as compared with the association between as-
pirin use and heart attacks.

3.26 What about smoking as it relates to heart attacks and the use of aspirin? The table below
shows the number of heart attacks for each treatment group, separated according to
whether the participant was a current smoker or had never smoked.

     



Is aspirin as effective a preventative among current smokers as it is among those who
never smoked? What can we say about the rate of heart attacks among the current smok-
ers as compared with those who never smoked?
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Current smokers Never smoked

Heart Attack Aspirin Placebo Heart Attack Aspirin Placebo

Yes 21 37 Yes 55 96
No 1192 1188 No 5376 5392
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4

Simple Random Sampling

C A S E  S T U D Y

ARE AMERICANS DRINKING LESS ALCOHOL?

A Gallup poll of approximately 1200 Americans conducted in early 1994 was directed
toward determining if the consumption of alcoholic beverages was declining. In addi-
tion, gender differences in drinking habits were to be noted. Two of the questions and
the resulting percentages are shown here.

I have a few questions about alcoholic beverages. . . . Do you occasionally
consume alcoholic beverages such as liquor, wine or beer, or are you a total
abstainer?

During the past five years, has your consumption of alcoholic beverages
increased, decreased, or stayed about the same?

Percentage Who Drink, by Gender—Trend

Total Men Women

1994 June 3–6 65% 70% 61%
1992 64 72 57
1990 64 64 51

Percentage Consumption Changes Over Past 5 Years—Trend

June 1984 June 1994

Increased 15% 7%
Decreased 29 41
Stayed the same 51 51
No opinion 5 1

Total 100% 100%
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Has the proportion of men who drink decreased significantly since 1992? Has the
proportion of women who drink increased significantly since 1992? Has the overall
proportion of those who have decreased drinking in the past five years changed
since 1984? Is the proportion of those whose consumption has stayed the same over
the past five years significantly greater than the proportion of those whose alcohol
consumption has decreased? The methods presented in this chapter will help us find
answers to these questions. Solutions are given at the end of the chapter.

■

4.0
Tools

Interactive Excel tools for doing calculations in this chapter can be found on the CD
that accompanies this book. In the Chapter Four Tools folder, you will find a Word
file named Section 4.0 (tools). Therein links have been provided to the relevant
computational tools for this chapter. In the text, we use an icon (pictured on the left)
as a reminder of equations for which we have built tools. Also, data for some of the
chapter exercises are available via a link in that section.

4.1
Introduction 

The objective of a sample survey is to make an inference about population parame-
ters from information contained in a sample. Two factors affect the quantity of infor-
mation contained in the sample and hence the precision of our inference-making pro-
cedure. The first is the size of the sample selected from the population. The second is
the amount of variation in the data; variation can frequently be controlled by the
method of selecting the sample. The procedure for selecting the sample is called the
sample survey design. For a fixed sample size n, we will consider various designs, or
sampling procedures, for obtaining the n observations in the sample. Because obser-
vations cost money, a design that provides a precise estimator of the parameter for a
fixed sample size yields a savings in cost to the experimenter. The basic design, or
sampling technique, called simple random sampling is discussed in this chapter.

DEFINITION 4.1

If a sample of size n is drawn from a population of size N such that every possible
sample of size n has the same chance of being selected, the sampling procedure is
called simple random sampling. The sample thus obtained is called a simple random
sample. ■

It is a consequence of this definition that all individual elements in a population have
the same chance of being selected and that the selection of individual elements is
mutually independent: the presence or absence of a given element from the sample
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does not affect the selection probability of any other element. We will use simple ran-
dom sampling to obtain estimators for population means, totals, and proportions.

Consider the following problem. A federal auditor is to examine the accounts for
a city hospital. The hospital records obtained from a computer data file show a par-
ticular accounts receivable total, and the auditor must verify this total. If there are
28,000 open accounts in the hospital, the auditor cannot afford the time to examine
every patient record to obtain a total accounts receivable figure. Hence, the auditor
must choose some sampling scheme for obtaining a representative sample of patient
records. After examining the patient accounts in the sample, the auditor can then
estimate the accounts receivable total for the entire hospital. If the computer figure
lies within a specified range of the auditor’s estimate, the computer figure is accepted
as valid. Otherwise, more hospital records must be examined for possible discrepancies
between the computer figure and the sample data.

Suppose that all N = 28,000 patient records are recorded in a computer file and a
sample size n = 100 is to be drawn. The sample is called a simple random sample if
every possible sample of n = 100 records has the same chance of being selected.
Simple random sampling, which forms the bases of most sampling designs discussed
in this book, is the foundation of most scientific surveys. 

The Gallup polls done by telephone surveys begin by stratifying banks of tele-
phone numbers into various geographic regions and then randomly selecting phone
numbers within these regions by random digit dialing. Again, the ideas of simple ran-
dom sampling play a key role, even though the final sample design is much more
complex. (See Section 2.3 for more details on Gallup.)

Auditors study simple random samples of accounts in order to check for compli-
ance with audit controls set up by the firm or to verify the actual dollar value of the
accounts. Thus, they may wish to estimate the proportion of accounts not in compli-
ance with controls or the total value of, say, accounts receivable.

Marketing research often involves a simple random sample of potential users of
a product. The researcher may want to estimate the proportion of potential buyers
who prefer a certain color of car or flavor of food.

A forester may estimate the volume of timber or proportion of diseased trees in
a forest by selecting geographic points in the area covered by the forest and then
attaching a plot of fixed size and shape (such as a circle of 10-meter radius) to that
point. All the trees within the sample plots may be studied, but, again, the basic
design is a simple random sample.

Ever wonder why your favorite television show was canceled? One of the most
famous sampling organizations in the world is Nielsen Media Research, which
produces ratings for television shows. These ratings determine whether or not a show
remains on the air. Here is a detailed statement on how Nielsen carries out this task.

The terms rating and share are basic to the television industry. Both are percentages.
A rating is a percent of the universe that is being measured, most commonly
discussed as a percent of all television households. As such, a rating is always
quantifiable, assuming you know the size of the universe (TV households, persons,
women between the ages of 18 and 34, and so forth). A share is the percent of
households or persons watching television at the time a program is being aired and
it also includes those watching a particular program. Thus, a share does not

     



immediately tie back to an actual number, because it is a percent of a constantly
changing number—TV sets in use. Shares can be useful as a gauge of competitive
standing.

Nielsen Media Research continually measures television viewing with a number
of different samples all across the United States. The first step is to develop represen-
tative samples. This must be done with a scientifically drawn random selection
process. No volunteers can be accepted or else the statistical accuracy of the sample
would be in jeopardy.

Nationally, there are 5000 television households in which electronic meters
(called People Meters) are attached to every TV set, VCR, cable converter box,
satellite dish or other video equipment in the home. The meters continually record
all set tuning. In addition, we ask each member of a particular household to let us
know, when they are watching, by pressing a pre-assigned button on the People
Meter which is also present. By matching this button activity to the demographic
information (age/gender) we collect at the time the meters are installed, we can
match the set tuning—what is being watched—with who is watching. All these data
are transmitted to Nielsen Media Research’s computers where they are processed
and released to our customers each day.

In addition to this national service, we have a slightly different metering system in
55 local markets. In each of those markets, Nielsen Media Research gathers just the
set-tuning information each day from more than 20,000 additional homes. We then
process the data and release what we call “household ratings” daily. In this case we
can report what channel or program is being watched, but we don’t have the “who”
part of the picture. To gather that local demographic information, we periodically
(at least four times per year) ask another group of people to participate in our diary
surveys. For these estimates, we contact people from approximately 1 million homes
each year and ask them to keep track of television viewing for one week, recording
their TV viewing activity in a diary. This is done for all 210 television markets in the
United States in the months of November, February, May, and July and is generally
referred to as the “sweeps.”
SOURCE: http://www.nielsenmedia.com/FAQ/

Two problems now face the experimenter: (1) How does he or she draw the simple
random sample, and (2) how can he or she estimate the various population parameters
of interest? These topics are discussed in the following sections.

4.2
How to Draw a Simple Random Sample

To draw a simple random sample from the population of interest is not as trivial as it
may first appear. How can we draw a sample from a population in such a way that
every possible sample of size n has the same chance of being selected? We might use
our own judgment to “randomly” select the sample. This technique is frequently
called haphazard sampling. A second technique, representative sampling, involves
choosing a sample that we consider to be typical or representative of the population.

78 Chapter 4 Simple Random Sampling
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Both haphazard and representative sampling are subject to investigator bias, and,
more importantly, they lead to estimators whose properties cannot be evaluated.
Thus, neither technique leads to a simple random sample.

Simple random samples can be selected by using tables of random numbers. A
table of random numbers is shown in Appendix A, Table A.2. A random number
table is a set of integers generated so that in the long run the table will contain all ten
integers (0, 1, . . . , 9) in approximately equal proportions, with no trends in the pat-
tern in which the digits are generated. Thus, if one number is selected from a random
point in the table, it is equally likely to be any of the digits 0 through 9.

Choosing numbers from the table is analogous to drawing numbers out of a hat
containing those numbers on thoroughly mixed pieces of paper. Suppose we want a
simple random sample of three people to be selected from seven. We could number the
people from 1 to 7, put slips of paper containing these numbers (one number on each
slip) into a hat, mix them, and draw out three, without replacing the drawn numbers.
Analogously, we could drop a pencil point on a random starting point in Appendix A,
Table A.2. Suppose the point falls on the 15th line of column 9 and we decide to use the
rightmost digit (a 5, in this case). This procedure is like drawing a 5 from the hat. We
may now proceed in any direction to obtain the remaining numbers in the sample. Sup-
pose we decide before starting to proceed down the page. The number immediately
below the 5 is a 2, so our second sampled person is number 2. Proceeding, we next
come to an 8, but there are only seven people in our population; hence, the 8 must be
ignored. Two more 5s then appear, but both must be ignored because person 5 has
already been selected. (The 5 has been removed from the hat.) Finally, we come to a 1,
and our sample of three is completed with persons numbered 5, 2, and 1.

Note that any starting point can be used and we can move in any predetermined
direction. If more than one sample is to be used in any problem, each should have its
own unique starting point. Many computer programs, such as MINITAB, can be used
to generate random numbers. A more realistic illustration is given in Example 4.1.

EXAMPLE 4.1 For simplicity, assume there are N = 1000 patient records from which a simple
random sample of n = 20 is to be drawn. We know that a simple random sample will
be obtained if every possible sample of n = 20 records has the same chance of being
selected. The digits in Appendix A, Table A.2, and in any other table of random num-
bers, are generated to satisfy the conditions of simple random sampling. Determine
which records are to be included in a sample of size n = 20.

SOLUTION We can think of the accounts as being numbers 001, 002, . . . , 999, 000. That is, we
have 1000 three-digit numbers, where 001 represents the first patient record, 999 the
999th patient record, and 000 the 1000th.

Refer to Appendix A, Table A.2 and use the first column; if we drop the last two
digits of each number, we see that the first three-digit number formed is 104, the
second is 223, the third is 241, and so on. Taking a random sample of 20 digits, we
obtain the numbers shown in Table 4.1.

If the records are actually numbered, we merely choose the records with the cor-
responding numbers, and these records represent a simple random sample of 
from . If the patient accounts are not numbered, we can refer to a list of the
accounts and count from the 1st to the 10th, 23rd, 70th, and so on, until the desired

N = 1000
n = 20

     



numbers are reached. If a random number occurs twice, the second occurrence is
omitted, and another number is selected as its replacement. ■

4.3
Estimation of a Population Mean and Total

We have stated previously that the objective of survey sampling is to draw inferences
about a population from information contained in a sample. One way to make infer-
ences is to estimate certain population parameters by using the sample information.
The objective of a sample survey is often to estimate a population mean, denoted
by m, or a population total, denoted by t. Thus, the auditor in Example 4.1 might be
interested in the mean dollar value for the accounts receivable or the total dollar
amount in these accounts. Hence, we consider the estimation of the two population
parameters, m and t, in this section.

Suppose that a simple random sample of n accounts is drawn, and we are to
estimate the mean value per account for the total population of hospital records.
Intuitively, we employ the sample average

to estimate m. This estimator can be justified as being an appropriate one by referring
to the discussion and example in Section 3.3. Simple random sampling is equivalent
to random sampling without replacement and with equal weights, as described there.
For such a sampling scheme pi = n�N and the unbiased estimator of the population
total, t, is given by 

Because the population mean is related to the total by the equation t�N = m, the sam-
ple mean will be an unbiased estimator of the population mean. That is, 

Of course, a single value of tells us very little about the population mean m, un-
less we are able to evaluate the goodness of our estimator. Hence, in addition to esti-
mating m, we would like to place a bound on the error of estimation. To accomplish

y

E(y) = m

tN = a
n

i=1
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n

i=1
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TABLE 4.1
Patient records to be included in the sample

104 779 289 510
223 995 635 023
241 963 094 010
421 895 103 521
375 854 071 070
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this we need the variance of the estimator; for a simple random sample chosen with-
out replacement from a population of size N,

Considering the sample variance

it can be shown (see Appendix A, Derivations) that 

so that can be unbiasedly estimated from the sample by

The variance of the estimator is the same as that given in an introductory course
except that it is multiplied by a correction factor to adjust for sampling from a finite
population. The correction factor takes into account the fact that an estimate based on
a sample n = 10 from a population of N = 20 items contains more information about
the population than a sample of n = 10 from a population of N = 20,000.

Returning to the example in Section 3.3 in which samples of size n = 2 were
selected from the population {1, 2, 3, 4}, we can now demonstrate properties of the
sample mean described in these formulas. Table 4.2 shows the six possible samples
of size 2 and the related sample statistics. (The first three columns of this table are
identical to those in Table 3.2.)

If a single observation y is selected at random from this population, then y can
take on any of the four possible values, each with probability 1⁄4. Thus,

 = a 1

4
b(1 + 2 + 3 + 4) =
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4
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TABLE 4.2
Simple random sampling of a finite population, n = 2

Probability of 
sample, equal 

Sample weights s2

{1,2} 1/6 6 1.5 0.5 0.125
{1,3} 1/6 8 2.0 2.0 0.500
{1,4} 1/6 10 2.5 4.5 1.125
{2,3} 1/6 10 2.5 0.5 0.125
{2,4} 1/6 12 3.0 2.0 0.500
{3,4} 1/6 14 3.5 0.5 0.125

VN (y)ytN
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and

Because each of these sample means can occur with probability 1�6, we can compute
and . From our definition of expected value,

and

Recalling that for this example s = 5/4, N = 4, and n = 2, we have

Considering the sample variances, we have

Also,
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Thus, we have demonstrated that

and that is an unbiased estimator of . The key results of this section are
summarized next.

V(y)VN (y)

E(y) = mV(y) =

s2

n
aN - n

N - 1
b

The quantity 1 - n�N is called the finite population correction (fpc). Note that this
correction factor differs slightly from the one encountered in the true variance of y.
When n remains small relative to the population size N, the fpc is close to unity. Practi-
cally speaking, the fpc can be ignored if 1 - n�N Ú .95, or equivalently, 
In that case, the estimated variance of y is the more familiar quantity s2�n. In many
cases, the population size is not clearly defined or is unknown. Suppose very small
laboratory specimens are selected from a large bulk tank of raw sugar in order to
measure pure sugar content. How N will be determined is unclear, but it can gener-
ally be assumed to be quite large. Hence, the fpc can be ignored. If a sample of vot-
ers is selected from the population of a state, to obtain a precise N for that point in
time is generally impossible. Again, N is assumed large and the fpc is ignored.

Some texts present the fpc as (N - n)�N; we prefer 1 - n�N because it highlights
the role of the sampling fraction n�N. The sampling fraction is often denoted by
f = n�N, in which case the fpc can be represented as 1 - f. Later in this book, when
the formulas get more complicated, and brevity of formulas therefore more attractive,
we will switch to this latter notation.

In theory, if a two-standard deviation bound on the error (often called a margin of
error) is subtracted from and added to the sample mean, the resulting confidence in-
terval has approximately a 95% chance of capturing the population mean within its
boundaries. This result is built on a theory that requires the sample mean in question
to have approximately a normal distribution. To illustrate how this works we return
to the brain weight data in Section 3.4 Figure 3.4 shows that, for data on the original
scale, the sampling distribution for the mean of samples of size 5 is highly skewed.
Figure 3.6 shows that, for data on the logarithmic scale, the sampling distribution of
sample means is quite normal looking. How is this behavior of sampling distributions

n … (1>20)N.
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reflected in the performance of confidence intervals? Figure 4.1 shows 50 confidence
intervals constructed from random samples of size 5 with a two-standard deviation
bound on the error using the original population data for brain weights. Only 28 of
the intervals (56%) cover the true population mean of 394.5; many of the intervals
are too short and lie too far to the left.

Using the same method on the log-transformed data results in the intervals in
Figure 4.2. Here, 48 of the calculated intervals (96%) cover the population mean
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FIGURE 4.1
Confidence intervals for samples of brain weights, n = 5
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FIGURE 4.2
Confidence intervals for samples of log brain weights, n = 5
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4.3 Estimation of a Population Mean and Total 85

of 2.98. Quite a difference! Not only that, the intervals in Figure 4.2 are also more
uniform in length. The message to be learned is that the results of this section will not
work well unless there is reasonable assurance that the sample means being studied
have sampling distributions that are not too far from normal. Of course, that can be
essentially guaranteed if the sample size is large. You can study for yourself sampling
the original and the log-transformed population using a sampling tool found in elec-
tronic Section 4.0. Bootstrapping (Section 11.9) is another option; look in electronic
Section 11.0 for a single-sample bootstrapping tool.

EXAMPLE 4.2 Refer to the hospital audit in Example 4.1 and suppose that a random sample of
n = 200 accounts is selected from the total of N = 1000. The sample mean of the
accounts is found to be , and the sample variance is s2

= 445.21. Esti-
mate m, the average due for all 1000 hospital accounts, and place a bound on the
error of estimation.

SOLUTION We use to estimate m. A bound on the error of estimation can be found
by using Eq. (4.3):

Thus, we estimate the mean value per account, m, to be Because n is
large, the sample mean should possess approximately a normal distribution, so
that $94.22 ; $2.67 is approximately a 95% confidence interval for the population
mean. ■

EXAMPLE 4.3 A simple random sample of n = 9 hospital records is drawn to estimate the average
amount of money due on N = 484 open accounts. The sample values for these nine
records are listed in Table 4.3. Estimate m, the average amount outstanding, and place
a bound on your error of estimation.

y = $94.22.

 = 211.7808 = $2.67

 22VN (y) = 2
B
a1 -

n

N
b  

s2

n
=

B
a1 -

200

1000
b  

445.21

200

y = $94.22

y = $94.22

TABLE 4.3
Amount of money owed

y1 33.50
y2 32.00
y3 52.00
y4 43.00
y5 40.00
y6 41.00
y7 45.00
y8 42.50
y9 39.00

     



SOLUTION As good data analysis suggests, it is always wise to make an appropriate plot of the
data to see if anything unusual appears. Figure 4.3 shows the box plot of these data,
which suggest that two of the observations are a bit unusual, compared to the rest,
one on the high side and one on the low side. Perhaps the investigator should look at
these two accounts again to see if they represent something different from the rest of
the accounts in the sample.

Our estimate of m is

To find a bound on the error of estimation, we must compute

and use Eq. (4.3) to obtain the bound on the error of estimation:

To summarize, the estimate of the mean amount of money owed per account, m, is
. Although we cannot be certain how close is to m, we are reasonably

confident that the error of estimation is less than $3.94. ■

As we have already seen, many sample surveys are conducted to obtain information
about a population total. The federal auditor in Example 4.1 would probably be inter-
ested in verifying the computer figure for the total accounts receivable (in dollars) for the
N = 1000 open accounts. The population total is denoted by the symbol t. Because

Nm = t

yy = $40.89

 = 213.890 = 3.944 = $3.94

 22VN (y) = 2
B
a1 -

n

N
b  

s2

n
=

B
a1 -

200

1000
b  

445.21

200

s2
=

a
n

i=1
(yi - y)2

n - 1
= 35.67

y =

a
9

i=1
yi

9
=

368.00

9
= $40.89
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FIGURE 4.3
Box plot of the hospital account data
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4.3 Estimation of a Population Mean and Total 87

we know that the estimator of t is N times the estimator of m. It is also true that the
margin of error for estimating a total is N times the margin of error for estimating the
mean.

Estimator of the population total T:

(4.4)

Estimated variance of T:

(4.5)

Bound on the error of estimation:

(4.6)22VN (N y) = 2
B

N2a1 -

n

N
b a s2

n
b

NV(Nt) =
NV(Ny ) = N2a1 -

n

N
b a s2

n
b

tN = N y =

Na
n

i=1
 yi

n

EXAMPLE 4.4 An industrial firm is concerned about the time spent each week by scientists on certain
trivial tasks. The time-log sheets of a simple random sample of n = 50 employees
show the average amount of time spent on these tasks is 10.31 hours, with a sample
variance s2

= 2.25. The company employs N = 750 scientists. Estimate the total num-
ber of worker-hours lost each week on trivial tasks and place a bound on the error of
estimation.

SOLUTION We know the population consists of N = 750 employees from which a random sam-
ple of n = 50 time-log sheets was obtained. The average amount of time lost for the
50 employees was hours/week. Therefore, the estimate of t is

To place a bound on the error of estimation, we apply Eq. (4.7) to obtain

Thus, the estimate of total time lost is We are reasonably confi-
dent that the error of estimation is less than 307.4 hours. ■

tN = 7732.5 hours.

 = 2123,625 = 307.4 hours

 22VN (tN) = 2
B

(750)2a1 -

50

750
b a2.25

50
b

t = Ny = 750(10.31) = 7732.5 hours

y = 10.31

     



4.4
Selecting the Sample Size for Estimating 
Population Means and Totals

At some point in the design of the survey, someone must make a decision about the
size of the sample to be selected from the population. So far, we have discussed a
sampling procedure (simple random sampling) but have said nothing about the num-
ber of observations to be included in the sample. The implications of such a decision
are obvious. Observations cost money. If the sample is too large, time and talent are
wasted. Conversely, if the number of observations included in the sample is too
small, we have bought inadequate information for the time and effort expended and
have again been wasteful.

The number of observations needed to estimate a population mean m with a
bound on the error of estimation of magnitude B is found by setting 2SD of the esti-
mator, , equal to B and solving this expression for n. That is, we must solve

(4.7)
for n.

Recall that the estimated variance of , , is given by

(4.8)

Also,

(4.9)

You may recognize Eq. (4.9) from an introductory course as the familiar variance of
multiplied by the factor

The required sample size can now be found by solving the following equation for n: 

(4.10)

The solution is given in Eq. (4.11).

22V(y) = 2
B

s2

n
aN - n

N - 1
b = B

(N - n)

(N - 1)

y, s2/n,

V(y) =

s2

n
aN - n

N - 1
b

VN (y) = a1 -

n

N
b s2

n

VN (y)y

22V(y) = B

y
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Sample size required to estimate with a bound on the error of
estimation B:

(4.11)

where

D =

B2

4

n =

Ns2

(N - 1)D + s2

M

     



4.4 Selecting the Sample Size for Estimating Population Means and Totals 89

Solving for n in a practical situation presents a problem because the population
variance s2 is unknown. Because a sample variance s2 is frequently available from
prior experimentation, we can obtain an approximate sample size by replacing s2

with s2 in Eq. (4.11). We illustrate a method for guessing a value of s2 when very
little prior information is available. If N is large, as it usually is, then (N - 1) can be
replaced by N in the denominator of Eq. (4.11).

EXAMPLE 4.5 The average amount of money m for a hospital’s accounts receivable must be esti-
mated. Although no prior data are available to estimate the population variance, it is
known that most accounts lie within a $100 range. There are N = 1000 open ac-
counts. Find the sample size needed to estimate m with a bound on the error of esti-
mation .

SOLUTION We need an estimate of s2, the population variance. Because the range is often ap-
proximately equal to 4SD (4s), one fourth of the range will provide an approximate
value of s. Hence,

and

Using Eq. (4.11), we obtain

where

So

That is, we need approximately 218 observations to estimate m, the mean accounts
receivable, with a bound on the error of estimation of $3.00. Note that the tool will show
a sample size of 213 for a 95% confidence interval with margin of error of $3. ■

Likewise, we can determine the number of observations needed to estimate a
population total t, with a bound on the error of estimation of magnitude B. The
required sample size is found by setting 2SD of the estimator equal to B and solving
this expression for n. That is, we must solve

or, equivalently,

(4.12)2N2V(y) = B

22V(Ny) = B

n =

1000(625)

999(2.25) + 625
= 217.56

D =

B2

4
=

(3)2

4
= 2.25

n =

Ns2

(N - 1)D + s2

s2
L (25)2

= 625

s L

Range

4
=

100

4
= 25

B = $3

     



EXAMPLE 4.6 An investigator is interested in estimating the total weight gain in 4 weeks for
N = 1000 chicks fed on a new ration. Obviously, to weigh each bird would be time-
consuming and tedious. Therefore, determine the number of chicks to be sampled 
in this study in order to estimate t with a bound on the error of estimation equal to
1000 grams. Many similar studies on chick nutrition have been run in the past. Using
data from these studies, the investigator found that s2, the population variance, was
approximately equal to 36.00 (grams)2. Determine the required sample size.

SOLUTION We can obtain an approximate sample size using Eq. (4.13) with s2 equal to 36.00
and

That is,

The investigator therefore needs to weigh n = 126 chicks to estimate t, the total
weight gain for N = 1000 chickens in 0 to 4 weeks, with a bound on the error of esti-
mation equal to 1000 grams. Note that the tool will show a sample size of 123 for a
95% confidence interval with margin of error of 1000 grams. ■

4.5
Estimation of a Population Proportion

The investigator conducting a sample survey is frequently interested in estimating the
proportion of the population that possesses a specified characteristic. For example, a
congressional leader investigating the merits of an 18-year-old voting age may want
to estimate the proportion of the potential voters in the district between the ages of 18
and 21. A marketing research group may be interested in the proportion of the total
sales market in diet preparations that is attributable to a particular product. That is,
what percentage of sales is accounted for by a particular product? A forest manager
may be interested in the proportion of trees with a diameter of 12 inches or more.
Television ratings are often determined by estimating the proportion of the viewing
public that watches a particular program.

n =

Ns2

(N - 1)D + s2 =

1000(36.00)

999(0.25) + 36.00
= 125.98

D =

B2

4N2 =

(1000)2

4(1000)2 = 0.25
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Sample size required to estimate T with a bound on error B:

(4.13)

where

D =

B2

4N2

n =

Ns2

(N - 1)D + s2

     



4.5 Estimation of a Population Proportion 91

You will recognize that all these examples exhibit a characteristic of the binomial
experiment—that is, an observation either does belong or does not belong to the cat-
egory of interest. For example, we can estimate the proportion of eligible voters in a
particular district by examining population census data for several of the precincts
within the district. An estimate of the proportion of voters between 18 and 21 years
of age for the entire district will be the fraction of potential voters from the precincts
sampled that fell into this age range.

We denote the population proportion and its estimator by the symbols p and 
respectively. The properties of for simple random sampling parallel those of the
sample mean if the response measurements are defined as follows. Let yi = 0 if the
ith element sampled does not possess the specified characteristic and yi = 1 if it does.
Then the total number of elements in a sample of size n possessing a specified char-
acteristic is

If we draw a simple random sample of size n, the sample proportion is the frac-
tion of the elements in the sample that possess the characteristic of interest. For ex-
ample, the estimate of the proportion of eligible voters between the ages of 18 and
21 in a certain district is

or

In other words, is the average of the 0 and 1 values from the sample. Similarly, we
can think of the population proportion as the average of the 0 and 1 values for the
entire population (i.e., p = m).

pN

pN =

a
n

i=1
yi

n
= y

pN =

Number of voters sampled between the ages of 18 and 21

Number of voters sampled

pN

pN

a
n

i=1
yi

y
pN

pN ,

Estimator of the population proportion p:

(4.14)

Estimated variance of :

(4.15)

where

Bound on the error of estimation:

(4.16)22VN (pN ) = 2
B
a1 -

n

N
b pN qN

n - 1

qN = 1 - pN

VN (pN) = a1 -

n

N
b pNqN

n - 1
 

pN

pN = y =

a
n

i=1
yi

n

     



It is usual in most statistics texts to use var whereas we have used n - 1
in the denominator here. An unbiased estimate of the population variance is 
and when you divide by n in the usual way for a sample mean, the result is as we’ve
shown. The commonly used estimator is indeed biased, slightly, but simpler in con-
struction. The bias in the commonly used estimator is usually very small, so use of
the simpler formulation has its understandable appeal, but we’ve chosen to use the
unbiased statistic. 

EXAMPLE 4.7 A simple random sample of college seniors was selected to estimate (1) the
fraction of seniors going on to graduate school and (2) the fraction of stu-
dents that have held part-time jobs during college. Let yi and xi (i = 1, 2, . . . , 100)
denote the responses of the ith student sampled. We will set yi = 0 if the ith student
does not plan to attend graduate school and yi = 1 if he or she does. Similarly, let xi = 0
if he or she has not held a part-time job sometime during college and xi = 1 if he or
she has. Using the sample data presented in the accompanying table, estimate pl,
the proportion of seniors planning to attend graduate school, and p2, the proportion
of seniors who have had a part-time job sometime during their college careers
(summers included).

N = 300
n = 100

n
n - 1 pN qN ,

(pN ) = pN qN/n,
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Student y x

1 1 0
2 0 1
3 0 1
4 1 1
5 0 0
6 0 0
7 0 1

. . .

. . .

. . .
96 0 1
97 1 0
98 0 1
99 0 1

100 1 1

a
100

i=1
xi = 65a

100

i=1
yi = 15

SOLUTION The sample proportions from Eq. (4.14) are given by

and

pN 2 =

a
n

i=1
yi

n
=

65

100
= 0.65

pN 1 =

a
n

i=1
yi

n
=

15

100
= 0.15

     



4.5 Estimation of a Population Proportion 93

The bounds on the errors of estimation of p1 and p2 are, respectively, 

and

Thus, we estimate that 0.15 (15%) of the seniors plan to attend graduate school, with
a bound on the error of estimation equal to .059 (5.9%). We estimate that 0.65 (65%)
of the seniors have held a part-time job during college, with a bound on the error of
estimation equal to .078 (7.8%). ■

We have shown that the population proportion p can be regarded as the average
(m) of the 0 and 1 values for the entire population. Hence, the problem of determin-
ing the sample size required to estimate p to within B units should be analogous to
determining a sample size for estimating mwith a bound on the error of estimation B.
Recall that the required sample size for estimating m is given by

(4.17)

where D = B2�4 [see Eq. (4.11)]. The corresponding sample size needed to estimate
p can be found by replacing s2 in Eq. (4.17) with the quantity pq.

n =

Ns2

(N - 1)D + s2

 = 2(0.0391) = 0.078

 22VN (pN 2) = 2
B
a1 -

n

N
b pN 2qN2

n - 1
= 2

B
a1 -

100

300
b  

(0.65)(0.35)

99

 = 2(0.0293) = 0.059

 22VN (p1) = 2
B
a1 -

n

N
b pN 1qN 1

n - 1
= 2

B
a1 -

100

300
b  

(0.15)(0.85)

99

Sample size required to estimate p with a bound on the error of
estimation B: 

(4.18)

where

q = 1 - p  and  D =

B2

4

n =

Npq

(N - 1)D + pq

In a practical situation, we do not know p. An approximate sample size can be
found by replacing p with an estimated value. Frequently, such an estimate can be
obtained from similar past surveys. However, if no such prior information is avail-
able, we can substitute p = 0.5 into Eq. (4.18) to obtain a conservative sample size
(one that is likely to be larger than required).

EXAMPLE 4.8 Student government leaders at a college want to conduct a survey to determine the
proportion of students who favor a proposed honor code. Because interviewing
N = 2000 students in a reasonable length of time is almost impossible, determine the

     



sample size (number of students to be interviewed) needed to estimate p with a bound
on the error of estimation of magnitude B = 0.05. Assume that no prior information
is available to estimate p.

SOLUTION We can approximate the required sample sizes when no prior information is available
by setting p = 0.5 in Eq. (4.18). We have

Hence,

That is, 334 students must be interviewed to estimate the proportion of students who
favor the proposed honor code with a bound on the error of estimation of ■

EXAMPLE 4.9 Referring to Example 4.8, suppose that, in addition to estimating the proportion of
students who favor the proposed honor code, student government leaders also want
to estimate the number of students who feel the student union building adequately
serves their needs. Determine the combined sample size required for a survey to
estimate p1, the proportion that favors the proposed honor code, and p2, the proportion
that believes the student union adequately serves its needs, with bounds on the errors
of estimation of magnitude and . Although no prior informa-
tion is available to estimate p1, approximately 60% of the students believed the union
adequately met their needs in a similar survey run the previous year.

SOLUTION In this example, we must determine a sample size n that allows us to estimate p1 with
a bound B1 = 0.05 and p2 with a bound B2 = 0.07. First, determine the sample sizes
that satisfy each objective separately. The larger of the two will then be the combined
sample size for a survey to meet both objectives. From Example 4.8, the sample size
required to estimate p1 with a bound on the error of estimation of B1 = 0.05 was
n = 334 students. We can use data from the survey of the previous year to determine
the sample size needed to estimate p2. We have

And hence, with p2 = 0.60,

 = 178.52

 =

(2000)(0.6)(0.4)

(1999)(0.001225) + (0.6)(0.4)
=

480

2.68877

 n =

Npq

(N - 1)D + pq

D =

B2

4
=

(0.07)2

4
= 0.001225

B2 = 0.07B1 = 0.05

B = 0.05.

 = 333.56

 =

(2000)(0.5)(0.5)

(1999)(0.000625) + (0.5)(0.5)
=

500

1.499

 n =

Npq

(N - 1)D + pq

D =

B2

4
=

(0.05)2

4
= 0.000625
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4.6 Comparing Estimates 95

That is, 179 students must be interviewed to estimate p2, the proportion of the
N = 2000 students who believe the student union meets its needs, with a bound on
the error of estimation equal to 0.07.

The sample size required to achieve both objectives in one survey is 334, the
larger of the two sample sizes. ■

4.6
Comparing Estimates

After estimating individual parameters, such as means or proportions, we often want
to compare the estimates of two parameters. The mean incomes for two ethnic groups
over the past year can be compared by looking at the difference between sample
means for random samples of incomes from the two groups. Whether the Republi-
cans are gaining on Democrats in a congressional race can be assessed by looking at
the difference between the proportions voting Republican (or, at least, reporting so)
for two polls conducted a few weeks apart.

Whether using means or proportions, comparisons are usually made by way of
differences. In this regard, a general result can be stated before looking at specific
cases. For any two random variables, yl and y2,

and

If yl and y2 are independent, then cov(yl, y2) = 0.
Suppose yl, . . . , yn is a random sample from a population with mean my and

x1, . . . , xm is an independent random sample from a population with mean mx. An
unbiased estimate of my - mx is because

Further,

where the variance of each sample mean could be estimated as in Eq. (4.2). If the
two samples are not independent, some information on cov would have to be
available.

EXAMPLE 4.10 Fish absorb mercury as water passes through their gills, and too much mercury
makes the fish unfit for human consumption. In 1994 the state of Maine issued a
health advisory warning that people should be careful about eating fish from Maine
lakes because of the high levels of mercury. Before the warning, data on the status of
Maine lakes were collected by the U.S. Environmental Protection Agency (EPA)
working with the state. Fish were taken from a random sample of lakes and their mer-
cury content was measured in parts per million (ppm). Table 4.4 shows a selection of

(y, x)

V(y - x) = V(y) + V(x)

E(y - x) = E(y) - E(x) = my - mx

y - x

V(y1 - y2) = V(y1) + V(y2) - 2cov(y1, y2)

E(y1 - y2) = E(y1) - E(y2)

     



data from a random sample of 35 lakes. Type 1 lakes are oligotrophic (balanced
between decaying vegetation and living organisms), type 2 lakes are eutrophic (high
decay rate and little oxygen), and type 3 lakes are mesotrophic (between the other
two states). The table also shows whether the lake is formed behind a dam. (a) Com-
paring lake types 1 and 2, what is your best estimate of the difference in mean mer-
cury levels for these two types of lakes? (b) Is there sufficient evidence to conclude
that the mean mercury level for lakes of type 2 differs from that for lakes of type 3?

Summary statistics are provided next.

SOLUTION The first step is to plot the data to see if any unusual patterns emerge. Figure 4.4
shows parallel box plots for mercury readings separated by the three lake types.
There is some skewness toward the larger values, and the type 2 lakes have a serious

Type Count Mean Median Standard deviation, s

1 4 0.22 0.20 0.103
2 15 0.74 0.68 0.583
3 16 0.50 0.44 0.272

96 Chapter 4 Simple Random Sampling

TABLE 4.4
Mercury content in Maine lakes according to type and dam

Mercury (Hg) ppm Lake type Dam 1 = yes; 0 = no

1.050 2 1
0.230 2 1
0.100 3 0
. . .
. . .
. . .
0.430 2 1
0.160 1 0
0.490 3 0

SOURCE: R. Peck, L. Haugh, and A. Goodman, 1998, Statistical Case Studies, ASA-SIAM, 1–14.

FIGURE 4.4
Mercury content by lake type
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4.6 Comparing Estimates 97

outlier; these features should be kept in mind when interpreting the results of the
statistical analysis.

a. To compare the mean mercury content for the type 1 and type 2 lakes, the
appropriate estimator and bound is

The resulting interval estimate implies that the true difference in mean mer-
cury content for these two types of lakes could be anywhere between -0.84
and -0.20. That is, type 2 lakes could have mean mercury content between
0.20 and 0.84 ppm greater than type 1 lakes; any value of the difference in this
interval would be consistent with the observed sample data.

The total number of lakes in the state is quite large, so fpcs are ignored in
this analysis.

b. To answer the question about how type 2 and type 3 lakes compare we can,
again, construct an appropriate interval estimate:

The resulting interval of (-0.09, 0.57) covers zero, which implies that there is no sig-
nificant evidence of a difference in mean mercury content for these two types of
lakes. Based on these data there is no way to conclude that either type has greater
mercury content than the other.

Prudent data analysis requires a check on how much influence the large outlier
(2.50) in the type 2 lake data might have on the analysis. With this observation re-
moved both intervals become a little shorter, (-0.61, -0.17) for part a and (-0.12,
0.34) for part b. The main conclusion of part b remains the same.

When comparing means, we consider only the independent-sample case because
the dependent case becomes too complicated to handle at this level. When compar-
ing proportions, however, a commonly occurring dependent situation does have a
rather simple solution. Suppose an opinion poll asks, “Do you favor the U.S. foreign
policy in Latin America?” The options given are

A. Yes ________

B. No ________

C. No opinion _________

In the face of a sizeable number of “no opinion” responses, we want to compare the
proportion checking “yes” with the proportion checking “no” by looking at the dif-
ference between these dependent proportions. To see this, suppose we are allowed to
see the proportion of yes responses and it is high—say, approximately 80%. Then we
know that the proportion of no responses must be low, below 20%. Thus, these two

 = 0.24 ; 0.33

 = (0.74 - 0.50) ; 2
B

0.5832

15
+

0.2722

16

(y2 - y3) ; 22VN (y2) + VN (y3)

 = -0.52 ; 0.32

 = (0.22 - 0.74) ; 2
B

0.1032

4
+

0.5832

15

(y1 - y2) ; 22VN (y1) + VN (y2)

     



sample percentages are not only dependent but also negatively correlated (or have
negative covariance).

This is a multinomial sampling situation because each respondent has three
choices (more than two is the key). For the two sample proportions p1 and p2 arising
from a multinomial sample of size n,

and

(We get a + sign in front of the third term because the covariance itself is negative.)
Because pi is estimated by , it is easy to find a good estimator of this variance. ■

EXAMPLE 4.11 The notion of banning smoking from the workplace has been around for a long time.
A Time/Yankelovich poll of 800 adult Americans carried out on April 6–7, 1994 (see
Time, April 18, 1994) asked:

Should smoking be banned from workplaces, should there be special smoking
areas, or should there be no restrictions?

The results are given in Table 4.5. Based on a sample of approximately 600 non-
smokers and 200 smokers, estimate (a) the true difference between the proportions
choosing “banned” and (b) the true difference between the proportions of nonsmok-
ers choosing “banned” and “special areas.”

SOLUTION a. The proportions choosing “banned” are independent of one another; a high
value of one does not force a low value of the other, because they come from
independent samples. Thus, an appropriate estimate of this difference is

Thus, a true difference anywhere between 30% and 42% would be consistent
with these data.

b. The proportion of nonsmokers choosing “special areas” is dependent on the
proportion choosing “banned”; if the latter is large, the former must be small.

= 0.36 ; 0.06

(0.44 - 0.08) ; 2
B

(0.44)(0.56)

600
+

(0.08)(0.92)

200

pN i

 =

p1(1 - p1)

n
+

p2(1 - p2)

n
+ 2

p1p2

n

 V(pN 1 - pN2) = V(pN 1) + V(pN 2) - 2cov(pN 1, pN 2)

E(pN 1 - pN 2) = p1 - p2
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TABLE 4.5
Smoking survey results

Nonsmokers Smokers

Banned 44% 8%
Special areas 52% 80%
No restrictions 3% 11%
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These are multinomial proportions. Thus, an appropriate estimate of the true
difference is

Any true difference between 0% and 16% would be consistent with these data.
In particular, there is no strong evidence to say that, for the population, these
two proportions would differ. ■

It has been noted that the 2SD bound on the error is equivalent to an approximate
95% confidence interval estimate. If two such intervals are used on the same data,
however, the chance that both intervals contain the true parameter value is less than
95%. Thus, many interval estimates should not be constructed from the same sample
data unless an adjustment is made to account for this multiplicity of uses. Most books
on standard statistical methods present a variety of such adjustments, but they are not
covered here. Instead, we follow the philosophy of making only a few meaningful
comparisons, rather than making all possible comparisons, when a situation calls for
comparisons to be made.

EXAMPLE 4.12 A survey of 209 licensed clinical psychologists randomly selected from all such pro-
fessionals in the state of Michigan was used to study the effects of age and gender on
the diagnosis of symptoms related to a feeling of depression in patients. All psychol-
ogists read the same case study, except for changes in patient age and gender. The
resulting diagnoses are reported in Table 4.6. (a) Does age appear to affect the diag-
nosis of depression (as opposed to a diagnosis of an organic cause)? (b) Does gender
appear to affect the diagnosis of depression? 

= 0.08 ; 0.08

(0.52 - 0.44) ; 2
B

(0.44)(0.56)

600
+

(0.52)(0.48)

600
+ 2

(0.44)(0.52)

600

TABLE 4.6
General diagnosis by age and gender of patient

Age (years)

45 55 65 75 85 Total

Gender n % n % n % n % n % n %

Male
Depression 22 95.7 9 64 12 80 8 57.1 15 75 66 76.7
Organic 0 0 0 0 1 6.7 4 28.6 2 14.3 7 8.1
Adjustment 1 4.3 5 37.7 2 13.3 2 14.3 3 15 13 15.1
Total 23 26.7 14 16.3 15 17.4 14 16.3 20 23.3 — —

Female
Depression 17 89.5 18 81.8 14 87.5 18 94.7 10 62.5 77 83.7
Organic 0 0 0 0 0 0 0 0 1 6.3 1 1.1
Adjustment 2 10.5 4 18.2 2 12.5 1 6.3 5 31.3 14 15.2
Total 19 20.7 22 23.9 16 17.4 19 20.7 16 17.4 — —

SOURCE: Wrobel, N. H. 1993. Effect of patient age and gender on clinical decisions. Professional Psychology: Research
and Practice, 24(4): 206–212.

     



SOLUTION a. We can make many comparisons to look at the effect of age on diagnosis. To
keep these to a minimum, consider just the extremes: age 45 versus age 85.
Pooling across gender, 39 of 42, or 93%, of the 45-year-olds were diagnosed
as depressed, whereas 25 of 36, or 69%, of the 85-year-olds were so diag-
nosed. The appropriate interval estimate is

There is statistical evidence to say that the 85-year-olds are less likely to be
diagnosed with depression.

b. At first glance, it looks like women may be more likely to be diagnosed as de-
pressed than men, but the interval estimate of this difference in proportions is

Women may not be diagnosed as depressed more often in the population of
such patients. This observed difference could just be due to sampling error. ■

4.7 
Summary

The objective of statistics is to make inferences about one or more population pa-
rameters from information contained in a sample. Two factors affect the quantity of
information in a given investigation. The first is the sample size. The larger the sam-
ple size, the more information we expect to obtain about the population. The second
factor is the amount of variation in the data. Variation can be controlled by the design
of the sample survey, that is, the method by which observations are obtained.

In this chapter, we have discussed the simplest type of sample survey design,
namely, simple random sampling. This design does not attempt to reduce the effect
of data variation on the error of estimation. A simple random sample of size n occurs
if each sample of n elements from the population has the same chance of being se-
lected. Random number tables are quite useful in determining the elements that are
to be included in a simple random sample.

In estimating a population mean m and total t, we use the sample mean and
sample total respectively. Both estimators are unbiased; that is, and

The estimated variance and the bound on the error of estimation are
given for both estimators.

Sometime during the design of an actual survey, the experimenter must decide
how much information is desired, that is, how large a bound on the error of estima-
tion can be tolerated. Sample-size requirements have been presented for estimating m
and t with a specified bound on the error of estimation.

The third parameter estimated was the population proportion p. The properties of  
have been presented and related to the properties of , the estimator of the populationy

pN

E(Ny) = t.
E(y) = mNy,

y

= -0.07 ; 0.13

(0.77 - 0.84) ; 2
B

(0.77)(0.23)

66
+

(0.84)(0.16)

77

= 0.24 ; 0.17

(0.93 - 0.69) ; 2
B

(0.93)(0.07)

42
+

(0.69)(0.31)

36

100 Chapter 4 Simple Random Sampling

     



Case Study Revisited 101

mean m. Selecting the sample size to estimate p with a specified bound on the error
of estimation was based on the same principle employed in selecting a sample size
for estimating m and t.

Sometimes it is important to make comparisons among means or proportions by
estimating differences. The variances of these differences are easily estimated for
independent samples. The one dependent case considered has been in comparing
multinomial proportions, the type often arising in sample surveys.

C A S E  S T U D Y R E V I S I T E D

ARE AMERICANS DRINKING LESS ALCOHOL?

If the poll discussed in the opening case study consists of 1200 randomly selected
adults, then approximately one-half of the respondents should be women and one-
half men. Thus, sample sizes of 600 will be used for responses to questions just from
men or women. “Has the proportion of men who drink decreased significantly from
1992 to 1994?” is a question about two nearly independent proportions. The estimate
and bound on the error is found by

and, hence, there is no significant decrease.
A similar estimate and bound for the proportion of women yields an interval of

0.04 ; 0.06, and so there is no significant increase in the women’s proportions either.
Comparison of the proportions who decreased drinking prior to 1994 with those who
decreased drinking prior to 1984 involves a difference of independent proportions
again, but here the sample size is 1200 in both groups. The estimate and bound is
given by

This does show a significant increase in the proportions who have decreased drink-
ing and, in fact, justifies the headline of the article in which these data appeared:
“Number of Drinkers Holding Steady, but Drinking Less.”

A comparison of the proportions who have decreased drinking over the past five
years with those who have stayed the same (both for 1994) involves a difference of
dependent proportions. The estimate and bound on the error is given by

Because the interval does not overlap zero, the difference between the sample pro-
portions appears to reflect a real difference between the population proportions.
■

= -0.10 ; 0.06

(0.41 - 0.51) ; 2
B

(0.41)(0.59)

1200
+

(0.51)(0.49)

1200
+

2(0.41)(0.51)

1200

= 0.12 ; 0.04

(0.41 - 0.29) ; 2
B

(0.41)(0.59)

1200
+

(0.29)(0.71)

1200

= 0.02 ; 0.05

(0.72 - 0.70) ; 2
B

(0.72)(0.28)

600
+

(0.70)(0.30)

600

     



Exercises Some of the exercises are relatively data-intensive; look in the electronic Section 4.0 for links
to those data in Excel files.

4.1 List all possible simple random samples of size n = 2 that can be selected from the pop-
ulation {0, 1, 2, 3, 4}. Calculate s2 for the population and for the sample.

4.2 For the simple random samples generated in Exercise 4.1, calculate s2 for each sample.
Show numerically that

4.3 Suppose you want to estimate the number of weed clusters of a certain type in a field.
What is the population, and what would you use for sampling units? How would you
construct a frame? How would you select a simple random sample? If a sampling unit
is an area such as a square yard, does the size chosen for a sampling unit affect the
accuracy of the results? What considerations go into our choice of size of sampling
unit?

4.4 In which of the following situations can you reasonably generalize from the sample to
the population?
a. You use your statistics class to get an estimate of the percentage of students in your

school who study at least two hours a night.
b. You use the average annual income of the ambassadors to the United Nations to get

an estimate of average per-capita income for the world as a whole.
c. In 1996, a Gallup poll sampled 235 U.S. residents ages 18 to 29, to estimate the per-

centage of all U.S. residents ages 18 to 29 who favored cuts in social spending. 

4.5 Describe the type of sample selection bias that would result from each of these sampling
methods.
a. A student wants to determine the average size of farms in a county in Iowa. He drops

some rice randomly on a map of the county and uses the farms hit by grains of rice as
the sample.

b. In a study about whether valedictorians “succeed big in life,” a professor “traveled
across Illinois, attending high school graduations and selecting 81 students to
participate. . . . He picked students from the most diverse communities possible,
from little rural schools to rich suburban schools near Chicago to city schools.”
Source: Michael Ryan, “Do Valedictorians Succeed Big in Life?” Parade Magazine,
May 17, 1998, pages 14–15.

c. To estimate the percentage of students who passed the first Advanced Placement Sta-
tistics exam, a teacher on an Internet discussion list for teachers of AP Statistics asked
teachers on the list to report to him how many of their students took the test and how
many passed.

d. To find the average length of string in a bag, a student reaches in, mixes up the strings,
selects one, mixes them up again, selects another, and so on.

e. In 1984, Ann Landers conducted a poll on the marital happiness of women by asking
women to write to her.

4.6 Suppose you want to know what percentage of U.S. households have children under the
age of 13 living at home. Each weekday, from 9 to 5, your poll takers call the households
in your sample. Each time they reach a person in the sample, they ask, “Do you have

E(s2) =

N

N - 1
s2

V(y)
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Exercises 103

children under the age of 13 living in your household?” Eventually you give up on the
households that cannot be reached.
a. Will your estimate of the percentage of U.S. households that have children under the

age of 13 living in them probably be too low, too high, or about right?
b. How does this example help explain why poll takers are likely to call at dinnertime?

4.7 You want to estimate the average number of U.S. states that people living in the United
States have visited. If you asked only those at least 40 years old, would you expect the
estimate to be too high or too low? What kind of bias might you expect if you select your
sample from only those living in Rhode Island? 

4.8. To estimate the average number of children per family in the city where you live, you use
your statistics class as a convenience sample. You ask each student in the sample how
many children there are in his or her family. Do you expect the sample average to be
higher or lower than the population average? Explain why.

4.9 “Television today is more offensive than ever, say the overwhelming majority—92%—
of readers who took part in USA Weekend’s third survey measuring attitudes toward the
small screen.” More than 21,600 people responded to this write-in survey. [Source: USA
Weekend, May 16–18, 1997, page 20.]
a. Do you trust the results of the survey? Why or why not?
b. What percentage of the entire U.S. TV-watching public do you think would say that

“today’s shows are more offensive than ever”: more than 92%, quite a bit less than
92%, or just approximately 92%? Why do you think that?

4.10 Suppose you wish to estimate the average size of English classes on your campus. Com-
pare the merit of these two sampling methods.
a. You get a list of all students enrolled in English classes, take a random sample of

those students, and find out how many students are enrolled in each sampled student’s
English class.

b. You get a list of all English classes, take a random sample of those classes, and find
out how many students are enrolled in each sampled class.

4.11 Decide if the following sampling methods produce a simple random sample of students
from a class of 30 students. If not, explain why.
a. Select the first six students on the class roll sheet.
b. Pick a digit at random and select those students whose phone numbers end in that

digit.
c. If the classroom has six rows of chairs with five seats in each row, choose a row at

random and select all students in that row.
d. If the class consists of 15 boys and 15 girls, assign the boys the numbers from 1 to 15,

and the girls the numbers from 16 to 30. Then use a random digit table to select six
numbers from 1 to 30. Select the students assigned those numbers in your sample.

e. If the class consists of 15 boys and 15 girls, assign the boys the numbers from 1 to 15,
and the girls the numbers from 16 to 30. Then use a random digit table to select three
numbers from 1 to 15 and three numbers from 16 to 30. Select the students assigned
those numbers in your sample.

f. Randomly choose a letter from the English alphabet and select for the sample those
students whose last names begin with that letter. If no last name begins with that
letter, randomly choose another letter from the alphabet.

     



4.12 According to the 2000 Statistical Abstract of the United States, approximately 60% of 
18- and 19-year-olds are enrolled in school. Source: http://www.census.gov/prod/
2001pubs/statab/sec04.pdf (Table 245). If you take a random sample of 40 randomly 
chosen 18- and 19-year-olds, would it be reasonably likely to find that 32 were in school?

4.13 The data set USPOP in Appendix C lists resident population figures per state from the 2000
census. Select a simple random sample of five states. Use the 2000 population figures for the
sampled states to estimate the total U.S. population and place a bound on the error of
estimation. Does your interval answer include the total population figure given in the table?
Do you think every possible 95% confidence interval based on samples of size 5 would
include the true total? Compare your interval to those of other members of the class and
calculate the percentage of observed intervals that actually capture the true total.

4.14 State park officials were interested in the proportion of campers who consider the camp-
site spacing adequate in a particular campground. They decided to take a simple random
sample of from the first camping parties that visited the campground.
Let if the head of the ith party sampled does not think the campsite spacing is ad-
equate and if he does (i = 1, 2, . . . , 30). Use the data in the accompanying table
to estimate p, the proportion of campers who consider the campsite spacing adequate.
Place a bound on the error of estimation. 

yi = 1
yi = 0

N = 300n = 30
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Camper sampled Response, yi

1 1
2 0
3 1
. .
. .
. .

29 1
30 1

a
30

i=1
yi = 25

4.15 Use the data in Exercise 4.14 to determine the sample size required to estimate p with a
bound on the error of estimation of magnitude B = 0.05.

4.16 A simple random sample of 100 water meters within a community is monitored to esti-
mate the average daily water consumption per household over a specified dry spell. The
sample mean and sample variance are found to be and s2 

= 1252. If we assume
that there are N = 10,000 households within the community, estimate m, the true mean
daily consumption.

4.17 Using data in Exercise 4.16, estimate the total number of gallons of water, t, used daily
during the dry spell. Place a bound on the error of estimation.

4.18 Resource managers of forest game lands were concerned about the size of the deer and
rabbit populations during the winter months in a particular forest. As an estimate of
population size, they proposed using the average number of pellet groups for rabbits
and deer per 30-foot-square plots. From an aerial photograph, the forest was divided
into N = 10,000 30-foot-square grids. A simple random sample of n = 500 plots was

y = 12.5
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taken, and the number of pellet groups was observed for rabbits and for deer. The results
of this study are summarized in the accompanying table.
a. Estimate m1 and m2, the average number of pellet groups for deer and rabbits, respec-

tively, per 30-foot-square-plots. Place bounds on the errors of estimation.
b. Estimate the difference in the mean size of pellet groups per plot for the two animals,

with an appropriate margin of error.

4.19 A dentist was interested in the effectiveness of a new toothpaste. A group of N = 1000
schoolchildren participated in a study. Prestudy records showed there was an average of
2.2 cavities every six months for the group. After three months of the study, the dentist
sampled n = 10 children to determine how they were progressing on the new toothpaste.
Using the data in the accompanying table, estimate the mean number of cavities for the
entire group and place a bound on the error of estimation.

4.20 The Fish and Game Department of a particular state was concerned about the direction
of its future hunting programs. To provide for a greater potential for future hunting, the
department wanted to determine the proportion of hunters seeking any type of game bird.
A simple random sample of n = 1000 of the N = 99,000 licensed hunters was obtained.
Suppose 430 indicated that they hunted game birds. Estimate p, the proportion of licensed
hunters seeking game birds. Place a bound on the error of estimation.

4.21 Using the data in Exercise 4.20, determine the sample size the department must obtain to
estimate the proportion of game bird hunters, given a bound on the error of estimation of
magnitude B = 0.02.

4.22 A company auditor was interested in estimating the total number of travel vouchers that
were incorrectly filed. In a simple random sample of n = 50 vouchers taken from a
group of N = 250, 20 were filed incorrectly. Estimate the total number of vouchers from
the N = 250 that have been filed incorrectly and place a bound on the error of estima-
tion. [Hint: If p is the population proportion of incorrect vouchers, then Np is the total

Number of cavities in the 
Child three-month period

1 0
2 4
3 2
4 3
5 2
6 0
7 3
8 4
9 1

10 1

Deer Rabbits

Sample mean = 2.30 Sample mean = 4.52
Sample variance = 0.65 Sample variance = 0.97

     



number of incorrect vouchers. An estimator of Np is , which has an estimated vari-
ance given by ]

4.23 A psychologist wishes to estimate the average reaction time to a stimulus among 200 pa-
tients in a hospital specializing in nervous disorders. A simple random sample of n = 20
patients was selected, and their reaction times were measured, with the following results: 

Estimate the population mean m and place a bound on the error of estimation.

4.24 In Exercise 4.23, how large a sample should be taken in order to estimate m with a bound
of 1 second on the error of estimation? Use 1.0 second as an approximation of the popu-
lation standard deviation.

4.25 A sociological study conducted in a small town called for the estimation of the propor-
tion of households that contain at least one member over 65 years of age. The city has
621 households according to the most recent city directory. A simple random sample of
n = 60 households was selected from the directory. At the completion of the fieldwork,
out of the 60 households sampled, 11 contained at least one member over 65 years of age.
Estimate the true population proportion p and place a bound on the error of estimation.

4.26 In Exercise 4.25, how large a sample should be taken in order to estimate p with a
bound of B = 0.08 on the error of estimation? Assume the true proportion p is approx-
imately 0.2.

4.27 An investigator is interested in estimating the total number of “count trees” (trees larger
than a specified size) on a plantation of N = 1500 acres. This information is used to
determine the total volume of lumber for trees on the plantation. A simple random sam-
ple of n = 100 one-acre plots was selected, and each plot was examined for the number
of count trees. The sample average for the n = 100 one-acre plots was with a
sample variance of s2

= 136. Estimate the total number of count trees on the plantation.
Place a bound on the error of estimation.

4.28 Using the results of the survey described in Exercise 4.27, determine the sample size re-
quired to estimate t, the total number of trees on the plantation, with a bound on the error
of estimation of magnitude B = 1500.

4.29 A U.S. News & World Report survey of 1000 adults from the general public (April 15,
1996) showed that 81% thought TV contributed to a decline in family values. If the sam-
ple was randomly selected, what can you say about the proportion of all adults who think
TV contributes to a decline in family values? (Discuss whether the conditions for using
a confidence interval are met, give the confidence interval itself, and give an interpreta-
tion of this interval, stating clearly what is in the confidence interval.)

4.30 (Multiple choice) A survey was conducted to determine what adults prefer in cell phone
services. The results of the survey showed that 73% of the people wanted email service, with
a margin of error of plus or minus 4%. What is meant by the phrase “plus or minus 4%”?
a. They estimate that 4% of the population that was surveyed may change their minds

between the time the poll is conducted and the time the survey is published.
b. There is a 4% chance that the true percentage of adults who want email service will

not be in the confidence interval of 69–77%.
c. Only 4% of the population was surveyed.

y = 25.2

s = 0.4 secondsy = 2.1 seconds,

N2VN (pN ).
NpN
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d. It would be unlikely to get the observed sample proportion of 73% unless the actual
percentage of all adults who want email service is between 62% and 68%.

e. The probability that the sample proportion is in the confidence interval is .04.

4.31 It is known that approximately 2% of barn swallows have white feathers in places where
the plumage is normally blue or red, but approximately 14% of the barn swallows cap-
tured around Chernobyl in 1991 and 1996 had such genetic mutations. Whether the re-
searchers believe the difference can reasonably be attributed to chance or whether the
mutations are due to radioactivity depends on how many swallows were examined. That
sample size was not reported in the article. Suppose that the sample size was 500. What
should the researchers say to the press?

4.32 In March 2001 a Gallup Poll asked, “How would you rate the overall quality of the envi-
ronment in this country today—as excellent, good, only fair, or poor?” Of 1060 adults
nationwide, 46% gave a rating of excellent or good. Is this convincing evidence that
fewer than half of the nation’s adults would give a rating of excellent or good? 

4.33 In a recent national survey, 16,262 students in 151 schools completed questionnaires
about physical activity. Male students (55.5%) were significantly more likely than
female students (42.3%) to have played on sports teams run by their school during the
12 months preceding the survey. Source: National Centers for Disease Control and
Prevention, 1997 Youth Risk Behavior Surveillance System. Check the accuracy of
the statement “significantly more likely,” assuming that there were equal numbers of
male and female students in this survey and that the sample is equivalent to a simple
random sample.

4.34 What is the average body temperature under normal conditions? Is it the same for both
men and women? Medical researchers interested in this question collected data from a
large number of men and women. Random samples from that data are available via elec-
tronic Section 4.0.
a. Estimate the mean body temperature of men, with a two–standard deviation margin

of error. 
b. Is there evidence that the mean body temperature of men differs from the mean body

temperature of women? Explain in detail.

     



4.35 The accompanying table shows the manufacturer’s suggested retail price, the highway
miles per gallon, and the weight for each case in two different samples of vehicles. The
top half of the table shows a random sample of five models of family sedans (which rules
out luxury cars, sports cars, and convertibles), and the bottom half shows a random sam-
ple of five models of sports utility vehicles.

a. Estimate the difference in mean model price between family sedans and SUVs in an
approximate 95% confidence interval.

b. Estimate the difference in mean model weight between family sedans and SUVs in an
approximate 95% confidence interval.

c. Estimate the difference in mean highway miles per gallon between models of family
sedans and models of SUVs in an approximate 95% confidence interval. 

d. In which of the confidence intervals above do you have the least “confidence”?
Explain.

4.36 A survey of 811 registered voters in Florida, taken at the end of September 1994,
reported that 57% of the respondents are against legalized casino gambling in Florida.
The article reporting the survey states that the sampling error is 3.5%.
a. Is this the correct sampling error to report?
b. Can a valid statistical argument be made that “most Floridians disapproved of legal-

izing casinos in the state at that time?” Explain.
c. Proponents of the casinos say that their poll shows only a little over one-third of the

people in the state opposed casinos. What could cause this difference between the two
poll results?

4.37 The Gallup poll explains sampling error in the following way:

Statisticians over the years have developed quite specific ways of measuring the
accuracy of samples—so long as the fundamental principle of equal probability
of selection is adhered to when the sample is drawn. For example, with a sam-
ple size of 1000 national adults (derived using careful random selection proce-
dures), the results are highly likely to be accurate within a margin of error of
plus or minus three percentage points. Thus, if we find in a given poll that

MSRP Mpg Weight 
Sedans (dollars) highway (pounds)

Buick Century Custom 20,020 29 3368
Chevrolet Malibu 17,150 29 3051
Chrysler Concorde LX 22,510 28 3488
Ford Taurus LX 18,550 27 3354
Toyota Camry LE 20,415 32 3120

SUVs

Blazer 4WD LX 26,905 20 4049
Explorer AWD XLT 30,185 19 4278
Jimmy 4WD SLT 30,225 20 4170
Trooper S 4 * 4 27,920 19 4465
Grand Cherokee 4WD 35,095 20 4024

SOURCE: www.autoweb.com.
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President Clinton’s approval rating is 50%, the margin of error indicates that the
true rating is very likely to be between 53% and 47%. It is very unlikely to be
higher or lower than that.

To be more specific, the laws of probability say that if we were to conduct
the same survey 100 times, asking people in each survey to rate the job Bill
Clinton is doing as president, in 95 out of those 100 polls, we would find his
rating to be between 47% and 53%. In only five of those surveys would we
expect his rating to be higher or lower than that due to chance error.

SOURCE: www.gallop.com; “How Polls are Conducted.” Reprinted with permission of the Gallup
Organization.

Do you agree with this explanation? Can you suggest any wording changes that might
improve it? 

4.38 A spokesperson for the A. C. Nielsen Company offered the following explanation of the
statistical ideas on which the rating system is based. (D. Cody, “Polls and Pollsters,” Sky,
Oct. 1982, p. 116):

Mix together 70,000 white beans and 30,000 red beans and then scoop out a
sample of 1000. The mathematical odds are that the number of red beans will
be between 270 and 330, or 27–33% of the sample, which translated to a “rat-
ing” of 30, plus or minus 3, with a 20 to 1 assurance of statistical reliability.
The basic statistical law wouldn’t change even if the sampling came from 80 mil-
lion beans rather than 100,000.

Interpret and justify this statement in terms of the results of this chapter.

4.39 Reggie Jackson, one of the great baseball batters of modern times, was called Mr. October
by his fans because he seemed to excel in the World Series. During the regular season,
Reggie had 2584 hits in 9864 official at bats for a batting average (proportion of hits) of
0.262. During League Championship Series, he had 37 hits in 163 official at bats for a
0.227 batting average. During World Series play, he had 35 hits in 98 official at bats for
a batting average of 0.357. Do you think the nickname is justified, based on the data?
Explain your reasoning.

4.40 An auditor detects that a certain firm is regularly overstating the dollar amounts of in-
ventories because of delays in recording withdrawals. The auditor wants to estimate the
total overstated amount on 1000 listed items by obtaining exact (audited) inventory
amounts on a random sample of 15 items and comparing these exact figures with the
recorded amounts. The data for the sampled items are available in electronic Section 4.0
(all data in dollars). Estimate the total overstated amount on the 1000 types of items and
place a bound on the error of estimation. (Ignore the fpc.)

4.41 An auditor randomly samples 20 accounts receivable from the 500 accounts of a certain
firm. The auditor lists the amount of each account and checks to see whether the under-
lying documents are in compliance with stated procedures. The data are available via
electronic Section 4.0 (amounts in dollars, Y = yes, N = no).

Estimate the total accounts receivable for the 500 accounts of the firm and place a
bound on the error of estimation. Do you think that the average account receivable for
the firm exceeds $250? Why?

4.42 Refer to Exercise 4.41. From the data given on the compliance checks, estimate the pro-
portion of the firm’s accounts that fail to comply with stated procedures. Place a bound
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on the error of estimation. Do you think the proportion of accounts that complies with
stated procedures exceeds 80%? Why?

4.43 Review the scenario in Example 4.10 on the mercury content of the water in Maine lakes.
Some experts are of the opinion that the presence of a dam increases the mercury con-
tent. Is there significant evidence of this in the data provided? Explain your statistical
reasoning.

4.44 The Major League Baseball season came to an abrupt end in the middle of 1994 due to a
strike. In a poll of 600 adult Americans (Time, August 22, 1994), 29% blamed the play-
ers for this strike, 34% blamed the owners, and the rest held various other opinions. Does
evidence suggest that the true proportions who blame players and owners, respectively,
are really different?

4.45 The final polls before the presidential election of 1994 for four polling agencies showed
the following results:

All declared Clinton the winner. Were they justified in this claim?

4.46 Refer to Exercise 4.45. On the other hand, based on a survey of 773 registered voters in
Florida, another poll said the race between Clinton and Bush was “too close to call.” At
that time, 39% of those polled favored Bush, and 37% favored Clinton. Was the Florida
poll correct in its interpretation of the data?

4.47 A study to assess the attitudes of accountants toward advertising their services involved
sending questionnaires to 200 accountants selected from a list of 1400 names. A total of
82 usable questionnaires were returned. The data summary for one question is shown in
the accompanying table.

Poll Size Clinton Bush Perot Undecided

CNN 1562 44 36 14 6
Gallup 1579 43 36 15 6
Harris 1675 44 39 17 0
ABC 1369 42 37 17 4

Actual 43 38 19
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Likelihood of advertising in the future (%)

All respondents Those having advertised 
(82) in the past (46)

Virtual certainty 22 35
Very likely 4 5
Somewhat likely 19 35
About 50–50 18 15
Somewhat unlikely 6 10
Very unlikely 12 0
Absolutely not 15 0
No response 4 0

SOURCE: Traynor, K. 1984. Accounting Advertising: Perceptions, Attitudes and Behaviors, Journal of Advertising
Research, 23(6): 35–40. Copyright ©1984 by the Advertising Research Foundation.

     



Exercises 111

a. Estimate the population proportion virtually certain to advertise in the future.
b. Estimate the population proportion having at least a 50–50 chance of advertising in

the future.
c. Among those who advertised in the past, estimate the population proportion some-

what unlikely to advertise again.
d. Among those who advertised in the past, estimate the population proportion having

at least a 50–50 chance of advertising again.

Place bounds on the errors of estimation in all cases. Do parts (c) and (d) require further
assumptions over those made for parts (a) and (b)?

4.48 A marketing research firm estimates the proportion of potential customers preferring a
certain brand of lipstick by “randomly” selecting 100 women who come by their booth
in a shopping mall. Of the 100 sampled, 65 women stated a preference for brand A.
a. How would you estimate the true proportion of women preferring brand A, with a

bound on the error of estimation?
b. What is the target population in this study?
c. Did the marketing research firm select a simple random sample?
d. What additional problems do you see with this type of sampling?

4.49 A legal case is being formulated by a union of secretaries who claim that they are being
paid unfairly low wages by their employer. The 64 secretaries in the firm have an aver-
age annual salary of $18,300, with a standard deviation of $400. The average salary for
all secretaries in the city in which this firm is located is $20,100. Can you support the
claim of the secretaries by statistical arguments? If so, carefully state these arguments
and the assumptions underlying them.

4.50 The Equal Opportunity Employment Commission (EOEC) accuses a firm of violating
minority-hiring standards, because of its 120 employees only 30 are nonwhite. In the
labor market area for that firm, 36% of available employees are reported to be nonwhite.
Can you support the accusation of the EOEC on statistical grounds? State your argu-
ments for or against the accusation with careful attention to assumptions.

4.1 Data, collected by random sampling, from a class survey of introductory statistics stu-
dents is shown in the Appendix C Data Set CLASSSUR and on the accompanying disk.
Use these data to answer the following. Assume that there are 500 students in the class.
Note that the data are not “pre-massaged” for you; you’ll have to decide on suitable or-
ganization and summaries.
a. Estimate a population mean for one of the measurement variables, such as age, grade

point average (GPA), or study hours.
b. Estimate a population proportion for one of the categorical variables, such as gender,

class, or job status.
c. Compare means on one variable for at least two different groups, such as men and

women. 
d. Compare proportions on one categorical variable for at least two different groups

(i.e., class standing or location of permanent residence).

4.2 Characteristics of the U.S. population are provided in the Appendix C Data Set USPOP
and on the disk. Use these data to answer the following.

Sampling
from Real
Populations

     



a. From a random sample of five states, estimate the total number of people over the age
of 65 years in the United States in 2000. Then, turn this estimate into an estimate of
the proportion of people over the age of 65 years in 2000. Do your estimates capture
the true values?

b. From a random sample of five states estimate the proportion of people living in
poverty in the United States.

4.3 Identify a problem in your own area of interest for which you can actually draw a simple
random sample to estimate a population mean, total, or proportion. Clearly define the
population and the sampling units and construct a frame. Select a simple random sample
from the frame by using the random number table in Appendix A. Then collect the data
and make the necessary calculations.

Some suggested projects are as follows.

Business: Estimate the average gross income for firms of a certain type in your area or
the average amount spent for entertainment among college men.

Social sciences: Estimate the proportion of registered voters favoring some current polit-
ical proposal or the average number of people per household for a certain section of your
city.

Physical sciences: Consider a laboratory experiment such as measuring the tensile
strength of wire or the diameter of a machined rod. Take n independent observations on
such an experiment and treat them as a simple random sample. Construct an interval es-
timate of the “population” mean. Here the population is merely conceptual (we could
take many measurements of the phenomenon in question), and its mean represents the
average strength of wire of this type or the average diameter of the rod.

Biological sciences: Estimate the average weight of animals fed on a certain diet for a
specified time period or the average height of trees in a certain plot. As an example of
working with totals instead of means, estimate the total number of insect colonies (of a
certain type) infesting a plot. Be careful here in selecting the sampling units and con-
structing the frame.

A Sampling Activity—Random Rectangles

The goal is to choose a sample of five rectangles from which to estimate the average
area of the 100 rectangles in the display.

1. Without studying the display of rectangles too carefully, quickly choose five that
you think represent the population of rectangles on the page. This is your judg-
ment sample.

2. Find the area of each rectangle (in terms of number of grid cells) in your sample
of five and compute the sample mean, that is, the average area of the rectangles
in your sample.

3. List your sample mean with those of other students in the class. Construct a plot
of the means.
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A Sampling Activity—Random Rectangles 113

4. Describe the shape, center, and spread of this plot of sample means from the
judgment samples.

5. Now, generate five distinct random numbers between 00 and 99. (The rectangle
numbered 100 can be called 00.) Find the rectangles that correspond to your ran-
dom numbers. This is your random sample of five rectangles. 

6. Repeat steps 2–4, this time using your random sample.

7. Discuss how the two distributions of sample means are similar and how they
differ.

8. Which method of producing sample means do you think is better if the goal is to
use the sample mean to estimate the population mean? (The actual distribution of
rectangle areas is given in the accompanying table.)

Distribution of rectangle areas

Area Count

1 16
2 2
3 6
4 16
5 8
6 6
8 8
9 5

10 7
12 10
15 1
16 10
18 5
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5

Stratified Random Sampling

C A S E  S T U D Y

CAN WE ESTIMATE THE TOTAL COST OF HEALTH CARE?

An important problem of national concern involves the estimation of the cost of health
care. These costs are studied by various agencies, in both government and private
sectors, in order to establish government policies and to assess business decisions,
such as rates for insurance policies.

A method of estimating hospital costs for one disease is considered in the article
“Economic Impact of Kidney Stones in White Adult Males,” by J. Shuster and R. L.
Scheaffer (Urology 24(4), 1984). In this work, two regions of the United States, the
Carolinas and the Rocky Mountain states, were singled out for special study. A sample
of n1 = 363 kidney stone patients in the Carolinas had an average cost of $1350 for
first hospitalization; a sample of n2 = 258 kidney stone patients in the Rockies had an
average cost of $1150 for first hospitalization. Can we estimate the total annual hos-
pitalization costs for this disease for both regions combined? The methods in Chapter 5
show us how to do so if some additional information is available. The methods can
then be used to find an estimate for the entire United States if sample information is
available for other regions.

■

5.0
Tools

Interactive Excel tools for doing calculations in this chapter can be found on the CD
that accompanies this book. In the Chapter Five Tools folder, you will find a Word
file named Section 5.0 (tools). Therein links have been provided to the relevant
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computational tools for this chapter. In the text, we use an icon (pictured on the left)
as a reminder for equations for which we have built tools. Also, data for some of the
chapter exercises are available via a link in that section.

5.1
Introduction

The purpose of sample survey design is to maximize the amount of information for a
given cost. Simple random sampling, the basic sampling design, often provides good
estimates of population quantities at low cost. In this chapter we define a second
sampling procedure, stratified random sampling, which in many instances increases
the quantity of information for a given cost.

DEFINITION 5.1

A stratified random sample is one obtained by separating the population elements
into nonoverlapping groups, called strata, and then selecting a simple random sam-
ple from each stratum. ■

Suppose a public opinion poll designed to estimate the proportion of voters who
favor spending more tax revenue on an improved ambulance service is to be con-
ducted in a certain county. The county contains two cities and a rural area. The pop-
ulation elements of interest for the poll are all men and women of voting age who re-
side in the county. A stratified random sample of adults residing in the county can be
obtained by selecting a simple random sample of adults from each city and another
simple random sample of adults from the rural area. That is, the two cities and the
rural area represent three strata from which we obtain simple random samples.

In the county poll, why should we choose a stratified random sample rather than a
simple random sample? First, keep in mind that our goal in designing surveys is to max-
imize the information obtained (or to minimize the bound on the error of estimation) for
a fixed expenditure. Samples displaying small variability among the measurements will
produce small bounds on the errors of estimation. Thus, if all the adults in one city (say,
cityA) tend to think alike on the ambulance service issue, we can obtain a very accurate
estimate of the proportion in question with a relatively small sample. Similarly, if all the
adults in the second city (city B) tend to think alike on this issue, although they may dif-
fer in opinion from those in city A, then we can again obtain an accurate estimate with
a small sample. This situation may arise if city A has a hospital and hence has no great
need for improved ambulance service, whereas city B does not have a hospital and
hence has great need for an improved ambulance service. The opinions in the rural area
may be more varied, but a smaller number of adults may reside here, and enough re-
sources may be available for careful study of this area. When results of the stratified ran-
dom sample are combined, the final estimate of the proportion of voters favoring more
expenditures for an ambulance service may have a much smaller bound on the error of
estimation than would an estimate from a simple random sample of comparable size.

Second, the cost of obtaining observations varies with the design of the survey.
The cost of selecting the adults to be sampled, the cost of interviewer time and travel,
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and the cost of administering the overall sampling procedure may all be minimized
by a carefully planned stratified random sample in compact, well-defined geographic
areas. Such cost savings may allow the investigators to use a larger sample size than
they could use for a simple random sample of the same total cost.

Third, estimates of a population parameter may be desired for certain subsets of
the population. In the county poll, each city commission may want to see an estimate
of the proportion of voters favoring an expanded ambulance service for its own city.
Stratified random sampling allows for separate estimates of population parameters
within each stratum.

In summary, the principal reasons for using stratified random sampling rather
than simple random sampling are as follows:

1. Stratification may produce a smaller bound on the error of estimation than would
be produced by a simple random sample of the same size. This result is particu-
larly true if measurements within strata are homogeneous.

2. The cost per observation in the survey may be reduced by stratification of the
population elements into convenient groupings.

3. Estimates of population parameters may be desired for subgroups of the popula-
tion. These subgroups should then be identifiable strata.

These three reasons for stratification should be kept in mind when we are deciding
whether to stratify a population or deciding how to define strata. Sampling hospital pa-
tients on a certain diet to assess weight gain may be more efficient if the patients are strat-
ified by gender because men tend to weigh more than women.Apoll of college students
at a large university may be more conveniently administered and carried out if students
are stratified into on-campus and off-campus residents.Aquality control sampling plan
in a manufacturing plant may be stratified by production lines because estimates of pro-
portions of defective products may be required by the manager of each line.

Most major surveys have some degree of stratification incorporated into the design.
As examples, we look at three important groups of surveys conducted by the U.S.
Bureau of Labor Statistics.

The Consumer Price Index (CPI) is a measure of the average change in prices
for a fixed collection of goods and services for urban consumers. The CPI is actually
calculated from at least four different types of surveys: surveys of cities, surveys of
urban families, surveys of outlets providing goods and services, and surveys of spe-
cific goods and services. In the design of most CPI surveys, sampling units (counties
or groups of contiguous counties) are identified in the population and then grouped
into strata. Strata are chosen on the basis of geography, population size, rate of pop-
ulation increase, major industry, percentage nonwhite, and percentage urban. The
sampling units within a stratum are chosen to be as much alike as possible with
regard to these characteristics.

The Current Population Survey (CPS) measures aspects of employment, unem-
ployment, and people not in the labor force. It uses strata similar to those used in the
CPI surveys, except rural sampling units are used and the number of farms becomes
an important quantity for stratification.

The Establishment Survey (ES) collects data on work hours and earnings for
nonagricultural establishments in the United States. Establishments are stratified
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according to industry type and size, primarily for homogeneity of measurements but
also for provision of estimates for various types of industries. For example, informa-
tion is provided for such industrial categories as mining, construction, manufactur-
ing, transportation, and finance, insurance, and real estate.

In this chapter, stratification is always used with simple random sampling in each
stratum, as stated in Definition 5.1. However, stratification can be used with other
types of sampling within strata. We see some examples in later chapters.

5.2 
How to Draw a Stratified Random Sample 

The first step in the selection of a stratified random sample is to clearly specify the
strata, then each sampling unit of the population is placed into its appropriate stra-
tum. This step may be more difficult than it sounds. For example, suppose you plan
to stratify the sampling units—say, households—into rural and urban units. What
should be done with households in a town of 1000 inhabitants? Are these house-
holds rural or urban? They may be rural if the town is isolated in the country, or they
may be urban if the town is adjacent to a large city. Hence, to specify what is meant
by urban and rural is essential so that each sampling unit clearly falls into only one
stratum.

After the sampling units have been divided into strata, we select a simple random
sample from each stratum by using the techniques given in Chapter 4. We discuss the
problem of choosing appropriate sample sizes for the strata later in this chapter. We
must be certain that the samples selected from the strata are independent. That is,
different random sampling schemes should be used within each stratum so that the
observations chosen in one stratum do not depend on those chosen in another.

Some additional notation is required for stratified random sampling. Let

L Number of strata

Ni Number of sampling units in stratum i

N Number of sampling units in the population

The following example illustrates a situation in which stratified random sampling
may be appropriate.

EXAMPLE 5.1 An advertising firm, interested in determining how much to emphasize television
advertising in a certain county, decides to conduct a sample survey to estimate the
average number of hours each week that households within the county watch televi-
sion. The county contains two towns, A and B, and a rural area. Town A is built
around a factory, and most households contain factory workers with school-age chil-
dren. Town B is an exclusive suburb of a city in a neighboring county and contains
older residents with few children at home. There are 155 households in town A, 62 in
town B, and 93 in the rural area. Discuss the merits of using stratified random sam-
pling in this situation.

= N1 + N2 + c + NL

=

=

=
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SOLUTION The population of households falls into three natural groupings, two towns and a
rural area, according to geographic location. Thus, to use these divisions as three
strata is quite natural simply for administrative convenience in selecting the samples
and carrying out the fieldwork. In addition, each of the three groups of households
should have similar behavioral patterns among residents within the group. We expect
to see relatively small variability in number of hours of television viewing among
households within a group, and this is precisely the situation in which stratification
produces a reduction in a bound on the error of estimation.

The advertising firm may wish to produce estimates on average television-
viewing hours for each town separately. Stratified random sampling allows for these
estimates. For the stratified random sample, we have N1 155, N2 62, and N3 93,
with . ■

5.3
Estimation of a Population Mean and Total

How can we use the data from a stratified random sample to estimate the population
mean? Let i denote the sample mean for the simple random sample selected from
stratum i, ni the sample size for stratum i, the population mean for stratum i, and

the population total for stratum i. Then the population total is equal to
. We have a simple random sample within each stratum. There-

fore, we know from Chapter 4 that is an unbiased estimator of and is an
unbiased estimator of the stratum total . It seems reasonable to form an
estimator of , which is the sum of the values, by summing the estimators of the .
Similarly, because the population mean equals the population total divided by N,
an unbiased estimator of is obtained by summing the estimators of the over all
strata and then dividing by N. We denote this estimator by , where the subscript st
indicates that stratified random sampling is used. 

yst

tim
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ti = Nimi
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Á
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Estimator of the population mean μ:

(5.1)

Estimated variance of :
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As seen in Chapter 4, the bound on the error (sometime called the margin of error) as
used in this book is always two times the estimated standard deviation of the estima-
tor. The result is an approximate 95% confidence interval estimate of the parameter
in question. Thus, we will not keep writing general formulas for bounds on the error
because they can be derived easily from the estimated variance.

EXAMPLE 5.2 Suppose the survey planned in Example 5.1 is carried out. The advertising firm has
enough time and money to interview households and decides to select ran-
dom samples of size from town A, from town B, and from
the rural area. (We discuss the choice of sample sizes later.) The simple random sam-
ples are selected and the interviews conducted. The results, with measurements of
television-viewing time in hours per week, are shown in Table 5.1.

Estimate the average television-viewing time, in hours per week, for (a) all
households in the county and (b) all households in town B. In both cases, place a
bound on the error of estimation.

SOLUTION A good way to view the key features of these three samples of hours is through par-
allel box plots, as shown in Figure 5.1. The medians are decreasing as we go from
town A to town B to the rural area. Town B has the largest amount of variability in
the sample data, but there are no outliers or other unusual features to be concerned
about. ■

n3 = 12n2 = 8n1 = 20
n = 40
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TABLE 5.1
Television-viewing time, in hours per week

Town A Town B Rural

35 27 8
43 15 14
36 4 12
39 41 15
28 49 30
28 25 32
29 10 21
25 30 20
38 34
27 7
26 11
32 24
29
40
35
41
37
31
45
34

     



A numerical descriptive summary of the data is shown in Table 5.2.
(a) From Table 5.2 and Eq. (5.1),

is the best estimate of the average number of hours per week that all households in
the county spend watching television. Also,

The estimate of the population mean with an approximate 2-SD bound on the error
of estimation is given by

yst ; 22VN(yst) or 27.675 ; 221.97 or 27.7 ; 2.8

 = 1.97

 +  
(93)2(0.871)(9.36)2

12
d
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FIGURE 5.1
Box plots of television-viewing time

TABLE 5.2
Summary of the data from Table 5.1

N n Mean Median SD

Town A 155 20 33.90 34.50 5.95
Town B 62 8 25.12 26.00 15.25
Rural 93 12 19.00 17.50 9.36
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EXAMPLE 5.3 Refer to Example 5.2 and estimate the total number of hours each week that house-
holds in the county view television. Place a bound on the error of estimation.

SOLUTION For the data in Table 5.1,

The estimated variance of is given by 

The estimate of the population total with a bound on the error of estimation is given
by

Thus, we estimate the total weekly viewing time for households in the county to be
8587 hours. The error of estimation should be less than 870 hours.

Nyst ; 22VN (Nyst) Q 8587 ; 22189,278.560 Q 8587 ; 870

VN(Nyst) = N2 VN(yst) = (310)2(1.97) = 189,278.560

Nyst

Nyst = 310(27.7) = 8587 hours

Thus, we estimate the average number of hours per week that households in the
county view television to be 27.7 hours. The error of estimation should be less than
2.8 hours with a probability approximately equal to .95.

(b) The n2 = 8 observations from stratum 2 constitute a simple random sample;
hence, we can apply formulas from Chapter 4. The estimate of the average view-
ing time for town B with an approximate 2SD bound on the error of estimation is
given by

This estimate has a large bound on the error of estimation because is large and the
sample size n2 is small. Thus, the estimate of the population mean is quite good,
but the estimate of the mean of stratum 2 is poor. If an estimate is desired for a
particular stratum, the sample from that stratum must be large enough to provide a
reasonable bound on the error of estimation.

Procedures for the estimation of a population total follow directly from the pro-
cedures presented for estimating . Because is equal to N , an unbiased estimator
of is given by N .ystt
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Estimator of the population total T:

(5.3)

Estimated variance of :
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5.4 Selecting the Sample Size for Estimating Population Means and Totals 123

Because the simple random samples chosen within each stratum are independent of
one another, differences between stratum means can be estimated in a straightforward
fashion, as introduced in Chapter 4. Recall that the variance of the difference between
two independent random variables is the sum of their respective variances. ■

EXAMPLE 5.4 In the study of television-viewing time per family, the families of town A tended to
be younger and have more children than those of town B. To see if there is a signifi-
cant difference between average television-viewing time for families of these towns,
estimate the difference between their population means.

SOLUTION The basic computations necessary for this estimate are produced in the Excel tool
(see Section 5.0). There, we see that town A has a sample mean of 33.9 hours/week,
and this mean has an estimated variance of 1.5. Town B has a sample mean of 25.1
hours/week, and this mean has an estimated variance of 25.3. It follows that the esti-
mate of the difference between the population means for these two strata is given by 

■

Because this interval estimate overlaps zero, we cannot rule out the fact that there may
be no real difference between the two population means, even though town A has a
much larger sample mean. This sample difference does not show up as statistically
significant because of the large variation in the measurements from town B.

5.4
Selecting the Sample Size for Estimating Population 
Means and Totals

The amount of information in a sample depends on the sample size n, because 
decreases as n increases. We now examine a method of choosing the sample size to
obtain a fixed amount of information for estimating a population parameter. Suppose
we specify that the estimate should lie within B units of the population mean, with
probability approximately equal to .95. Symbolically, we want

or

This equation contains the actual population variance of rather than the estimated
variance. For large N, the actual variance, , looks very similar to Eq. (5.2), with

replaced by .
Although we set equal to B2�4, we cannot solve for n unless we know

something about the relationships among n1, n2, . . . , nL and n. There are many ways
of allocating a sample of size n among the various strata. In each case, however, the
number of observations ni allocated to the ith stratum is some fraction of the total
sample size n. We denote this allocation fraction by ai. Hence, we can write

(5.5)

Using Eq. (5.5), we can then set equal to B2�4 and solve for n.V(yst)

ni = nai  i = 1, 2, Á , L
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Similarly, the estimation of the population total with a bound of B units on the
error of estimation leads to the equation

or, using Eq. (5.4), 

V(yst) =

B2

4N2

22V(Nyst) = B

t
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Approximate sample size required to estimate M or T with a bound B
on the error of estimation:

(5.6)

where is the fraction of observations allocated to stratum is the
population variance for stratum i, and

 D =

B2

4N2 when estimating t

 D =

B2

4
  when estimating m

i, si
2ai

n =

a
L

i=1
Ni

2si
2/ai

N2D + a
L

i=1
Nisi

2

We must obtain approximations of the population variances  before
we can use Eq. (5.6). One method of obtaining these approximations is to use the
sample variances from a previous experiment to estimate 
A second method requires knowledge of the range of the observations within each
stratum. From Tchebysheff’s theorem and the normal distribution, the range should
be roughly 4–6 SD.

Methods of choosing the fractions a1, a2, . . . , aL are given in Section 5.5. 

EXAMPLE 5.5 A prior survey suggests that the stratum variances for Example 5.1 are approximately
and . We wish to estimate the population mean by

using . Choose the sample size to obtain a bound on the error of estimation equal to
2 hours if the allocation fractions are given by , , and In
other words, you are to take an equal number of observations from each stratum.

SOLUTION A bound on the error of 2 hours means that

or

Therefore, .D = 1

V(yst) = 122V(yst) = 2

a3 = 1>3.a2 = 1>3a1 = 1>3yst

s2
3 L 100s1

2
L 25, s2

2
L 225,

s1
2, s2

2, Á , sL
2.s1

2, s2
2, Á , sL

2

s1
2, s2

2, Á , sL
2
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In Example 5.1, , , and . Therefore, 

From Eq. (5.6), we then have 

Thus, the experimenter should take n = 57 observations with 

■

EXAMPLE 5.6 As in Example 5.5, suppose the variances of Example 5.1 are approximated by
and We wish to estimate the population total t with a

bound of 400 hours on the error of estimation. Choose the appropriate sample size if
an equal number of observations is to be taken from each stratum.

SOLUTION The bound on the error of estimation is to be 400 hours and, therefore, 

To calculate n from Eq. (5.6), we need the following quantities:

(from Example 5.5)

(from Example 5.5)

 N2D = N2a40,000

N2 b = 40,000

 a
3

i=1
Nis

2
i = 27,125

 a
3

i=1

N2
is

2
i

ai
= 6,991,275

D =

B2

4N2 =

(400)2

4N2 =

40,000

N2

s2
3 L 100.s2

1 «  25, s2
2 «  225, 

 n3 = 19

 n2 = 19

 n1 = n(a1) = 57a 1

3
b = 19

n =

a
3

i=1
N

2
is

2
i >ai

N
2
D + a

3

i=1
Nis

2
i

=

6,991,275

96,100 + 27,125
=

6,991,275

123,225
= 56.7

 N2D = (310)2(1) = 96,100

 = (155)(25) + (62)(225) + (93)(100) = 27,125

a
3

i=1
Nis

2
i = N1s

2
1 + N2s

2
2 + N3s

2
3

 = 6,991,275

 = (24,025(75) + (3844)(675) + (8649)(300)

 =

(155)2(25)

(1>3)
+

(62)2(225)

(1>3)
+

(93)2(100)

(1>3)

 a
3

i=1

N2
is

2
i

ai
=

N2
1s

2
1

a1
+

N2
2s

2
2

a2
+

N2
3s

2
3

a3

N3 = 93N2 = 62N1 = 155

     



Using Eq. (5.6) yields

Then . ■

5.5
Allocation of the Sample

Recall that the objective of a sample survey design is to provide estimators with small
variances at the lowest possible cost. After the sample size n is chosen, there are many
ways to divide n into the individual stratum sample sizes, n1, n2, . . . , nL. Each division
may result in a different variance for the sample mean. Hence, our objective is to use
an allocation that gives a specified amount of information at minimum cost.

In terms of our objective, the best allocation scheme is affected by three factors: 

1. The total number of elements in each stratum.

2. The variability of observations within each stratum.

3. The cost of obtaining an observation from each stratum.

The number of elements in each stratum affects the quantity of information in the
sample. A sample size 20 from a population of 200 elements should contain more in-
formation than a sample of 20 from 20,000 elements. Thus, large sample sizes should
be assigned to strata containing large numbers of elements.

Variability must be considered because a larger sample is needed to obtain a good
estimate of a population parameter when the observations are less homogeneous.

If the cost of obtaining an observation varies from stratum to stratum, we take
small samples from strata with high costs. We do so because our objective is to keep
the cost of sampling at a minimum.

n1 = n2 = n3 = 35

a
3

i=1
N

2
is

2
i >ai

N
2
D + a

3

i=1
Nis

2
i

=

6,991,275

40,000 + 27,125
= 104.2 or 105
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Approximate allocation that minimizes cost for a fixed value of 
or minimizes for a fixed cost:

(5.7)

where Ni denotes the size of the ith stratum, denotes the population vari-
ance for the ith stratum, and ci denotes the cost of obtaining a single obser-
vation from the ith stratum. Note that ni is directly proportional to Ni and si

and inversely proportional to .1ci

s2
i

 = n± Nisi>1ci

a

L

k=1
Nksk>1ck

≤

 ni = na Nisi>1ci

N1s1>1c1 + N2s2>1c2 +
Á

+ NLsL>1cL
b

V( yst)
V( yst)

     



We must approximate the variance of each stratum before sampling in order to
use the allocation formula (5.7). The approximations can be obtained from earlier
surveys or from knowledge of the range of the measurements within each stratum.

Substituting the ni�n given by formula (5.7) for ai in Eq. (5.6) gives 

(5.8)

for optimal allocation with the variance of fixed at D.

EXAMPLE 5.7 The advertising firm in Example 5.1 finds that obtaining an observation from a rural
household costs more than obtaining a response in town A or B. The increase is due
to the costs of traveling from one rural household to another. The cost per observa-
tion in each town is estimated to be $9 (i.e., c1 = c2 = 9), and the costs per observation
in the rural area to be $16 (i.e., c3 = 16). The stratum standard deviations (approxi-
mated by the strata sample variances from a prior survey) are and

Find the overall sample size n and the stratum sample sizes, n1, n2, and n3,
that allow the firm to estimate, at minimum cost, the average television-viewing time
with a bound on the error of estimation equal to 2 hours.

SOLUTION We have

and

Thus

Then

n1 = nP
N1s1>1c1

a
3

k=1
Nksk>1ckQ = n c 155(5)>3

800.83
d = 0.323n = 18.7 L 19

 =

(800.83)(8835)

(310)2(1) + 27,125
= 57.42 or 58

 n =

aa
3

k=1
Nksk>1ckb aa

3

i=1
Nisi1cib

N2D + a
3

i=1
Nis

2
i

 = 155(5)19 + 62(15)19 + 93(10)116 = 8835

 a
3

i=1
Nisi1ci = N1s11c1 + N2s21c2 + N3s31c3

 =

155(5)

19
+

62(15)

19
+

93(10)

116
= 800.83

 a
3

k=1

Nksk

1ck
=

N1s1

1c1
+

N2s2

1c2
+

N3s3

1c3

s3 L 10.
s1 L 5, s2 L 15,

yst

n =

aa
L

k=1
Nksk>1ckb aa

L

i=1
Nisi1cib

N2D + a
L

i=1
Nis

2
i
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Similarly,

Hence, the experimenter should select 19 households at random from town A, 22
from town B, and 17 from the rural area. He or she can then estimate the average
number of hours spent watching television at minimum cost with a bound of 2 hours
on the error of estimation. ■

In some stratified sampling problems, the cost of obtaining an observation is the
same for all strata. If the costs are unknown, we may be willing to assume that the
costs per observation are equal. If , then the cost terms cancel in
Eq. (5.7) and

(5.9)

This method of selecting nl, n2, . . . , nL is called Neyman allocation. Under Neyman
allocation, Eq. (5.8) for the total sample size n becomes

(5.10)

EXAMPLE 5.8 The advertising firm in Example 5.1 decides to use telephone interviews rather
than personal interviews because all households in the county have telephones, and
this method reduces costs. The cost of obtaining an observation is then the same
in all three strata. The stratum standard deviations are again approximated by

and . The firm desires to estimate the population mean m
with a bound on the error of estimation equal to 2 hours. Find the appropriate sample
size n and stratum sample sizes, n1, n2, and n3.

SOLUTION We now use Eqs. (5.9) and (5.10) because the costs are the same in all strata. There-
fore to find the allocation fractions, a1, a2, and a3, we use Eq. (5.9). Then

 = (155)(5) + (62)(15) + (93)(10) = 2635

 a
3

i=1
Nisi = N1s1 + N2s2 + N3s3

s3 L 10s1 L 5, s2 L 15,

n =

aa
L

k=1
Nkskb

2

N2D + a
L

i=1
Nis

2
i

ni = n£ Nisi

a
L

k=1
Nksk

≥

c1 = c2 = Á = cL

 n3 = n c 93(10)>4
800.83

d = 0.290n = 16.8 L 17

 n2 = n c 62(15)>3
800.83

d = 0.387n = 22.45 L 22
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and from Eq. (5.9)

Similarly,

Thus, , , and .
Now let us use Eq. (5.10) to find n. A bound of 2 hours on the error of estimation

means that

or

Therefore,

and

Also, from Example 5.6,

and Eq. (5.10) gives 

Then

The sample size n in Example 5.8 is nearly the same as in Example 5.7, but the allo-
cation has changed. More observations are taken from the rural area because these
observations no longer have a higher cost. ■

EXAMPLE 5.9 An experimenter wants to estimate the average weight of 90 rats (50 male and
40 female) being fed a certain diet. The rats were separated by sex; hence, using

 n3 = na3 = (57)(0.35) = 20

 n2 = na2 = (57)(0.35) = 20

 n1 = na1 = (57)(0.30) = 17

 =

(2635)2

96,100 + 27,125
= 56.34 or 57

 n =

aa
3

k=1
Nkskb

2

N2D + a
3

i=1
Nis

2
i

a
3

i=1
Nis

2
i = 27,125

N2D = (310)2(1) = 96,100D =

B2

4
= 1

V(yst) = 121V(yst) = 2

a3 = 0.35a2 = 0.35a1 = 0.30

 n3 = n c 93(10)

2635
d = n(0.35)

 n2 = n c 62(15)

2635
d = n(0.35)

n1 = n£ N1s1

a
L

k=1
Nksk

≥ = n c (155)(5)

2635
d = n(0.30)
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stratified random sampling with two strata seems appropriate. To approximate the
variability within each stratum, the experimenter selects the smallest and largest rats
in each stratum and weighs them. She finds that the range is 10 grams for the males
and 8 grams for the females. How large a sample should be taken in order to estimate
the population average with a bound of 1 gram on the error of estimation? Assume
the cost of sampling is the same for both strata.

SOLUTION Let us denote males as stratum 1 and females as stratum 2. To use Eq. (5.9), we must
first approximate and . The standard deviation should be approximately one-fourth
of the range, assuming that the weights have a bell-shaped distribution. Thus,

and

From Eq. (5.9),

where

Then

and

Thus, and .
We must calculate the following quantities in order to find n: 

Using Eq. (5.10), we have 

 =

(205)2

(90)2(0.25) + 472.50
= 16.83

 n =

aa
2

k=1
Nkskb

2

N2D + a
2

i=1
Nis

2
i

 D =

B2

4
=

(1)2

4
= 0.25

 a
2

i=1
Nis

2
i = (50)(2.5)2

+ (40)(2.0)2
= 472.5

a2 = 0.39a1 = 0.61

n2 = na 80

205
b = 0.39n

n1 = n£ N1s1

a
2

k=1
Nksk

≥ = na 125

205
b = 0.61n

a
2

i=1
Nisi = (50)(2.5) + (40)(2.0) = 125 + 80 = 205

ni = n£ Nisi

a
2

k=1
Nksk

≥

s2 L

8

4
= 2.0s1 L

10

4
= 2.5

s2s1
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The sample size n should be 17 with 

and

■

In addition to encountering equal costs, we sometimes encounter approximately
equal variances, . In that case, the cancel in Eq. (5.9) and

(5.11)

This method of assigning sample sizes to the strata is called proportional alloca-
tion because sample sizes n1, n2, . . . , nL are proportional to stratum sizes N1, N2, . . . ,
NL. Of course, proportional allocation can be, and often is, used when stratum
variances and costs are not equal. One advantage to using this allocation is that
the estimator becomes simply the sample mean for the entire sample. This feature
can be an important time-saving feature in some surveys.

Under proportional allocation, Eq. (5.6) for the value of n, which yields
, becomes 

(5.12)

EXAMPLE 5.10 The advertising firm in Example 5.1 thinks that the approximate variances used in
Examples 5.7 and 5.8 are in error and that the stratum variances are approximately
equal. The common value of si was approximated by 10 in a preliminary study. Tele-
phone interviews are to be used, and hence costs will be equal in all strata. The firm
desires to estimate the average number of hours per week that households in the
county watch television, with a bound on the error of estimation equal to 2 hours.
Find the sample size and stratum sample sizes necessary to achieve this accuracy.

SOLUTION We have

Thus, because , Eq. (5.12) gives 

n =

31,000

310(1) + (1>310)(31,000)
= 75.6 or 76

D = 1

 = 310(100) = 31,000

 = (155)(100) + (62)(100) + (93)(100)

 a
3

i=1
Nis

2
i = N1s

2
1 + N2s

2
2 + N3s

2
3

n =

a
L

i=1
Nis

2
i

ND +

1

Na
L

i=1
Nis

2
i

V(yst) = D

yst

ni = n£ Ni

a
2

k=1
Nk
≥ = naNi

N
b

sis2
1, s2

2, Á , s2
L

n2 = na2 = (17)(0.39) = 7

n1 = na1 = (17)(0.61) = 10
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Therefore,

■

These results differ from those of Example 5.8 because here the variances are
assumed to be equal in all strata and are approximated by a common value.

The amount of money to be spent on sampling is sometimes fixed before the ex-
periment is started. Then the experimenter must find a sample size and allocation
scheme that minimizes the variance of the estimator for a fixed expenditure.

EXAMPLE 5.11 In the television-viewing example, suppose the costs are as specified in Example 5.7.
That is, and . Let the stratum standard deviations be approximated
by and . Given that the advertising firm has only $500 to
spend on sampling, choose the sample size and the allocation that minimize .

SOLUTION The allocation scheme is still given by Eq. (5.7). In Example 5.7, we find 
, and .

Because the total cost must equal $500, we have 

Because , we can substitute as follows: 

Solving for n, we obtain

Therefore, we must take to ensure that the cost remains below $500. The cor-
responding allocation is given by

■ n3 = na3 = (45)(0.290) = 13.1 L 13

 n2 = na2 = (45)(0.387) = 17.4 L 17

 n1 = na1 = (45)(0.323) = 14.5 L 15

n = 45

 n =

500

11.03
= 45.33

 11.03n = 500

 9n(0.323) + 9n(0.387) + 16n(0.290) = 500

9na1 + 9na2 + 16na3 = 500

ni = nai

 9n1 + 9n2 + 16n3 = 500

 c1n1 + c2n2 + c3n3 = 500

a3 = 0.290a2 = 0.387
a1 = 0.323,

V(yst)
s3 L 10s1 L 5, s2 L 15,

c3 = 16c1 = c2 = 9

n3 = n£ N3

a
3

k=1
Nk
≥ = naN3

N
b = na 93

310
b = n(0.3) = 23

n2 = n£ N2

a
3

k=1
Nk
≥ = naN2

N
b = na 62

310
b = n(0.2) = 15

n1 = n£ N1

a
3

k=1
Nk
≥ = naN1

N
b = na 155

310
b = n(0.5) = 38

     



We can make the following summary statement about stratified random sampling:
In general, stratified random sampling with proportional allocation produces an esti-
mator with smaller variance than that produced by simple random sampling (with the
same sample size) if there is considerable variability among the stratum means. If
sampling costs are nearly equal from stratum to stratum, stratified random sampling
with optimal allocation [Eq. (5.6)] yields estimators with smaller variance than does
proportional allocation when there is variability among the stratum variances.

5.6
Estimation of a Population Proportion

In our numerical examples, we have been interested in estimating the average or the
total number of hours per week spent watching television. In contrast, suppose that the
advertising firm wants to estimate the proportion (fraction) of households that watches
a particular show. The population is divided into strata, just as before, and a simple
random sample is taken from each stratum. Interviews are then conducted to determine
the proportion of households in stratum i that view the show. This is an unbiased
estimator of pi, the population proportion in stratum i (as described in Chapter 4).
Reasoning as we did in Section 5.3, we conclude that is an unbiased estimator
of the total number of households in stratum i that view this particular show. Hence,

is a good estimator of the total number of viewing
households in the population. Dividing this quantity by N we obtain an unbiased es-
timator of the population proportion p of households viewing the show.

N1pN 1 + N2pN 2 +
Á

+ NLpN L

NipN i

pN ipN i
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Estimator of the population proportion p:

(5.13)

Estimated variance of st:

(5.14) =

1

N2a
L

i=1
N2

i a1 -

ni

Ni
b a pN iqN i

ni - 1
b

 =

1

N2a
L

i=1
N2

i VN (pN i)

 VN (pN st) =

1

N23N2
1VN (pN 1) + N2

2VN (pN 2) +
Á

+ N2
LVN (pN L)4

pN

pN st =

1

N2  (N1pN 1 + N2pN 2 +
Á

+ NLpN L) =

1

Na
L

i=1
NipN i

EXAMPLE 5.12 The advertising firm wants to estimate the proportion of households in the county of Ex-
ample 5.1 that view show X. The county is divided into three strata, townA, town B, and
the rural area. The strata contain , , and households, re-
spectively. A stratified random sample of households is chosen with propor-
tional allocation. In other words, a simple random sample is taken from each stratum;
the sizes of the samples are , , and . Interviews are conducted inn3 = 12n2 = 8n1 = 20

n = 40
N3 = 93N2 = 62N1 = 155

     



the 40 sampled households; results are shown in Table 5.3. Estimate the proportion of
households viewing show X, and place a bound on the error of estimation.

SOLUTION The estimate of the proportion of households viewing show X is given by . Using
Eq. (5.13), we calculate

The variance of can be estimated by using Eq. (5.14). First, let us calculate the
terms. We have

From Eq. (5.14)

Then the estimate of proportion of households in the county that view show X, with
a bound on the error of estimation, is given by

The bound on the error in Example 5.12 is quite large. We could reduce this bound
and make the estimator more precise by increasing the sample size. The problem of
choosing a sample size is considered in the next section. ■

pN st ; 22VN (pN st) Q 0.60 ; 210.0042 Q 0.60 ; 2(0.065) Q  0.60 ; 0.13

 = 0.0042

 =

1

(310)23(155)2(0.007) + (62)2(0.024) + (93)2(0.020)4
 VN (pN st) =

1

N2a
3

i=1
N2

i VN (pN i)

 = (0.871)(0.023) = 0.020

 VN (pN 3) = a1 -

n3

N3
b a pN 3qN 3

n3 - 1
b = a1 -

12

93
b c (0.5)(0.5)

11
d

 = (0.871)(0.027) = 0.024

 VN (pN 2) = a1 -

n2

N2
b a pN 2qN2

n2 - 1
b = a1 -

8

62
b c (0.25)(0.75)

7
d

 = (0.871)(0.008) = 0.007

 VN (pN 1) = a1 -

n1

N1
b a pN 1qN 1

n1 - 1
b = a1 -

20

155
b c (0.8)(0.2)

19
d

VN (pN i)
pN st

pN st =

1

310
 3(155)(0.80) + 62(0.25) + 93(0.50)4 = 0.60

pN st
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TABLE 5.3
Data for Example 5.12

Number of households 
Stratum Sample size ni viewing show X

1 20 16 0.80
2 8 2 0.25
3 12 6 0.50

pN i

     



5.7
Selecting the Sample Size and Allocating the Sample
to Estimate Proportions

To estimate a population proportion, we first indicate how much information we
desire by specifying the size of the bound; the sample size is chosen accordingly.
The formula for the sample size n (for a given bound B on the error of estimation) is
the same as Eq. (5.6) except that becomes piqi.s2

i
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Approximate sample size required to estimate p with a bound B on
the error of estimation:

(5.15)

where ai is the fraction of observations allocated to stratum i, pi is the
population proportion for stratum i, and . D = B2>4

n =

a
L

i=1
N2

i piqi>ai

N2D + a
L

i=1
Nipiqi

Approximate allocation that minimizes cost for a fixed value of 
or minimizes for a fixed cost:

(5.16)

where Ni denotes the size of the ith stratum, pi denotes the population
proportion for the ith stratum, and ci denotes the cost of obtaining a single
observation from the ith stratum.

 = n£ Ni2piqi>ci

a
L

k=1
Nk2pkqk>ck

≥
 n1 = na Ni2piqi>ci

N12p1q1>c1 + N22p2q2>c2 +
Á

+ NL2pLqL>cL

b

V(pN st)
V(pN st)

The allocation formula that gives the variance of equal to some fixed constant at
minimum cost is the same as Eq. (5.7) with si replaced by .1piqi

pN st

EXAMPLE 5.13 The data in Table 5.3 were obtained from a survey conducted last year. The advertis-
ing firm now wants to conduct a new survey in the same county to estimate the pro-
portion of households viewing show X. Although the fractions pl, p2, and p3 that appear
in Eqs. (5.15) and (5.16) are unknown, they can be approximated by the estimates
from the earlier study—that is, , , and . The cost ofpN 3 = 0.50pN 2 = 0.25pN 1 = 0.80

     



obtaining an observation is $9 for either town and $16 for the rural area—that is,
and . The number of households within the strata are 

, and . The firm wants to estimate the population proportion p with
a bound on the error of estimation equal to 0.1. Find the sample size n and the strata
sample sizes, n1, n2, and n3, that will give the desired bound at minimum cost.

SOLUTION We first use Eq. (5.16) to find the allocation fractions ai. Using to approximate pi,
we have

and

Similarly,

Thus, , , and .
The next step is to use Eq. (5.15) to find n. First, the following quantities must be

calculated:

 = 59.675

 = (155)(0.8)(0.2) + (62)(0.25)(0.75) + (93)(0.5)(0.5)

 a
3

i=1
NipN iqN i = N1pN 1qN 1 + N2pN 2qN2 + N3pN 3qN 3

 = 18,686.46

 =

(155)2(0.8)(0.2)

0.501
+

(62)2(0.25)(0.75)

0.216
+

(93)2(0.5)(0.5)

0.282

 a
3

i=1

N2
i pN iqN i

ai
=

N2
1pN 1qN 1

a1
+

N2
2pN 2qN2

a2
+

N2
3pN 3qN 3

a3

a3 = 0.282a2 = 0.216a1 = .501

 n3 = na 11.625

41.241
b = n(0.282)

 n2 = na 8.949

41.241
b = n(0.216)

n1 = n£ N12pN 1qN 1>c1

a
3

k=1
Nk2pN kqNk>ck

≥ = na20.667

41.241
b = n(0.501)

 = 20.667 + 8.949 + 11.625 = 41.241

 =

62.000

3
+

26.846

3
+

46.500

4

 = 155
B

(0.8)(0.2)

9
+ 62

B

(0.25)(0.75)

9
+ 93

B

(0.5)(0.5)

16

 a
3

i=1
NiB

pN iqN i

ci
= N1B

pN 1qN 1

c1
+ N2B

pN 2qN2

c2
+ N3B

pN 3qN 3

c3

pN i

N3 = 93N2 = 62
N1 = 155,c3 = 16c1 = c2 = 9
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To find D, we let (the bound on the error of estimation). Then 

and

Finally, from Eq. (5.15), n is given approximately by 

Hence,

A minor point of interest is that the three unrounded values add to 63, but the usual
rounding rules lead to a total sample size of 64. ■

EXAMPLE 5.14 Recalling that town A has more families with children than town B, the firm wants to
see if there is a significant difference between the proportions of families watching
show X. Estimate the true difference between these proportions.

SOLUTION The Excel tool shows the computations of sample proportions and variances for each
stratum, as does the solution to Example 5.12. Thus, the estimate of the difference
becomes

It does, indeed, look like the proportion of families watching the show in question is
larger for town A than it is for town B. ■

If the cost of sampling does not vary from stratum to stratum, then the cost fac-
tors ci cancel from Eq. (5.16).

EXAMPLE 5.15 Suppose that in Example 5.13 telephone interviews are to be conducted, and hence,
the cost of sampling is the same in all strata. The fraction pi is approximated by ,

. We desire to estimate the population proportion p with a bound of 0.1 on
the error of estimation. Find the appropriate sample size to achieve this bound at
minimum cost.

i = 1, 2, 3
pN i

(0.80 - 0.25) ; 210.007 + 0.023 or 0.55 ; 0.35

 n3 = na3 = (63)(0.282) = 17.76 L 18

 n2 = na2 = (63)(0.216) = 13.67 L 14

 n1 = na1 = (63)(0.501) = 31.6 L 32

n =

a
3

i=1
N2

i pN iqN i>ai

N2D + a
3

i=1
NipN iqN i

=

18,686.46

240.25 + 59.675
= 62.3 or 63

N2D = (310)2(0.0025) = 240.25

V(pN st) =

(0.1)2

4
= 0.0025 = D

22V(pN st) = 0.1
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SOLUTION Equation (5.16) is used to find the fractions al, a2, and a3, but now all ci terms can be
replaced by 1. Hence,

and

Similarly,

Thus, , , and . ■

Equation (5.15) or (5.10) with can be used to find n. From Example 5.13,

and Eq. (5.10) gives

Hence, we take a sample of 62 observations to estimate p with a bound on the error
of magnitude . The corresponding allocation is given by

These answers are close to those of Example 5.13. The changes in allocation result
because costs do not vary in Example 5.15.

Recall that the allocation formula (5.7) assumes a very simple form when the
variances as well as costs are equal for all strata. Equation (5.16) simplifies in the

 n3 = na3 = 62(0.344) = 21.3 L 21

 n2 = na2 = 62(0.198) = 12.3 L 12

 n1 = na1 = 62(0.458) = 28.4 L 28

B = 0.1

n =

aa
3

i=1
Ni2pN iqN ib

2

N2D + a
3

i=1
NipN iqN i

=

(135.346)2

240.25 + 59.675
= 61.08 or 62

 N2D = 240.25

 a
3

i=1
NipN iqN i = 59.675

si = 1piqi

a3 = 0.344a2 = 0.198a1 = 0.458

 n3 = na 46.500

135.346
b = n(0.344)

 n2 = na 26.846

135.346
b = n(0.198)

n1 = n£ N12pN 1qN 1

a
3

k=1
Nk2pN kqNk

≥ = na 62.000

135.346
b = n(0.458)

 = 62.000 + 26.846 + 46.500 = 135.346

 a
3

i=1
Ni2pN iqN i = 1551(0.8)(0.2) + 621(0.25)(0.75) + 931(0.5)(0.5)
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same way, provided all stratum proportions pi are equal and all costs ci are equal.
Then Eq. (5.16) becomes

(5.17)

As previously noted, this method for assignment of sample sizes to the strata is called
proportional allocation.

EXAMPLE 5.16 In the television survey in Example 5.13, the advertising firm plans to use telephone
interviews; therefore, the cost of sampling will not vary from stratum to stratum.
The stratum sizes are , , and . The results of last year’s
survey (see Table 5.3) do not appear to hold for this year. The firm believes that the
proportion of households viewing show X is close to 0.4 in each of the three strata.
The firm desires to estimate the population proportion p with a bound of 0.1 on the
error of estimation. Find the sample size n and the allocation that gives this bound
at minimum cost.

SOLUTION The allocation fractions are found by using Eq. (5.16) with pl, . . . , pL and cl, . . . , cL

replaced by 1. Thus,

or

The sample size n is found from Eq. (5.15) using 0.4 as an approximation to p1, p2, and
p3, or it can be found by setting in Eq. (5.12). Using the latter approach,
with , yields

 ND = (310)(0.0025) = 0.775

 = 74.4

 a
3

i=1
Nipiqi = 155(0.4)(0.6) + 62(0.4)(0.6) + 93(0.4)(0.6)

pi = 0.4
s2

i = piqi

a1 = 0.5,  a2 = 0.2,  a3 = 0.3

 n3 = naN3

N
b = na 93

310
b = n(0.30)

 n2 = n£ N2

a
3

k=1
Nk
≥ = naN2

N
b = na 62

310
b = n(0.20)

 n1 = n£ N1

a
3

k=1
Nk
≥ = naN1

N
b = na 155

310
b = n(0.50)

N3 = 93N2 = 62N1 = 155

ni = naNi

N
b  i = 1, 2, Á , L
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and

Then

5.8
Additional Comments on Stratified Sampling

Stratified random sampling does not always produce an estimator with a smaller
variance than that of the corresponding estimator in simple random sampling. The
following example illustrates this point.

EXAMPLE 5.17 A wholesale food distributor in a large city wants to know whether demand is great
enough to justify adding a new product to his stock. To aid in making his decision, he
plans to add this product to a sample of the stores he services in order to estimate aver-
age monthly sales. He only services four large chains in the city. Hence, for adminis-
trative convenience, he decides to use stratified random sampling with each chain as a
stratum. There are 24 stores in stratum 1, 36 in stratum 2, 30 in stratum 3, and 30 in
stratum 4. Thus, N1 = 24, N2 = 36, N3 = 30, N4 = 30, and N = 120. The distributor has
enough time and money to obtain data on monthly sales in n = 20 stores. Because he
has no prior information on the stratum variances, and because the cost of sampling is
the same in each stratum, he decides to use proportional allocation, which gives

Similarly,

 n4 = 5

 n3 = 20a 30

120
b = 5

 n2 = 20a 36

120
b = 6

n1 = naN1

N
b = 20a 24

120
b = 4

 n3 = na3 = 74(0.3) = 22.2 L 22

 n2 = na2 = 74(0.2) = 14.8 L 15

 n1 = na1 = 74(0.5) = 37

 =

74.4

0.775 + (1>310)(74.4)
= 73.3 or 74

 n =

a
L

i=1
Nipiqi

ND +

1

Na
L

i=1
Nipiqi
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The new product is introduced in four stores chosen at random from chain 1, six
stores from chain 2, and five stores each from chains 3 and 4. The sales figures after
a month show the results given in the accompanying table. Estimate the average sales
for the month, and place a bound on the error of estimation.
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Stratum 1 Stratum 2 Stratum 3 Stratum 4

94 91 108 92
90 99 96 110

102 93 100 94
110 105 93 91

111 93 113
101

 s2
4 = 112.50 s2

3 = 39.50 s2
2 = 55.60 s2

1 = 78.67

 yN4 = 100 yN3 = 98 yN2 = 100 yN1 = 99

SOLUTION From Eq. (5.1) 

Note that the estimate of the population mean is the average of all sample obser-
vations when proportional allocation is used.

The estimated variance of , from Eq. (5.2), is 

where for this example

i 1, 2, 3, 4

Then

and the estimate of average monthly sales with a bound on the error of estimation is 

Suppose the distributor had decided to take a simple random sample of n = 20
stores and the same 20 stores as in Example 5.17 were selected. In other words, sup-
pose the 20 stores constitute a simple random sample rather than a stratified random
sample. Then the estimator of the population mean has the same value as that calcu-
lated in Example 5.17, that is,

y = yst = 99.3

yst ; 22VN (yst) or 99.3 ; 212.93 or 99.3 ; 3.4

 = 2.93

 + (30)2 a 39.50

5
b + (30)2 a112.50

5
b d

 VN (yst) =

1

(120)2 a5

6
b c(24)2a78.67

4
b + (36)2a55.60

6
b

=a1 -

ni

Ni
b =

5

6

VN (yst) =

1

N2a
4

i=1
N2

i a1 -

ni

Ni
b a s2

i

ni
b

yst

yst

yst =

1

Na
4

i=1
Niyi = 99.3

     



but the estimated variance becomes

■

We see that the estimated variance is smaller for simple random sampling. Thus,
we conclude that simple random sampling may have been better than stratified ran-
dom sampling for this problem. The experimenter did not consider the fact that sales
vary greatly among stores within a chain when he stratified on chains. He could have
obtained a smaller variance for his estimator by stratifying on amount of sales, that
is, by putting stores with low monthly sales in one stratum, stores with high sales in
another, and so forth.

In many sample survey problems, more than one measurement is taken on each
sampling unit in order to estimate more than one population parameter. This situation
causes complications in selecting the appropriate sample size and allocation, as
illustrated in the following example.

EXAMPLE 5.18 A state forest service is conducting a study of the people who use state-operated camp-
ing facilities. The state has two camping areas, one located in the mountains and one
located along the coast. The forest service wishes to estimate the average number of
people per campsite and the proportion of campsites occupied by out-of-state campers
during a particular weekend when all sites are expected to be used. The average num-
ber of people is to be estimated with a bound of 1 on the error of estimation, and the
proportion of out-of-state users is to be estimated with a bound of 0.1. The two camp-
ing areas conveniently form two strata, the mountain location forming stratum 1 and
the coastal location stratum 2. It is known that N1 = 120 campsites and N2 = 80 camp-
sites. Find the sample size and allocation necessary to achieve both of the bounds.

SOLUTION Assuming that the costs of sampling are the same in each stratum, we can achieve the
smallest sample size by using Neyman allocation. However, this allocation depends
on the stratum variances and gives different allocations for the two different types of
measurements involved in the problem. Instead, we use proportional allocation
because it is usually close to optimum and it gives the same allocation for any desired
measurement. Thus,

Now the sample size must be determined separately for each of the desired estimates.
First, consider estimating the average number of people per campsite. We must have
an approximation of the stratum variances in order to use Eq. (5.6) for the sample
size. The forest service knows from experience that most sites contain from 1 to 9
people. Therefore, we can use the approximation

i = 1, 2si L

9 - 1

4
= 2

a2 =

N2

N
=

80

200
= 0.4

a1 =

N1

N
=

120

200
= 0.6

VN (y) = a1 -

n

N
b a s2

n
b = a 5

6
b a 59.8

20
b = 2.49
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Hence,

From Eq. (5.6),

is the required sample size. For small sample sizes, calculations that use our bound
on the error and those that are based on a margin of error for a 95% confidence in-
terval using the t-distribution will differ. This is one such case: the tool will yield
n = 17 for this example.

Now let us consider estimating the proportion of out-of-state users. No prior es-
timates of the stratum proportions pi are available, so we let to obtain
a maximum sample size. We use Eq. (5.15) to find n, and hence, we must find

From Eq. (5.15), 

Thus,

are the sample sizes required in order to achieve both bounds. Note that these sample
sizes give an estimate of the average number of people per campsite with a much
smaller bound than required. ■

n2 = na2 = (67)(0.4) = 27

n1 = na1 = (67)(0.6) = 40

n =

a
2

i=1
N2

i piqi>ai

N2D + a
2

i=1
Nipiqi

=

10,000

100 + 50
= 67

 a
2

i=1
Nipiqi = (120)(0.5)(0.5) +  (80)(0.5)(0.5) =  50

 N2D = N2aB2

4
b = (200)2a0.01

4
b = 100

 a
2

i=1

N2
i piqi

ai
=

(120)2(0.5)(0.5)

0.6
+

(80)2(0.5)(0.5)

0.4
= 10,000

p1 = p2 = 0.5

n =

a
2

i=1
N2

is
2
i >ai

N2D + a
2

i=1
Nis

2
i

=

160,000

10,000 + 800
= 14.8 or 15

 N2D = N2aB2

4
b = (200)2a 1

4
b = 10,000

 a
2

i=1
Nis

2
i = (120)(4) + (80)(4) = 800

 a
2

i=1

N2
is

2
i

ai
=

(120)2(4)

0.6
+

(80)2(4)

0.4
= 160,000
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5.9 
An Optimal Rule for Choosing Strata

If our only objective of stratification is to produce estimators with small variance,
then the best criterion by which to define strata is the set of values that the response
can take on. For example, suppose we wish to estimate the average income per
household in a community. We could estimate this average quite accurately if we
could put all low-income households in one stratum and all high-income households
in another before actually sampling. Of course, this allocation is often impossible
because detailed knowledge of incomes before sampling might make the statistical
problem unnecessary in the first place. However, we sometimes have some relating
frequency data on broad categories of the variable of interest or on some highly cor-
related variable. In these cases, the “cumulative square root of the frequency method”
works well for delineating strata. Rather than attempting to explain this method in
theory, here we simply show how it works in practice. Generally, we do not choose
more than five or six strata when using this method.

EXAMPLE 5.19 An investigator wishes to estimate the average yearly sales for 56 firms, using a sam-
ple of n = 15 firms. Frequency data on these firms is available in the form of classifi-
cation by $50,000 increments and appears in the accompanying table. How can we
best allocate the firms to L = 3 strata?

SOLUTION Note that we have added two columns to the frequency data for the population,
namely, the square root of the frequencies and the cumulative square root. The
approximately optimal method for stratification is to mark off equal intervals on the
cumulative square root scale. (Note: On this scale 7.06 is 3.32 + 3.74, and so on.)
Thus, (20.27)�3 = 6.76, and our stratum boundaries should be as close as possible to
6.76 and 2(6.76) = 13.52.

On the actual scale, 7.06 is closest to 6.76, and 14.30 is closest to 13.52. Thus, the
following three strata result:

Stratum 1: Firms with scales from 100,000 to 200,000 

Stratum 2: Firms with scales from 200,001 to 350,000 

Stratum 3: Firms with scales from 350,001 to 500,000 

144 Chapter 5 Stratified Random Sampling

Income Cumulative
(thousands) Frequency

100–150 11 3.32 3.32
150–200 14 3.74 7.06
200–250 9 3.00 10.06
250–300 4 2.00 12.06
300–350 5 2.24 14.30
350–400 8 2.83 17.13
400–450 3 1.73 18.86
450–500 2 1.41 20.27____

56

1Frequency1Frequency

     



Assuming that firms in these strata can be identified before sampling, the sample of
n = 15 can be allocated five to each stratum. (Equal stratum sample sizes are nearly
optimal with this technique.) ■

5.10
Stratification after Selection of the Sample

Occasionally, sampling problems arise in which we would like to stratify on a key
variable, but we cannot place the sampling units into their correct strata until after the
sample has been selected. For example, we may wish to stratify a public opinion poll
by the gender of the respondent. If the poll is conducted by sampling telephone num-
bers, then respondents cannot be placed into the male or female stratum until after they
have been contacted. Similarly, an auditor may want to stratify accounts according to
whether they are wholesale or retail, but she may not have this information until after
an account has actually been pulled for the sample.

Suppose a simple random sample of n people is selected for a poll. The sample can
be divided into nl men and n2 women after the sample has been interviewed. Then in-
stead of using to estimate m, we can use provided that Ni�N is known for both men
and women. Note that in this situation nl and n2 are random because they can change
from sample to sample even though n is fixed. Thus, this sample is not exactly a strati-
fied random sample according to Definition 5.1. However, if Ni�N is known and if

for each stratum, then this method of stratification after selection of the sample
is nearly as accurate as stratified random sampling with proportional allocation.

Stratification after the selection of a sample (or poststratification) is often appro-
priate when a simple random sample is not properly balanced according to major
groupings of the population. Suppose, for example, that a simple random sample of
n = 100 people is selected from a population that should be equally divided between
men and women. The sample measurement of interest is the weight of the respon-
dent, and the goal is to estimate the average weight of people in the population. The
sample gives the information in the following table:

ni Ú 20

ysty
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Men Women

n1 = 20 n2 = 80
= 180 pounds = 110 pounds

= 124y
y2y1

With men underrepresented in the sample, the estimate seems unduly low.
We can adjust this estimate by calculating

This estimate seems to be more realistic because men and women are now equally
weighted. Note that Ni�N is known, to a good degree of approximation, even though
neither Nl nor N2 is given.

yst = aN1

N
b  y1 + aN2

N
b  y2 = 0.5(180) + 0.5(110) = 145

y = 124

     



The poststratification estimator does not have the same variance as the strati-
fied sampling mean of Section 5.3 because the stratification was not designed into the
sampling plan. However, an approximate variance can be worked out along the fol-
lowing lines.

To simplify the writing, we let Ni�N = Ai , i = 1, . . . , L. In poststratification, the
ni are random variables with

Thus, the poststratification estimator should behave something like a stratified sampling
estimator under proportional allocation. We will see that this is indeed the case.

If the ni is fixed, Eq. (5.2) gives 

(5.18)

Note, however, that the ni are random. In this situation, a general expression for
can be approximated by replacing 1�ni by its expected value. Unfortunately, it

is difficult to find the expected value of the reciprocal of a random variable, but a
good approximation here is given by

(5.19)

The substitution of the expression in (5.19) for (1�ni) in Eq. (5.18) yields

(5.20)

where the subscript p refers to poststratification. The first term in is the vari-
ance we would have obtained for from a stratified sample mean under proportional al-
location. The second term is always nonnegative and shows the amount of increase in
variance we can expect from post- rather than prestratification. Note that the divisor of
the increase term is n2 and consequently that term is usually quite small.

To summarize, the approximation (5.19) only works well when n is large and ni

is guaranteed to be positive. Also, the increase in variance is small when n is large.
Thus, poststratification produces good results only when n is large and all ni terms are
relatively large as well. A practical consequence of this is that we cannot poststratify
too finely. For example, we could poststratify a sample of people into age groups, but
we may be forced to stick with only two or three such age groups, not eight or ten. ■

EXAMPLE 5.20 A large firm knows that 40% of its accounts receivable are wholesale and 60% are
retail. However, to identify individual accounts without pulling a file and looking at
it is difficult. An auditor wishes to sample n = 100 of these accounts in order to
estimate the average amount of accounts receivable for the firm. A simple random
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sample turns out to contain 70% wholesale accounts and 30% retail accounts. (Note:
these results are quite unlikely given the true proportions of 40% and 60%; we are
dramatizing for sake of illustration.) The data are separated into wholesale and retail
accounts after sampling, with the following results (in dollars): 

Estimate m, the average amount of accounts receivable for the firm and place a bound
on the error of estimation.

SOLUTION Because the observed proportion of wholesale accounts (0.7) is far from the true pop-
ulation proportion (0.4), stratifying after a simple random sample is selected seems
appropriate. This procedure is justified because n1 and n2 both exceed 20.

Now

and ignoring the finite population correction, we have from Eq. (5.20):

and

Hence, we are quite confident that the interval $346–$406 contains the true value of
m. In the expression for , the first term is what we would have obtained if we
had stratified in advance of sampling (and obtained these sample results). The second
term is the penalty we pay for not stratifying in advance.

The general formula for the estimated variance of [see Eq. (5.2)] could be used
as an approximation in the poststratified situation as well. Applying that calculation
to the data given here yields a margin of error of around 28 rather than 30. This does
not demonstrate that the general formula provides better results; both of these vari-
ance estimates are approximations. ■

Sometimes, poststratification is used to adjust for nonresponse. For example, if
many nonrespondents to a simple random sample were men, then the sample propor-
tion of men would be low, and an adjusted estimate could be produced by stratification
after sampling. This idea is discussed further in Chapter 11 in the section on
adjustments for nonresponse. 

yst

VN p(yst)

22VN p(yst) = 30

 = 227.97

 = 225 + 2.97

 =

1

100
30.4(210)2

+ 0.6(90)24 +

1

(100)230.6(210)2
+ 0.4(90)24

 VN p(yst) =
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i=1
Ais

2
i +

1

n2a
2

i=1
(1 - Ai)s

2
i

yst = aN1

N
by1 + aN2

N
by2 = (0.4)(520) + (0.6)(280) = 376 
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Wholesale Retail

s2 = 90s1 = 210
y2 = 280y1 = 520
n2 = 30n1 = 70

     



5.11 
Double Sampling for Stratification

Up to this point, it has been assumed that are known con-
stants before sampling begins. A little thought will suggest that this often is not the
case, even though stratified sampling seems to be appropriate. For example, we may
want to stratify a population of voters according to gender, income level, or educa-
tion level, but information to perform the stratification is not available from voter reg-
istration rolls. We may want to stratify automobiles into classes of miles driven (for
purposes of obtaining detailed information on owner satisfaction), but we will not be
able to do that until we talk to the owners.

The basic idea of double sampling (two-phase sampling) is rather simple, but it
does complicate the estimation of variances. Suppose that preliminary information
(such as the gender of a voter or mileage of a car) on which to base stratification is
easy to obtain, whereas detailed information on the variables under study (such as
opinions on political issues or on the quality of a car) is not. We then can take a large
sample for identifying strata and a much smaller sample for collecting detailed data.
We could, for example, call many voters to identify gender or income level (phase
1 sample), and only a few could be interviewed (phase 2 sample) for purposes of
completing a detailed questionnaire.

Suppose the phase 1 sample, of size n�, is used to determine which elements fall
into the various strata. Let

(5.21)

denote the proportion of the first sampling falling into stratum i. Then is an unbi-
ased estimator of Ai, assuming randomness of the phase 1 sample.

At the second phase of sampling, ni elements are randomly sampled from the 
elements identified as belonging to stratum i. Measurements are obtained from these
ni elements, and and si can be calculated for each stratum. Following Eq. (5.1), we
can then make up an estimator of the population mean m as

(5.22)

If the phase 2 sampling fractions for each stratum, ni�Ni, are all small and N is large,
an approximate variance for is given by

(5.23)

If n� is so large that is negligible, this variance estimate reduces to 

(5.24)

Ignoring finite population correction terms, the first part of Eq. (5.24) looks like (5.2),
with replacing Ni�N. The second part is the additional component of variance thata¿i
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comes about because we did not know the correct population allocations Ai and had to
estimate them from a sample. Note that we do not necessarily want to make the sec-
ond term small, because that would necessitate making the � values about equal. Re-
call that stratification pays dividends over simple random sampling when the are
quite different. Thus, choosing strata that produce different still may be better than
simple random sampling, even though double sampling might have to be employed to
estimate the Ai.

We illustrate the computations in the following example.

EXAMPLE 5.21 From a list of enrollments and faculty sizes for American four-year colleges and
universities, it is desired to estimate the average enrollment (for the 1986–1987 ac-
ademic year). Private institutions tend to be smaller than public ones, so stratifica-
tion is in order. However, the list is not broken up this way, even though the data are
coded to indicate the type of college or university. Thus, the type of college (public
or private) can be obtained quickly, whereas the enrollment data are more cumber-
some to handle.

A one-in-ten systematic sample was done to obtain information on type of
college.

This resulted in the following: 

yi

yi

yi
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Private Public Total

n¿ = 141n¿2 = 57n¿1 = 84

Subsamples of 11 private and 12 public colleges gave the following data on enroll-
ments and faculty size. (The faculty data will be used later.) Estimate the average
enrollment for American colleges and universities in 1986–1987.

Private, n1 11 Public, n2 = 12

Enrollment Faculty Enrollment Faculty

1618 122 7332 452
1140 88 2356 131
1000 65 21,879 996
1225 55 935 50
791 79 1293 106

1600 79 5894 326
746 40 8500 506

1701 75 6491 371
701 32 781 108

6918 428 7255 298
1050 110 2136 128

5380 280

SOURCE: The World Almanac & Books of Facts, 1988. Copyright © 1987, Newspaper Enterprise
Association, Inc., New York, pp. 234–250.

=

     



SOLUTION From the data given here, 

Using Eq. (5.24),

and

The second part of the variance (the one due to estimating the true stratum
weights) may look large, but it constitutes only 5% of the final variance. The result-
ing estimate of the standard deviation of is still quite large due to the small sample
sizes and large variation among college enrollments, but it is much smaller than the
error associated with a single random sample of 23 colleges from the list. ■

5.12 
Summary

A stratified random sample is obtained by separating the population elements into
groups, or strata, such that each element belongs to one and only one stratum, and then
independently selecting a simple random sample from each stratum. This sample sur-
vey design has three major advantages over simple random sampling. First, the variance
of the estimator of the population mean is usually reduced because the variance of ob-
servations within each stratum is usually smaller than the overall population variance.
Second, the cost of collecting and analyzing the data is often reduced by the separation
of a large population into smaller strata.Third, separate estimates can be obtained for in-
dividual strata without selecting another sample and, hence, without additional cost.

An unbiased estimator, , of the population mean is a weighted average of
the sample means for the strata; it is given by Eq. (5.1). An unbiased estimator of the
variance of is given by Eq. (5.2); this estimator is used in placing bounds on the
error of estimation. An unbiased estimator of the population total is also given, along
with its estimated variance.
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Before conducting a survey, experimenters should consider how large an error of
estimation they will tolerate and then should select the sample size accordingly. The
sample size n is given by Eq. (5.6) for a fixed bound B on the error of estimation.

The sample must then be allocated among the various strata. The allocation that
gives a fixed amount of information at minimum cost is given by Eq. (5.7); it is affected
by the stratum sizes, the stratum variances, and the costs of obtaining observations.

The estimator, , of a population proportion has the form as and is given by
Eq. (5.13). An unbiased estimator of is given by Eq. (5.14). The related allo-
cation and sample size problems have the same solutions as before, except that s2 is
replaced by piqi.

C A S E  S T U D Y R E V I S I T E D

CAN WE ESTIMATE THE TOTAL COST OF HEALTH CARE?

In the problem of estimating total first hospitalization costs for kidney stone patients,
the Carolinas and the Rockies were selected as strata because they have very dif-
ferent incident rates for the disease, and information was desired for each region
separately. Also, this stratification into geographic regions simplified the sampling
procedures.

The sample data are summarized as follows:

V(pN st)
ystpN st
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Carolinas Rockies

n1 = 363 n2 = 258

s2
2

n2
= 3600

s2
1

n1
= 3600

y2 = 1150y1 = 1350

To estimate the total annual cost for the regions, we must first find N1 and N2, the
numbers of kidney stone patients expected to be found in the respective regions in a
typical year. We can approximate these figures if we can find the incident rates for the
disease and if we know the total population of the regions.

A companion study showed the number of kidney stone incidents in the Carolinas
to be 454 out of 100,000 population and the number in the Rockies to be 263 out of
100,000. The population of the Carolinas is 8,993,000, and the population of the
Rocky Mountain states is 7,351,000, according to the 1980 census. Thus,

and

N2 = 7,351,000a 263
100,000

b = 19,333

N1 = 8,993,000a 454
100,000

b = 40,828

     



We can now estimate the total annual first hospitalization cost for kidney stone
patients in the two regions combined as

The bound on the error of estimation is (because population sizes are large compared
with sample sizes)

Thus, we estimate the total annual cost for the two regions to be between, roughly,
$72 million and $82 million.

This method can be used to estimate the total cost for the entire United States, but
sample data would be required for the remaining geographic regions.

■

Exercises Some of the exercises are relatively data-intensive; look in the electronic section 5.0 for links
to those data in Excel files.

5.1 A chain of department stores is interested in estimating the proportion of accounts
receivable that are delinquent. The chain consists of four stores. To reduce the cost of
sampling, stratified random sampling is used, with each store as a stratum. Because no
information on population proportions is available before sampling, proportional alloca-
tion is used. From the accompanying table, estimate p, the proportion of delinquent
accounts for the chain, and place a bound on the error of estimation.

 = 5,420,880

 2A
N 2

1(s2
1)

n1
+

N2
2(s2

2)

n2
= 22(40,828)2(3600) + (19,333)2(3600)

N1y1 + N2y2 = (40,828)(1350) + (19,333)(1150) = 77,350,750
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Stratum Stratum Stratum Stratum
I II III IV

Number of 
accounts receivable

Sample size
Sample number of 4 2 8 1

delinquent accounts 

n4 = 6n3 = 21n2 = 9n1 = 14

N4 = 25N3 = 93N2 = 42N1 = 65

5.2 A corporation desires to estimate the total number of worker-hours lost, for a given
month, because of accidents among all employees. Because laborers, technicians, and
administrators have different accident rates, the researcher decides to use stratified ran-
dom sampling, with each group forming a separate stratum. Data from previous years
suggest the variances shown in the accompanying table for the number of worker-hours
lost per employee in the three groups, and current data give the stratum sizes. Determine
the Neyman allocation for a sample of n = 30 employees.

I II III
(laborers) (technicians) (administrators)

N3 = 27N2 = 92N1 = 132
s2

3 = 9s2
2 = 25s2

1 = 36

     



5.3 For Exercise 5.2, estimate the total number of worker-hours lost during the given month
and place a bound on the error of estimation. Use the data (available via a link from elec-
tronic Section 5.0), obtained from sampling 18 laborers, 10 technicians, and 2 adminis-
trators. Make a plot of the data to check for unusual features.

5.4 A report from the Census Bureau in October 1994 provided data on new one-family
houses for a sample of 28 metropolitan statistical areas (MSAs) and consolidated met-
ropolitan statistical areas (CMSAs) from around the country. (CMSAs tend to be larger
than MSAs and can be subdivided into other metropolitan areas for purposes of census
data summaries.) Data on total housing units sold, median sales price, and median
floor area per house are available via a link from electronic Section 5.0. The median
sales price can be thought of as a typical price for that area. Similarly, the median floor
area can be thought of as a typical floor area for houses in that area. There were
250 MSAs and 18 CMSAs in the United States for the year in which these data were
reported.
a. Plot the sales prices in parallel box plots, one for MSAs and one for CMSAs, and

comment on any unusual features you see. Do you see any reason to make adjust-
ments to the data before proceeding to estimate the mean typical selling price for the
country?

b. Treating these data as a stratified random sample, with the MSAs and CMSAs being
the two strata, estimate the mean typical sales price per house for all metropolitan
areas of the United States. Calculate a bound for the error of estimation.

c. Plot the total number of units sold in parallel box plots, one for each stratum. Do you
see any unusual features here?

d. Estimate the total number of houses sold in all metropolitan areas of the United States
in 1993 and calculate a bound for the error of estimation.

e. Suppose you are to estimate the population mean or total for each of the three vari-
ables in the data set. For which of the three outcome variables—total units sold, price,
or square footage—will stratification produce the least gain in precision over simple
random sampling? Explain.

f. Estimate the difference in average typical selling price between the two strata. Can
we say that houses in the CMSAs are, on the average, higher priced than those in the
MSAs?

5.5 A corporation wishes to obtain information on the effectiveness of a business machine.
A number of division heads will be interviewed by telephone and asked to rate the equip-
ment on a numerical scale. The divisions are located in North America, Europe, and
Asia. Hence, stratified sampling is used. The costs are larger for interviewing division
heads located outside North America. The accompanying table gives the costs per inter-
view, approximate variances of the ratings, and N that have been established. The corpo-
ration wants to estimate the average rating with . Choose the sample size n
that achieves this bound, and find the appropriate allocation.

V(yst) = 0.1
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Stratum I Stratum II Stratum III
(North America) (Europe) (Asia)

c1 = $9 c2 = $25 c3 = $36

N1 = 112 N2 = 68 N3 = 39
s2

3 = 3.24s2
2 = 3.24s2

1 = 2.25

     



5.6 A school desires to estimate the average score that may be obtained on a reading com-
prehension exam for students in the sixth grade. The school’s students are grouped into
three tracks, with the fast learners in track I, the slow learners in track III, and the rest in
track II. The school decides to stratify on tracks because this method should reduce the
variability of test scores. The sixth grade contains 55 students in track I, 80 in track II,
and 65 in track III. A stratified random sample of 50 students is proportionally allocated
and yields simple random samples of n1 = 14, n2 = 20, and n3 = 16 from tracks I, II, and
III. The test is administered to the sample of students; the results are available via a link
from electronic Section 5.0.
a. Estimate the average score for the sixth grade, and place a bound on the error of

estimation.
b. Construct parallel box plots for these data and comment on the patterns you see. Do

you think there could be a problem in placing students in tracks?
c. Estimate the difference in average scores between track I and track II students. Are

track I students significantly better, on the average, than track II students?

5.7 Suppose the average test score for the class in Exercise 5.6 is to be estimated again at the
end of the school year. The costs of sampling are equal in all strata, but the variances
differ. Find the optimum (Neyman) allocation of a sample of size 50, using the data in
Exercise 5.6 to approximate the variances.

5.8 Using the data in Exercise 5.6, find the sample size required to estimate the average
score, with a bound of four points on the error of estimation. Use proportional allocation.

5.9 Repeat Exercise 5.8 using Neyman allocation. Compare the results with the answer to
Exercise 5.8.

5.10 A forester wants to estimate the total number of farm acres planted with trees for a state.
Because the number of acres of trees varies considerably with the size of the farm, he
decides to stratify on farm sizes. The 240 farms in the state are placed in one of four
categories according to size. A stratified random sample of 40 farms, selected by using
proportional allocation, yields the results shown in the accompanying table on number of
acres planted in trees. Estimate the total number of acres of trees on farms in the state,
and place a bound on the error of estimation. Graph the data on an appropriate plot and
comment on the variation as we move from I to IV.
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Stratum I, Stratum II, Stratum III, Stratum IV,
0–200 acres 200–400 acres 400–600 acres over 600 acres

N1 = 86 N2 = 72 N3 = 52 N4 = 30
n1 = 14 n2 = 12 n3 = 9 n4 = 5

97 67 125 155 142 256 167 655
42 125 67 96 310 440 220 540
25 92 256 47 495 510 780

105 86 310 236 320 396
27 43 220 352 196
45 59 142 190
53 21

     



5.11 The study in Exercise 5.10 is to be made yearly, with the bound on the error of estima-
tion of 5000 acres. Find an approximate sample size to achieve this bound if Neyman
allocation is used. Use the data in Exercise 5.10.

5.12 A psychologist working with a group of mentally retarded adults desires to estimate their
average reaction time to a certain stimulus. She thinks that men and women probably will
show a difference in reaction times, so she wants to stratify on gender. The group of 96 peo-
ple contains 43 men. In previous studies of this type, researchers have found that the times
range from 5 to 20 seconds for men and from 3 to 14 seconds for women. The costs of sam-
pling are the same for both strata. Using optimum allocation, find the approximate sample
size necessary to estimate the average reaction time for the group to within 1 second.

5.13 A county government is interested in expanding the facilities of a day-care center for men-
tally retarded children. The expansion will increase the cost of enrolling a child in the cen-
ter. A sample survey will be conducted to estimate the proportion of families with retarded
children that will make use of the expanded facilities. The families are divided into those
who use the existing facilities and those who do not. Some families live in the city in which
the center is located, and some live in the surrounding suburban and rural areas. Thus, strat-
ified random sampling is used, with users in the city, users in the surrounding country,
nonusers in the city, and nonusers in the country forming strata 1, 2, 3, and 4, respectively.
Approximately 90% of the present users and 50% of the present nonusers will use the ex-
panded facilities. The cost of obtaining an observation from a user is $4 and from a nonuser
is $8. The difference in cost results because nonusers are difficult to locate.

Existing records give N1 = 97, N2 = 43, N3 = 145, and N4 = 68. Find the approximate
sample size and allocation necessary to estimate the population proportion with a bound
of 0.05 on the error of estimation.

5.14 The survey in Exercise 5.13 is conducted and yields the following proportion of families
who will use the new facilities:

, , ,

Estimate the population proportion p, and place a bound on the error of estimation. Was
the desired bound achieved?

5.15 Suppose in Exercise 5.13 that the total cost of sampling is fixed at $400. Choose the sam-
ple size and allocation that minimizes the variance of the estimator for this fixed cost.

5.16 Refer to the information on 56 business firms given in Example 5.19.
a. Suppose that the n = 15 observations are to constitute a stratified random sample

with only two strata. Find the optimal dividing point between the strata. With n1 = 7
and n2 = 8, assume that the resulting sample measurements (in thousands of dollars)
turns out to be 110, 142, 212, 227, 167, 130, 194 for stratum 1 and 387, 345, 465, 308,
280, 480, 355, 405 for stratum 2. Estimate m by and calculate the estimated vari-
ance of .

b. Now suppose the dividing point between the two strata is shifted to 300,000. Suppose
the same 15 sample measurements are drawn in a stratified random sample with n1 = 8
and n2 = 7. Note that this sampling shifts the 280 value from stratum 2 to stratum 1.
(This result would not be likely to happen in practice and is only used here for
illustrative purposes.) Find and calculate the estimated variance of . The
numerical answer should indicate the superiority of the cumulative square root of
frequencies method.

ystyst

yst

yst

pN st

 pN 4 = 0.53 pN 3 = 0.60 pN 2 = 0.93 pN 1 = 0.87
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5.17 If no information is available on the variable of primary interest—say y—then optimal
stratification can be approximated by looking at a variable—say x—that is highly corre-
lated with y. Suppose an investigator wishes to estimate the average number of days of
sick leave granted by a certain group of firms in a given year. No information on sick
leave is available, but data on the number of employees per firm can be found. Assume
that for these firms total days of sick leave are highly correlated with number of employ-
ees. Use the frequency data in the accompanying table to optimally divide the 97 firms
into L = 4 strata for which equal sample sizes can be used.
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Number of
employees Frequency

0–10 2
11–20 4
21–30 6
31–40 6
41–50 5
51–60 8
61–70 10
71–80 14
81–90 19
91–100 13

101–110 3
111–120 7

5.18 Refer to Exercise 4.41. The auditor now wants to subsample some accounts from the 20
accounts for more detailed auditing. Separate the 20 accounts into two strata by applying
the cumulative square root of frequencies method to the amounts given.

5.19 A standard quality control check on automobile batteries involves simply measuring
their weight. One particular shipment from the manufacturer consisted of batteries pro-
duced in two different months, with the same number of batteries from each month. The
investigator decides to stratify on months in the sampling inspection in order to observe
month-to-month variation.

Simple random samples of battery weights for the two months yields the following
measurements (in pounds):

Month A Month B

61.5 64.5
63.5 63.8
63.5 63.5
64.0 66.5
63.8 63.5
64.5 64.0

Estimate the average weight of the batteries in the population (shipment), and place a
bound on the error of estimation. Ignore the fpc. The manufacturing standard for this type
of battery is 65 pounds. Do you think this shipment meets the standard on the average?

     



5.20 In Exercise 5.19, do you think stratifying on month is desirable, or would simple random
sampling work just as well? Assume that taking a simple random sample is just as con-
venient as taking a stratified random sample.

5.21 A quality control inspector must estimate the proportion of defective microcomputer
chips coming from two different assembly operations. She knows that, among the chips
in the lot to be inspected, 60% are from assembly operation A and 40% are from assem-
bly operation B. In a random sample of 100 chips, 38 turn out to be from operation A and
62 from operation B. Among the sampled chips from operation A, six are defective.
Among the sampled chips from operation B, ten are defective.
a. Considering only the simple random sample of 100 chips, estimate the proportion of

defectives in the lot, and place a bound on the error of estimation.
b. Stratifying the sample, after selection, into chips from operation A and B, esti-

mate the proportion of defectives in the population, and place a bound on the
error of estimation. Ignore the fpc in both cases. Which answers do you find more
acceptable?

5.22 When does stratification produce large gains in precision over simple random sampling?
(Assume costs of observations are constant under both designs.)

5.23 A market research analyst wants to estimate the proportion of people who favor his com-
pany’s product over a similar product from a rival company. The test area for his research
is the state of New York. He is also interested in separate estimates of this proportion for
those between the ages of 18 and 25 and for those over age 25. Discuss possible designs
for this survey.

5.24 A researcher wishes to estimate the average income of employees in a large firm.
Records have the employees listed by seniority, and, generally speaking, salary increases
with seniority. Discuss the relative merits of simple random sampling and stratified ran-
dom sampling in this case. Which would you recommend, and how would you set up the
sampling scheme?

5.25 In the use of as an estimator of m, finding an allocation and a sample size that mini-
mizes the for fixed cost c is sometimes advantageous. That is, the cost c allowed
for the survey is fixed, and we want to find the best allocation of resources in terms of
maximizing the information on m. The optimum allocation in this case is still given by
Eq. (5.7). Show that the appropriate choice for n is 

where co is a fixed overhead cost for the survey.

5.26 A water management board wants to estimate the total amount of water used for irriga-
tion in one growing season among all farms in a certain management district. A list of
farms is available in which the farms are listed by acreage, from smallest to largest.
Would you suggest using a simple random sample or a stratified random sample of
farms? Why? (For a stratified random sample, state how you would stratify and which
allocation procedure you would use.)

n =

(c - co)a
L

i=1
Nisi>1ci

a
L

i=1
Nisi1ci

V(yst)
yst
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5.27 The personnel manager of a corporation wants to estimate, for one year, the total number
of days used for sick leave among all 46 plants in his firm. The 46 plants are divided into
20 “small” plants and 26 “large” plants. From past experience, the manager figures that the
small plants may use from 0 to 100 days of sick leave, whereas the large plants may use
from 10 to 200 days of sick leave. If he desires to estimate the total to within 100 days:
a. Find the appropriate allocation of the sample to the two strata. 
b. Find the appropriate sample size.

5.28 The data in Example 5.21 list faculty sizes for a double sample (two-phased sample) of
American colleges. Use the information given there to estimate the average faculty size
for American colleges in 1986–1987. Construct an estimated variance for your estimate
of the average.

5.29 A question on a proposed annexation is to be asked to residents of a suburban area, but re-
sponses for registered voters could be quite different from those who are not registered. Of
1000 residents of the area who were telephoned, 80% were registered voters. Ten percent of
each group (registered and nonregistered) was asked to complete a follow-up questionnaire,
on which one question was, “Do you favor annexation into the city?” The data are summa-
rized in the accompanying table (yi number answering yes to the question on annexation).=

Estimate the proportion of residents who will respond yes to the question of interest and
estimate the variance of your estimator.

5.30 Wage earners in a large firm are stratified into management and clerical classes, the first
having 300 and the second having 500 employees. To assess attitude on sick-leave pol-
icy, independent random samples of 100 workers each were selected, one sample from
each of the classes. After the sample data were collected, the responses were divided
according to gender. In the table of results, a = Number who like the policy; b = Number
who dislike the policy; and c = Number who have no opinion on the policy.

158 Chapter 5 Stratified Random Sampling

Voters Nonvoters

ni 80 20
yi 60 8

yi = number answering “yes” to the
question on annexation

Management, Clerical, Total, 
N1 = 300 N2 = 500 N = 800

Male 110

Female 90

Total n = 200n2 = 100n1 = 100
c = 8c = 3
b = 20b = 7
a = 42a = 10
c = 2c = 5
b = 4b = 15
a = 24a = 60

Find an estimate and an estimated variance of that estimate for each parameter listed: 
a. Proportion of managers who like the policy
b. Proportion of wage earners who like the policy

     



c. Total number of female wage earners who dislike the policy
d. Difference between the proportion of male managers who like the policy and the

proportion of female managers who like the policy
e. Difference between the proportion of managers who like the policy and the proportion

of managers who dislike the policy

5.31 Are anesthesiologists overworked and therefore putting patients at risk? This question
was investigated as part of a survey carried out at the University of Florida. The popula-
tion of those practicing anesthesiology was stratified into three groups: anesthesiologists
(composing approximately 50% of the population), anesthesiology residents (composing
approximately 10% of the population), and nurse anesthetists (composing approximately
40% of the population). The frequencies of those in each stratum who thought they had
worked without a break beyond a safe limit sometime during the last 6 months are shown
in the accompanying table:
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Worked without break
Job classification beyond safe limit Frequency Percentage

Anesthesiologist No 417 31.4
Yes 913 68.7

Anesthesiology resident No 29 17.6
Yes 136 82.4

Nurse anesthetist No 240 21.8
Yes 860 78.2

a. Estimate the population proportion of those who think they have worked beyond a
safe limit. Calculate a bound on the error of estimation.

b. Do anesthesiologists differ significantly from residents in this matter?
c. Do anesthesiologists differ significantly from nurse anesthetists in this matter?

5.32 In the same survey discussed in Exercise 5.31, the respondents were asked for the longest
continuous time (in hours) of administering anesthesia without a break over the last six
months. A summary of the results is as follows:

Job Mean SD* Sample size

Anesthesiologist 7.63 0.15 1347
Anesthesiology resident 7.74 0.35 163
Nurse anesthetist 6.55 0.11 1095

*SD = standard deviation of the mean, ignoring fpc.

a. Estimate the mean time for the population of those giving anesthesia, with an esti-
mated bound on the error.

b. Do residents have a significantly higher average than the other groups? Justify your
answer statistically.

5.33 You want to take a sample of students in your school to estimate the average amount they
spent on their last haircut. Which sampling method do you think would work best—a
simple random sample; a stratified random sample with two strata, male and female; or
a stratified random sample with class levels as strata? Give your reasoning.

     



5.34 A utility company plans to estimate the average energy efficiency of single-family
dwellings in a city using a numerical measure of efficiency they have established (based
on amount of insulation, type of windows, and so on). While doing the survey, they are
also interested in estimating the proportion of single-family dwellings that are occupied
by the owner (as opposed to a renter). The sampling frame is a list of home sales in the
county courthouse that shows the owner’s name and address, the purchase price of the
house, and the date of the purchase. 
a. If the primary goal of the study is to estimate average energy efficiency, discuss how

you might design the survey.
b. If the primary goal of the study is to estimate the proportion of houses occupied by

the owners, discuss how you might design the study. 

5.35 The U.S. Department of Agriculture records data on farm acreage and number of farms
by county for every county in the country. This takes considerable time and energy, and
the results for each update (usually occurring approximately every five years) are a long
time in process. A quicker way to update the data is by sampling.

The table below shows the number of counties in each geographic region; the farm
acres (in thousands) for samples taken in the mid-1990s are available via a link from
electronic Section 5.0. These are independent random samples of 22 counties from each
region.

160 Chapter 5 Stratified Random Sampling

Region Number of counties

North Central 1052
North East 210
South 1376
West 418

a. Estimate the mean acreage for each region, with a margin of error.
b. Estimate the total acreage for each region, with a margin of error.
c. Estimate the difference between mean acreage for the North Central region and the

South, with a margin of error.
d. Estimate the difference between mean acreage for the North East and the West, with

a margin of error.
e. Estimate the mean acreage per county across the United States, with a margin of error.

5.36 Refer to Exercise 5.35. The complete data for 1992 yield the following summary.

Number of Mean Standard deviation
Region counties (thousands) (thousands)

North Central 1052 326 271
North East 210 95 79
South 1376 200 244
West 418 730 837

Using this summary, design a study to estimate the mean acreage per county across the
United States with a margin of error of 50,000 acres. In particular, what sample size
would you use and how would you allocate it to the four regions?

     



5.37 The Florida Survey Research Center has completed a telephone survey on opinions on
recycling among residents of Florida. The data set RECYCLE is described in Appendix C;
it and the complete survey appear on the disk. (Random samples were selected from each
of three regions in the state, with regions defined by the amount of education on recy-
cling that goes on in those regions. Stratum 1 has low educational effort, stratum 2
medium educational effort, and stratum 3 high educational effort. The populations in
the three strata are of relatively equal size. Data on two of the questions are summarized
in the information provided here. All answers should have appropriate statistical justifi-
cation, including margins of error. 

Q9. Thinking back over the past month, have you recycled any of your trash?

Yes ...............................................1
No ................................................2
Don’t Know .................................3
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Strata

Answer 1 2 3 Total

1 214 249 261 724
2 124 84 76 284
3 2 7 3 12
Total 340 340 340 1020

a. Estimate the proportion of the population of the state that has recycled over the past
month.

b. Does the proportion of the population who recycle change significantly as we move
from stratum 1 to stratum 3? 

c. Does the proportion of the population who recycle change significantly as we move
from stratum 2 to stratum 3?

Q1. Some people regularly recycle a lot of different items, Very Convenient ...............1
while others find that separating trash and rinsing cans is Somewhat Convenient .....2
too inconvenient. Would you say that the overall recycling Somewhat Inconvenient ...3
program in your community is convenient or inconvenient? Very Inconvenient ............4
(IF CHOICE) Would you say it is very (CONVENIENT/ Don’t Know......................5
INCONVENIENT) or only somewhat (CONVENIENT/
INCONVENIENT)?

Strata

Answer 1 2 3 Total

1 85 101 94 280
2 126 124 161 411
3 36 38 34 108
4 52 37 31 120
5 41 40 20 101
Total 340 340 340 1020

     



d. Estimate the proportion of the population who think it is either very convenient or
somewhat convenient (combine these two categories) to recycle.

e. Do the population proportion who think it somewhat or very convenient to recycle
differ significantly between stratum 1 and stratum 3?

f. For stratum 1, estimate the difference between the population proportion who find it
somewhat convenient to recycle and the population proportion who find it somewhat
inconvenient to recycle.

5.38 For a population of 14 countries in the Middle East and 33 countries in Europe, the
gross national products (GNP, in millions of dollars) for 1995 are shown in the box
plots. It is desired to estimate the mean GNP for these two regions combined in the
year 2000 from a random sample of 20 countries (total) from the two regions. Show
how you would allocate the sample to the two regions if this is all the information you
have. 

5.39 Refer to Exercise 5.38. Independent random samples of five countries from the Middle
East and nine countries from Europe produced the following sample results for 1995 data
on GNP.

Middle East

Mean 7938

Median 1950

Standard deviation 9488

Europe

Mean 9566

Median 3010

Standard deviation 9880

a. Estimate the mean GNP for the two regions combined. 
b. Estimate the variance of the estimate in part (a). 
c. Comparing the sample results from this problem with the plots of the population val-

ues in Exercise 5.38, comment on one weakness of using sample standard deviations
to decide allocations for future studies. 

40,000

30,000

20,000

10,000

G
N

P

Europe Middle East
Regions
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5.40 In the late 1990s a sample survey of people emigrating from Cuba to Florida was con-
ducted to obtain their opinions on conditions in their homeland. Among the 1001 sam-
pled individuals, 87% were white and 13% were African American. It is known from
census data on Cuba that the country has approximately 60% whites and 40% African
Americans. One of the questions asked was

In your opinion, has the Revolution attained accomplishments in education? 

The accompanying table shows a summary of the responses by racial group. 

Exercises 163

Yes No Total

White 566 304 870
Black 102 29 131

Total 668 333 1001

a. Assuming that the 1001 responses came from a simple random sample of emigrants,
estimate the true proportion of emigrants who would answer “yes” to this question.
Calculate an appropriate margin of error.

b. Construct a poststratification estimate of the true proportion of “yes” answers among
emigrants from Cuba, with an appropriate margin of error. Comment on whether or
not poststratification pays any dividends in this situation.

5.41 Refer to Exercise 5.4, which deals with housing data for a sample of metropolitan statis-
tical areas for the United States. Suppose you are to design a new survey on the same three
variables using a stratified random sample with the two strata being MSAs and CMSAs.
Using the data presented there and reasonable assumptions, find an appropriate sample
size and allocation to estimate the mean typical sales price of houses with a margin of
error of $15,000, the total number of houses sold with a margin of error of 2000 houses,
and the mean floor area of the houses with a margin of error of 150 square feet. 

5.42 The data set in Appendix C labeled CLASSSUR came from a sample of students taking
an introductory statistics course for social science majors at the University of Florida.
You are to use these data as the basis for designing a new stratified random sample for
students taking this course. The two strata are to be lower division (freshmen and soph-
omores) and upper division (juniors, seniors), as very few graduate students take this
course. Using these data and reasonable assumptions, choose a sample size and alloca-
tion so as to meet the following criteria:
a. Estimate the mean study hours per week to within 2 hours.
b. Estimate the mean GPA to within 0.10 point.
c. Estimate the proportion of students who have jobs outside of school to within 0.15.

The data for these variables are summarized in the accompanying table. The numbers in
parentheses refer to the coded values used in the data for categories.

Standard
n Mean Median deviation

Study hours 56 12.889 11.400 7.457
GPA 48 3.0060 2.9900 0.381

     



5.43 Reed and Chagnon (1987) wanted to estimate the number of greater snow geese on Bylot
Island, in Canada’s Northwest Territories (the island is an important breeding ground for
the bird). They gridded the island into 400 2 * 2 km plots (excluding areas that were
patently not usable by geese). They divided the 400 plots into three strata (high, medium,
and low quality), based on ecological factors that are known to be associated with goose
abundance. Using their estimates of stratum SDs and sizes, determine the optimal allo-
cation for a sample of 83 (their actual sample size). 
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Freshmen Sophomore Junior Senior Graduate
(1) (2) (3) (4) (5) Total

Job (1) 2 3 13 6 2 26
No job (2) 6 4 12 9 0 31

Total 8 7 25 15 2 57

Stratum Stratum size Sample size Mean SD

High quality 65 34 412.5 316.9
Medium quality 127 28 136.8 127.7
Low quality 208 21 16.2 30.5

SOURCE: Reed, A. and P. Chagnon. 1987. Greater snow geese on Bylot Island, Northwest Territories, 1983.
The Journal of Wildlife Management 51(1): 128–131.

Stratum Stratum size Sample size Mean SD

High abundance, Northern 136 9 5.2 6.78
Medium abundance, Northern 181 21 11.6 10.15
Low abundance, Northern 56 6 39.2 30.87
High abundance, Southern 155 10 5.1 4.69
Medium abundance, Southern 99 8 17.8 15.59
Low abundance, Southern 38 7 40.0 22.96

SOURCE: Hodges, Jr., J. I, King, J. G., and Davies, R. 1984. Bald eagle breeding Population survey of
coastal British Columbia. The Journal of Wildlife Management 48(3): 993–998.

5.44 Using the data from Exercise 5.43, estimate the total number of geese on the island with
a 95% CI. 

5.45 Assuming optimal allocation, what sample size would be required to estimate goose
abundance with a 10% relative margin of error?

5.46 Hodges et al. (1984) estimated the number of bald eagles in a section of the British
Columbia coastline. They had a Northern and Southern study area; in each, they estab-
lished subregions of low, medium, and high eagle abundance, yielding a total of six strata.
Use their data to estimate the total number of eagles in the study area, with a 95% CI.

5.47 Given the estimates of standard deviations from Exercise 5.46, and a sample size of 61
(their actual sample size), how much improvement over their actual estimate would they
have had with optimal sample allocation? Note that they necessarily had to make their al-
location decisions without this SD information. 

     



5.48 Use their data to estimate the number of bald eagles separately in their Northern and
Southern study areas.

5.49 Siniff and Skook (1964) estimated the total number of caribou in the Nelchina caribou
herd, which ranges over 22,000 square miles in a region north of Anchorage, Alaska.
They divided the landscape (composed of 699 4 * 4 km survey plots) into six strata
(labeled simply as A, B, . . . , F). Pilot surveys were used to obtain rough estimates of the
number of caribou in each stratum. Assuming standard deviations to be approximately
proportional to these estimates, determine optimal allocation of a sample of size 211
(their actual sample size). In their study, they modified the optimum to ensure that each
stratum had at least 10% sample coverage.
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Rough estimate of 
Stratum size caribou numbers Sample size Mean SD

400 3000 98 24.1 74.7
30 2000 10 25.6 63.7
61 9000 37 267.6 589.5
18 2000 6 179.0 151.0
70 12,000 39 293.7 351.5

120 1000 21 33.2 99.0 

SOURCE: Siniff, D. and Skoog, R. O. 1964. Aerial censusing of caribou using stratified random sampling.
The Journal of Wildlife Management 28(2): 391–401.

5.50 Estimate the total number of caribou in their study area, with 95% CI.

5.1 Data on the population of the United States is given in Appendix C and on the data disk
under USPOP. The goal is to estimate the total U.S. population in the 18–24 age group
from a sample of states. The states are divided into four geographic regions. Using these
regions as strata, select an appropriately sized stratified random sample of states and use
their data on population in the 18- to 24-year-old group to estimate the total U.S. popu-
lation in that age group. Because the total population is available from the data on all the
states, check to see if your estimate is within the margin of error you established for your
estimate. Compare your result with those of other students in the class.

5.2 The Florida Survey Research Center has completed a telephone survey on opinions on re-
cycling for a group of cities in Florida. The questionnaire reproduced on the following pages
shows the information that was coded to keep track of the city, county, and interviewer, as
well as the questions that were asked in the survey. The data are on the data disk in a file
called RECYCLE. The survey design was a stratified random sample with three strata de-
fined by the amount of education on recycling that goes on in these cities. Stratum 1 is low,
stratum 2 is moderate, and stratum 3 is high in terms of educational programs. A stratum
code is given for each response in the data set. The sample sizes are equal across the three
strata. Assume that the population sizes for the three strata are nearly equal as well.

Your job is to analyze the data from this questionnaire for two questions of your
choice by following the outline given below.
a. Estimate the true population proportion for two of the questions on the survey. You

may select any questions you like.
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from Real
Populations

     



b. For each of these questions, does the proportion of men responding in the category of
interest differ from the proportion of women responding in the same category?

c. For one of the questions you selected, estimate the true population proportions within
each of the three strata.

d. For the question used in part (c), compare the true proportions among the three strata.
That is, do the true proportions on these questions seem to differ among the strata?

It may be convenient to display the sampled data on two-way tables in order to describe
the results and make appropriate calculations. The entire survey questionnaire is repro-
duced in a Word file, available via a link from electronic Section 5.0.

5.3 The CARS93 data, in Appendix C, has cars classified as to being one of six different
types, small, compact, midsize, large, sporty, or van. A numerical type code is given in
the data set, in addition to the actual name of the type. The goal of this activity is to see
if poststratification on car type pays any dividends when estimating average city gasoline
mileage or proportion of cars with air bags for the cars in this population.
a. Select a random sample of cars from this population. Estimate the average city miles

per gallon (mpg) for these cars, with a bound on the error of estimation.
b. Estimate the proportion of these cars that have at least one air bag, with a bound on

the error of estimation.
c. Using the data from part (a), poststratify on the car type and then estimate the aver-

age city mpg by this method.
d. Using the data from part (b), poststratify on car type and then estimate the proportion

of cars that have at least one air bag by this method.
e. Comparing the above results, comment on when poststratification might produce big

gains in terms of the error of estimation.

5.4 This activity is an extension of Example 5.21 on the use of double sampling for strati-
fication. The World Almanac (and possibly others) has a list of U.S. colleges and uni-
versities, along with a designation as to whether they are public or private and data on
enrollment and faculty size. Bring the results of Example 5.21 up to date by completing
the following.
a. Find a current edition of the World Almanac (or equivalent). Select a large sample

(your choice of size) of colleges and universities for the purpose of determining
whether they are private or public. This process is easy to do and goes quickly.

b. Select a subsample of the institutions sampled in part (a). For the subsample, write
down the enrollment and faculty size for each institution.

c. Use the data from parts (a) and (b) to estimate the total enrollment at U.S. colleges
and universities for the year of your data.

d. Use the data from parts (a) and (b) to estimate the average faculty size at U.S. colleges
and universities for the year of your data.

5.5 Return to the sheet of rectangles provided for the activity at the end of Chapter 4. Select
a random sample of ten rectangles and use them to construct an estimate of the average
area of the rectangles on the page. Then, select a stratified random sample choosing five
rectangles from those numbered 1–50 and five from among those numbered 51–100.
Does the stratification appear to provide any advantage? Compare your results with those
of the rest of the class and comment on the general pattern. 
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5.6 We now move from selecting samples from real sets of data to selecting samples from
probability distributions. The probability distributions partially given in the following
table represent the heights of adults in America. The complete set of data is available via
a link from electronic Section 5.0. PROB-M denotes the probabilities of various heights
(in inches) for males, PROB-F denotes the probabilities for females, and PROB denotes the
combined probabilities for adults. The goal is to select samples from these distributions to
compare estimates of the average height from stratified random sampling to estimates from
simple random sampling.

a. Use the discrete distributions sampling tool (available via a link in electronic
Section 5.0) to produce random samples from specified discrete distributions. 

b. Select a random sample of 20 male heights and a separate random sample of 20 female
heights. From these data, estimate the average height of all adults and calculate a bound
on the error of estimation. (Assume that approximately 50% of adults are male.)

c. Select a simple random sample of 40 heights for the height distribution of adults.
From these data, estimate the average height of all adults and calculate a bound on the
error of estimation. 

d. Repeat steps (b) and (c) a number of times, so as to generate a sampling distribution
of estimates in each case.

e. Compare the results of (b) and (c). Comment on when stratification seems to produce
gains in precision of estimates.

Height 
(inches) PROB-M PROB-F PROB

56 0.000000 0.000500 0.000250
57 0.000000 0.003800 0.001900
58 0.000000 0.005100 0.002550
. . . .
. . . .
. . . .
74 0.042000 0.000000 0.021000
75 0.034300 0.000000 0.017150
76 0.022300 0.000000 0.011150
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6

Ratio, Regression, and 
Difference Estimation

C A S E  S T U D Y

HOW LARGE ARE SECTION SIZES IN ELEMENTARY
STATISTICS COURSES?

Statistics departments at most universities teach elementary statistics courses
to students from many different disciplines. Increasingly, these courses are taught
in very large lecture sessions (perhaps even by way of video) with smaller discus-
sion groups, or breakout groups, meeting with teaching assistants quite often for
question-and-answer sessions, quiz sessions, and so on. A survey of statistics de-
partments collected data on enrollments and number of discussion sections for
such courses for the fall semester of 2000. The survey was a stratified random
sample with five strata determined by the size of the university and the highest de-
gree offered. Strata 1 through 4 are Ph.D.-granting departments in universities with
size boundaries of 15,000, 25,000 and 35,000 students. Stratum 5 includes all
departments that do not grant a Ph.D. degree. The sizes of the five strata, respec-
tively, are 12, 21, 12, 12, and 13, totaling to 70. The sample data are provided in
the accompanying table on the next page.

Total enrollment can be estimated by the methods in Chapter 5, but estimating
the mean section size is more difficult because both the enrollments and the number
of sections vary from university to university. The mean enrollment per section is
actually a ratio of random variables, and estimators of this form are discussed in
this chapter.

168
     



6.1 Introduction 169

■

6.0
Tools

Interactive Excel tools for doing calculations in this chapter can be found on the CD
that accompanies this book. In the Chapter Six Tools folder you will find a Word file
named Section 6.0 (tools). Therein links have been provided to the relevant compu-
tational tools for this chapter. In the text, we use an icon (pictured on the left) as a re-
minder for equations for which we have built tools. Also, data for some of the chap-
ter exercises are available via a link in that section.

6.1 
Introduction 

The estimation of the population mean and total in preceding chapters is based on a
sample of response measurements, yl, y2, . . . , yn, obtained by simple random sam-
pling (Chapter 4) and stratified random sampling (Chapter 5). Sometimes other vari-
ables are closely related to the response y. By measuring y and one or more subsidiary
variables, we can obtain additional information for estimating the population mean.
You are probably familiar with the use of subsidiary variables to estimate the mean
of a response y. It is basic to the concept of correlation and provides means for the
development of a prediction equation relating y and x by the method of least squares.
This topic is ordinarily covered in introductory courses in statistics.

Chapters 4 and 5 present simple estimators of population parameters using the
response measurements yl, y2, . . . , yn; however, primary emphasis there is placed on
the design of the sample survey (simple and stratified random sampling). In con-
trast, this chapter presents three new methods of estimation based on the use of a sub-
sidiary variable x. The methods are called ratio, regression, and difference estima-
tion. All three require the measurement of two variables, y and x, on each element of

Stratum 1 Stratum 2 Stratum 3 Stratum 4 Stratum 5
––––––––––––––– –––––––––––––––– –––––––––––––––– –––––––––––––––– –––––––––––––––
Enrolled Sections Enrolled Sections Enrolled Sections Enrolled Sections Enrolled Sections

494 4 1015 5 784 19 1357 6 1557 9
36 5 700 2 1101 3 1433 11 88 4

153 6 1391 57 285 13 1680 52 500 4
277 2 101 20 255 5 934 16 390 15
480 4 1100 15 755 9 615 8
500 3 731 3 834 10

689 5 506 10
227 2
151 1
375 8
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the sample. A variety of sampling designs can be employed in conjunction with ratio,
regression, or difference estimation, but we here discuss mainly simple random
sampling. The basic ideas of how these techniques carry over to stratified random
sampling are, however, illustrated for ratio estimation.

In this chapter, variance formulas become sufficiently tedious that showing you
the “by-hand” level of detail becomes less useful than it was in earlier chapters. In-
stead, we show you conceptual versions of the formulas, and leave their computation
to the tools we have provided.

6.2 
Surveys that Require the Use of Ratio Estimators

The efficient estimation of a population total sometimes requires the use of subsidiary
variables.We illustrate the use of a ratio estimator for one of these situations.The whole-
sale price paid for oranges in large shipments is based on the sugar content of the load.
The exact sugar content cannot be determined prior to the purchase and extraction of the
juice from the entire load; however, it can be estimated. One method of estimating this
quantity is to first estimate the mean sugar content per orange, my, and then to multiply
by the number of oranges N in the load. Thus, we could randomly sample n oranges from
the load to determine the sugar content y for each. The average of these sample meas-
urements, yl, y2, . . . , yn, will estimatemy; will estimate the total sugar content for the
load, ty. Unfortunately, this method is not feasible because it is too time-consuming and
costly to determine N (i.e., to count the total number of oranges in the load).

We can avoid the need to know N by noting the following two facts. First, the sugar
content of an individual orange, y, is closely related to its weight x; second, the ratio
of the total sugar content ty to the total weight of the truckload tx is equal to the ratio of
the mean sugar content per orange, my, to the mean weight mx. Thus,

Solving for the total sugar content of the load, we have 

We can estimate my and mx by using and , the averages of the sugar contents and
weights for the sample of n oranges. Also, we can measure tx, the total weight of the
oranges on the truck. Then, a ratio estimate of the total sugar content ty is

or equivalently (multiplying the numerator and denominator by n),

tNy =
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In this case, the number of elements in the population, N, is unknown, and there-
fore, we cannot use the simple estimator of the population total ty (Section 4.3).
Thus, a ratio estimator or its equivalent is necessary to accomplish the estimation ob-
jective. However, if N is known, we have the choice of using the estimator or the
ratio estimator to estimate ty. If y and x are highly correlated—that is, if x contributes
information for the prediction of y—the ratio estimator should be better than ,
which depends solely on .

In addition to the population total ty, there are often other parameters of interest.
We may want to estimate the population mean my by using a ratio estimation proce-
dure. For example, suppose we wish to estimate the average sugar content per orange
in a large shipment. We could use the sample mean to estimate my. However, if x
and y are correlated, a ratio estimator that uses information from the auxiliary vari-
able x frequently provides a more precise estimator of my.

The population ratio is another parameter that may be of interest to an investiga-
tor (as seen in the case study opening this chapter). For example, assume we want to
estimate the ratio of total automobile sales for the first quarter of this year to the num-
ber of sales during the corresponding period of the previous year. Let tx be the total
number of sales for the first quarter of last year, and let ty be the total number of sales
for the same period this year. We are interested in estimating the ratio

The concept of ratio estimation is used in the analysis of data from many impor-
tant and practical surveys used by government, business, and academic researchers.
For instance, the CPI is actually a ratio of costs of purchasing a fixed set of items of
constant quality and quantity for two points in time. Currently, the CPI compares
today’s prices with those of the 1982–1984 period. The CPI is based, in part, on data
collected every month or every other month from approximately 24,000 establish-
ments (stores, hospitals, filling stations, and so on) selected from many areas around
the country. The CPI is used mainly as a measure of inflation (see Chapter 1).

The Current Population Survey adjusts unemployment figures for age, gender,
and race by a ratio estimation technique. For example, the ratio of the number of un-
employed African Americans to the number of African Americans in the workforce
for a sample area can be expanded to a measure of the number of unemployed
African Americans in a larger area by multiplying that sample ratio by the number of
African Americans in the workforce of the larger area.

The Nielsen Retail Index can provide ratios of average sales prices for two com-
peting brands of a product or for a single product at two points in time. The SAMI
can provide total stock volume ratios for two competing brands.

Forecasting often employs a ratio estimation technique. For example, the ratio of
total first-period sales for the current year to a similar total for last year can be mul-
tiplied by last year’s total sales to estimate this year’s total sales. Similar methods are
used to forecast population growth.

In audits of firms for compliance with sales and use tax collection, accounts are
usually voluminous and sampling can save time and money. The percentage-of-error
method often used in analyzing such audit data calculates the ratio of total dollars of
error in the sampled accounts divided by the total dollar amounts of all sampled

R =

ty

tx

y

y
Ny

Ny

Ny

     



accounts. This error ratio is then multiplied by the total dollar amounts of all ac-
counts in the population to arrive at the total error dollars. More on sampling in sales
and use tax audits can be found in Yancey (2002).

In academic research, sociologists are interested in measures such as the ratio of
total monthly food budget to total monthly income per family or the ratio of number
of children to total number of people residing in a housing unit. Medical researchers
can measure the relative potency of a new drug by looking at the ratio of the average
amount of new drug required to evoke a certain response to the average amount of a
standard drug required for the same response.

As you can see, the possible applications of ratio estimation are endless. How-
ever, we now shift our emphasis to the construction of estimators for my, ty, and R,
and we provide numerical examples of each. Whenever appropriate, comparisons
will be made to the estimators of these parameters presented in previous chapters.

6.3 
Ratio Estimation Using Simple Random Sampling

Let us assume that a simple random sample of size n is to be drawn from a finite pop-
ulation containing N elements. How, then, do we estimate a population mean my, a
total ty, or a ratio R, using sample information on y and a subsidiary variable x?
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Estimator of the population ratio R:

(6.1)

Estimated variance of r: 

(6.2)
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If the population mean for x, mx, is unknown, we use to approximate in
Eq. (6.2). This approximation works well when is estimated precisely. In par-
ticular, it is usually suggested that the variance approximations work well when
the coefficient of variation of the mean of x is small (i.e., less
than 0.10).

(cv(x) = SD(x)>n)

x
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EXAMPLE 6.1 The U.S. government’s American Housing Survey keeps tabs on many aspects of the
characteristics of housing in America, including monthly costs for home ownership
and the value of houses. One aspect of the survey tracks 47 metropolitan statistical
areas (MSAs) over time by sampling a subset of them every four years or so. The sur-
vey for 2002 sampled the 13 MSAs listed in Table 6.1. Also listed there are the typi-
cal monthly costs of home ownership (not including maintenance) for 2002 and 1994
as well as the typical values of houses in those two years, respectively. These data are
for owner-occupied houses only.

Use these data to estimate R, the ratio of mean typical monthly costs for 2002 as
compared to those of 1994 for all 47 MSAs and calculate an appropriate margin of
error.

SOLUTION As you know, an essential rule of data analysis is to plot the data first. A scatter plot
of the 2002 versus 1994 data is shown in Figure 6.1. The strong, positive linear trend
here is important if the ratio estimation technique is to work well. None of the data
points deviate sharply from this linear pattern.

The summary statistics in Table 6.1 show the means and standard deviations
of the y and x values. Note that sr is simply the standard deviation of the devia-
tions y - rx, which is also shown on the summary table. (Why do these deviations

TABLE 6.1
Housing costs and values in a sample of MSAs (owner-occupied)

Typical cost
per month Typical value

MSA 2002 1994 2002 1994

Anaheim–Santa Ana, CA 1363 1087 300,000 216,962
Buffalo, NY 670 571 92,402 85,378
Charlotte, NC-SC 761 518 125,551 86,763
Columbus, OH 746 612 135,208 92,664
Dallas, TX 991 770 126,492 87,615
Fort Worth–Arlington, TX 798 655 99,230 70,759
Kansas City, MO-KS 728 552 116,778 78,542
Miami–Fort Lauderdale, FL 842 710 136,774 97,058
Milwaukee, WI 849 656 143,281 101,407
Phoenix, AS 885 636 140,490 88,269
Portland, OR-WA 986 676 179,311 127,731
Riverside-San Bernardino-Ontario, CA 934 773 164,870 123,491
San Diego, CA 1167 829 297,458 176,277

n Mean Median SD

y � 2002 monthly 13 901.5 880.6 192.5
x � 1994 monthly 13 695.8 676.4 148.5
y � rx 13 0.0 �2.9 67.8

SOURCE: American Housing Survey, http://www.census.gov/hhes/www/housing/ahs/metropolitandata.html.
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FIGURE 6.1
Scatter plot for the data in Example 6.1
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average 0?) Straightforward calculations using formulas (6.1) and (6.2) yield the
following:

Thus, any value of R in the interval 1.30 ; 0.05, or (1.25, 1.35), would be consistent
with the observed data (thinking in terms of an approximate 95% confidence inter-
val), assuming the data came from a random sample of the 47 MSAs. In other words,
the typical monthly cost for housing in MSAs is estimated to have increased approx-
imately 30%, plus or minus 5%, in the eight-year period from 1994 to 2002. ■

What about the line on the plot in Figure 6.1? This is not the usual least-squares
regression line but, rather, the line that goes through the origin and the point .
In other words, it is the line through the origin with slope r.

Analysis of the housing values data is an exercise at the end of this chapter.
The large-sample confidence intervals based on normal distribution theory, as in-

troduced in Chapter 3, apply in the ratio estimation case as well. Thus, for example,
an approximate 90% confidence interval for the ratio R is of the form

The estimated variance of r can be written in many forms. One that is particularly
useful for comparisons of ratio estimators with other estimators involves the correla-
tion coefficient r between x and y. This correlation can be estimated by

rN =

sxy

sxsy

r ; 1.6452VN (r)

(x, y)

 = 2
C

 a1 -

13

47
b c 1

(695.8)2 d (67.8)2

13
= 2(0.023) = 0.046

 22VN (r) = 2
C
a1 -

n

N
b a 1

x2 b s2
r

n

 r =

y

x
=

901.5

695.8
= 1.296
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where

The correlation coefficient plays a key role in later discussions.
Now we can write

where , the sampling fraction. If mx is replaced by , which is often
required in practice when mx is unknown, then the variance formula can be written as

where cv(x) stands for the coefficient of variation for x, defined by 

The coefficient of variation is a useful measure of variation because it shows the
relationship between the size of the standard deviation and the size of the mean. A
standard deviation of, say, 10 units might be considered quite large for measurements
with a mean of 20 but not so large for measurements with a mean of 200.

The ratio technique for estimating a population totalty was applied in estimating the
total sugar content of a truckload of oranges. The simple estimator is not applicable
because we do not know N, the total number of oranges in the truck. The following ratio
estimation procedure can be applied in estimating ty whether or not N is known.

Ny
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Ratio estimator of the population total :

(6.4)

Estimated variance of :
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we must know tx in order to estimate ty by use of the ratio estimation procedure. If
neither N nor mx are known, the variance is estimated by

EXAMPLE 6.2 In a study to estimate the total sugar content of a truckload of oranges, a random
sample of oranges was juiced and weighted. The total weight of all the
oranges, obtained by first weighing the truck loaded and then unloaded, was found
to be 1800 pounds. Estimate ty, the total sugar content for the oranges, and place a
bound on the error of estimation.

SOLUTION The scatter plot, Figure 6.2, shows a strong, positive association between sugar con-
tent and weight, making the ratio estimator a reasonable choice. The sugar content of
an orange is usually recorded in degrees brix, which is a measure of the number of
pounds of solids (mostly sugar) per 100 pounds of juice. For our calculations, we will
use the actual pounds per orange. An estimate of ty can be obtained by using Eq. (6.4):

tNy = rtx =

a
10

i=1
yi

a
10

i=1
xi

 (tx) =

0.246

4.35
 (1800) = 101.79 pounds

n = 10

VN (tNy) = (tx)2VN (r) = (tx)2a1 -

n

N
b a 1

x2
x
b  

s2
r

n

where mx and tx are the population mean and total, respectively, for the
random variable x, and

s2
r =

a
n

i=1
(yi - rxi)

2

n - 1

0.36 0.42 0.48
x

0.021

0.018

0.024

0.027

0.030

0.033

y

FIGURE 6.2
Scatter plot for the data in Example 6.2
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A bound on the error of estimation can be found if we use a modified version of
Eq. (6.5). Because N is unknown but large in this example, we assume that the finite
population correction, is near unity. This assumption is reasonable be-
cause we expect at least oranges even in a small truckload. The sample
mean must be used in place of mx in Eq. (6.5), because mx is unknown. With these
adjustments, the bound becomes

To summarize, the ratio estimate of the total sugar content of the truckload of oranges
is pounds, with a bound on the error of estimation of 6.3. We are confi-
dent that the total sugar content ty lies in the interval

that is, the interval 95.49 to 108.09 pounds. ■

Recall that the population size N is frequently known. Consequently, the investi-
gator must decide under which conditions the use of the ratio estimator is
better than use of the corresponding estimator , where both estimators are based
on simple random sampling (see Section 6.2). Generally, rtx possesses a smaller
variance than when there is a strong positive correlation between x and y (where 
r, the correlation coefficient between x and y, is greater than 1�2). Intuitively, this
statement makes sense because in ratio estimation we are using the additional infor-
mation provided by the subsidiary variable x.

If an investigator is interested in a population mean rather than a population total,
the corresponding ratio estimation procedure is shown in Eqs. (6.6) and (6.7). 

N y

Ny
tNy = rtx

101.79 ; 6.3

tNy = 101.79

 = 2
C

(1800)2a 1
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Ratio estimator of a population mean My:

(6.6)

Estimated variance of My:

(6.7)
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EXAMPLE 6.3 One of the main uses of ratio estimation is in the updating of information across time.
A simple example of this can be seen in the way agricultural crop forecasters can use
a sample of current data to update completed crop reports from earlier years. The
crop used in this example is sugarcane, an important economic crop for only four
states (Florida, Hawaii, Louisiana, and Texas) and grown in approximately 32 counties
from across those states. Suppose we are near the end of 1999 and do not have com-
plete data on the sugarcane crop for that year from all counties. We do, however, have
complete data for all counties for the year 1997. In addition, we have the resources to
collect preliminary information from six sample counties. Table 6.2 shows the actual
acres harvested and total production (in tons) for sugarcane in the six sampled coun-
ties. By checking the complete records for 1997 we can find that the average acres
harvested per county across all 32 counties was 27,752 acres. The mean production
per county was 967,839 tons.

Use these data to estimate the mean acreage for sugarcane across all 32 counties
for 1999 and calculate an appropriate margin of error.

SOLUTION The plot of the sample data, seen in Figure 6.3, shows a strong, positive trend in the
relationship between the acreage values for the two years. This bodes well for ratio
estimation.

TABLE 6.2
Sugarcane acres harvested and production for 1997 and 1999; sampled counties

1999 1997

State County Acreage Production (tons) Acreage Production (tons)

FL Hendry 57,000 2,012,100 54,000 2,008,000
HI Kauai 13,900 917,000 12,300 1,141,000
LA Saint Landry 15,500 470,000 9100 270,000
LA Calcasieu 3900 120,000 1700 45,000
LA Iberia 59,900 1,900,000 57,200 1,655,000
TX Cameron 10,400 335,300 12,900 382,500

SOURCE: National Agricultural Statistics Service; http://www.usda.gov/nass/
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FIGURE 6.3
Sugarcane acreage in 1999 versus 1997
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Our Excel tool shows that 

Because we know the population mean of x, we can apply Eq. 6.7 directly, resulting
in a standard deviation of 1263.

The mean acreage per county is estimated to be 30,278 acres plus or minus about
acres. Any population value in this interval would be consistent

with the observed sample data. ■

The production data are used in the exercises at the end of this chapter.
To remember the formulas for ratio estimation of a population mean, total, or

ratio, we make the following association. The sample ratio r is given by the formula:

(6.8)

The estimators of R, ty, and my are then

(6.9)

(6.10)

(6.11)

Thus, we need to know only the formula for r and its relationship to , and .
Approximate variances can be obtained if you remember the basic formula:

(6.12)

Then

(6.13)

(6.14)

6.4
Selecting the Sample Size

We have stated previously that the amount of information contained in the sample
depends on the variation in the data (which is frequently controlled by the sample sur-
vey design) and the number of observations n included in the sample. Once the sam-
pling procedure (design) has been chosen, the investigator must determine the num-
ber of elements to be drawn. We consider here the sample size required to estimate a
population parameter R, my, or ty to within B units for simple random sampling using
ratio estimators.

Note that the procedure for choosing the sample size n is identical to that presented
in Section 4.4. The number of observations required to estimate R, a population ratio,
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xVN (r)

 VN (tNy) = t2
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with a bound on the error of estimation of magnitude B is determined by setting 2SD of
the ratio estimator r equal to B and solving this expression for n. That is, we must solve

(6.15)

for n. Although we have not discussed the form of V(r), recall that , the estimated
variance of r, is given by the formula:

(6.16)

or, equivalently, as

(6.17)

An approximate population variance, V(r), can be obtained from by replacing s2

with the corresponding population variance s2. Thus, the number of observations
required to estimate R with a bound B on the error of estimation is determined by
solving the following equation for n:

(6.18)22V(r) = 2
C
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n
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Sample size required to estimate R with a bound on the error of
estimation B:

(6.19)

where 

D =

B2m2
x

4

n =

Ns2

ND + s2

In a practical situation, we are faced with a problem in determining the appropriate
sample size because we do not know s2. If no past information is available to calcu-
late as an estimate of s2, we take a preliminary sample of size n� and compute

Then we substitute this quantity for s2 in Eq. (6.19), and we find an approximate
sample size. If mx is also unknown, it can be replaced by the sample mean , calcu-
lated from the n� preliminary observations.

EXAMPLE 6.4 A manufacturing company wishes to estimate the ratio of change from last year to this
year in the number of worker-hours lost due to sickness. A preliminary study of 
employee records is made, and the results are given in Table 6.3. The company

n¿ = 10

x

sN 2
=

a
n¿

i=1
(yi - rxi)

2

n¿ - 1

s2
r
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records show that the total number of worker-hours lost due to sickness for the pre-
vious year was . Use the data to determine the sample size required to
estimate R, the rate of change for the company, with a bound on the error of estimation
of magnitude . Assume the company has employees.

SOLUTION From the given data, we determine

and

The required sample size can now be found by using Eq. (6.19). Note that

and

D =

B2m2
x

4
=

(0.01)2(16.3)2

4
= 0.006642

mx =

tx

N
=

16,300

1000
= 16.3

sN 2
=

a
10

i=1
(yi - rxi)

2

9
= (1.86)2

= 3.46

r =

a
10

i=1
yi

a
10

i=1
xi

=

187

178
= 1.05

N = 1000B = 0.01

tx = 16,300

TABLE 6.3
Hours lost to sickness

Worker-hours lost in Worker-hours lost in 
Employee previous year, x current year, y

1 12 13 0.39326
2 24 25 -0.21349
3 15 15 -0.75843
4 30 32 0.48314
5 32 36 2.38202
6 26 24 -3.31461
7 10 12 1.49438
8 15 16 0.24157
9 0 2 2.00000

10 14 12 -2.70787

N Mean Median SD

y 10 17.80 15.00 9.99
x 10 18.70 15.50 10.36

10 -0.00 0.32 1.87yi - rxi

yi - rxi

     



Thus,

Therefore, we should sample approximately 343 employee records to estimate R, the
rate of change in worker-hours lost due to sickness, with a bound on the error of
estimation of 0.01 hour. ■

Similarly, we can determine the number of observations n needed to estimate a
population mean my, with a bound on the error of estimation of magnitude B. The
required sample size is found by solving the following equation for n:

(6.20)

Stated differently, from Eq. (6.14),

The solution is shown in Eq. (6.21).

2mx1V(r) = B

22V(mN y) = B

n =

NsN 2

ND + sN 2 =

1000(3.46)

1000(0.006642) + 3.46
= 342.5
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Sample size required to estimate My with a bound on the error
of estimation B:

(6.21)

where

D =

B2

4

n =

Ns2

ND + s2

Note that we need not know the value of mx to determine n in Eq. (6.21); how-
ever, we do need an estimate of s2, either from prior information if it is available or
from information obtained in a preliminary study.

EXAMPLE 6.5 An investigator wishes to estimate the average number of trees my per acre on an
plantation. She plans to sample n 1-acre plots and count the number

of trees y on each plot. She also has aerial photographs of the plantation from which
she can estimate the number of trees x on each plot for the entire plantation. Hence,
she knows mx approximately. Therefore, to use a ratio estimator of my seems appro-
priate. Determine the sample size needed to estimate my with a bound on the error of
estimation of magnitude .

SOLUTION Assuming no prior information is available, we must conduct a preliminary study
to estimate s2. Because an investigator can readily examine ten 1-acre plots in a day
to determine the total number of trees y per plot, conducting a preliminary study of

plots is convenient. The results of such a study are given in Table 6.4, with
the corresponding aerial estimates x.
n¿ = 10

B = 1.0

N = 1000-acre
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The scatter plot of the data, Figure 6.4, shows strong positive correlation with no
unusual observations (data points).

From the preliminary study,

r =

a
10

i=1
yi

a
10

i=1
xi

=

221

208
=

22.1

20.8
= 1.06

TABLE 6.4
Number of trees per plot

Plot Aerial estimate, x Actual number, y

1 23 25 0.5625
2 14 15 0.1250
3 20 22 0.7500
4 25 24 -2.5625
5 12 13 0.2500
6 18 18 -1.1250
7 30 35 3.1250
8 27 30 1.3125
9 8 10 1.5000

10 31 29 -3.9375

n Mean Median SD

y 10 20.80 21.50 7.79
x 10 22.10 23.00 8.06

10 0.000 0.41 2.06yi - rxi

yi - rxi

10 20 30
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FIGURE 6.4
Scatter plot for the data in Example 6.5

     



and

We now determine n from Eq. (6.21), where :

To summarize, we need to examine approximately 14 plots to estimate my, the aver-
age number of trees per 1-acre plot, with a bound on the error of estimation of

. We only need four additional observations because we have ten from the
preliminary study. ■

The sample size required to estimate ty with a bound on the error of estimation of
magnitude B can be found by solving the following expression for n:

(6.22)

or, from Eq. (6.15),

2tx1V(r) = B

22V(tNy) = B

B = 1.0

n =

NsN 2

ND + sN 2 =

1000(3.46)

1000(0.25) + 3.46
= 13.65

D = B2>4 = 1>4
sN 2

=

a
10

i=1
(yi - rxi)

2

9
= 4.20
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Sample size required to estimate Ty with a bound on the error
of estimation B:

(6.23)

where

D =

B2

4N2

n =

Ns2

ND + s2

EXAMPLE 6.6 An auditor wishes to compare the actual dollar value of an inventory of a hospital, ty,
with the recorded inventory, tx. The recorded inventory tx can be summarized from
computer-stored hospital records. The actual inventory ty could be determined by
examining and counting all the hospital supplies, but this process would be very
time-consuming and costly. Hence, the auditor plans to estimate ty from a sample of
n different items randomly selected from the hospital’s supplies.

Records in the computer list different item types and the number of
each particular item in the hospital inventory. With these data, a total value for each
item, x, can be obtained by multiplying the total number of each recorded item by the
unit value per item. The total dollar value of the inventory obtained from the computer,
tx, is found to be $45,000. Determine the sample size (number of items) needed to
estimate ty with a bound on the error of estimation of magnitude .B = $500

N = 2100
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SOLUTION Because there is no prior information available, a preliminary study must be conducted
to estimate s2. Two people can determine the actual dollar value y for each of 15 items
in a day. For this example, we use the data from a single day’s inventory (n� = 15) as a
preliminary study to obtain a rough estimate of s2 and, consequently, a rough approx-
imation of the required sample size n. Actually, the investigator would probably take
a preliminary study of two or three days’ inventory to provide a good approximation
to s2 and hence n; however, to simplify computations, we consider here a preliminary
study of items. These data are summarized in Table 6.5 along with the cor-
responding computer figures (entries in hundreds of dollars).

From these data,

and

The required sample size now can be found by using Eq. (6.23). We have

D =

B2

4N2 =

(500)2

4(2100)2 = 0.01417

sN 2
=

a
15

i=1
(yi - rxi)

2

14
= (2.73)2

= 7.45

r =

y

x
=

15.83

16.13
= 0.9814 L 0.98

n¿ = 15

TABLE 6.5
Inventory value

Dollar value Actual dollar 
Item from computer, x value, y

1 15.0 14.0 -0.72102
2 9.5 9.0 -0.32331
3 14.2 12.5 -1.43590
4 20.5 22.0 1.88128
5 6.7 6.3 -0.27539
6 9.8 8.4 -1.21773
7 25.7 28.5 3.27799
8 12.6 10.0 -2.36565
9 15.1 14.4 -0.41916

10 30.9 28.2 -2.12529
11 7.3 15.5 8.33577
12 28.6 26.3 -1.76807
13 14.7 13.1 -1.32660
14 20.5 19.5 -0.61872
15 10.9 9.8 -0.89727

n Mean Median SD

x 15 16.13 14.70 7.57
y 15 15.83 14.00 7.38

15 0.00 -0.72 2.73yi - rxi

yi - rxi

     



and hence,

Thus, the auditor must sample approximately 421 items to estimate ty, the actual dol-
lar value of the inventory, to within . ■

It appears that solutions to ratio estimation problems, as in Example 6.6, are neatly
solved by the techniques just presented, but let’s take a closer look at the sensitivity
of these calculations to a few particular data points. The scatter plot for the data in
Example 6.6 is shown in Figure 6.5. Note that most of the points lie close to a straight
line with positive slope, so there is strong positive correlation between y and x. One of
the points, however, lies quite far from the straight-line pattern generated by the rest
of the points. On another scale, Figure 6.6 plots the deviations against the
x values. Again, the one observation shows up as having an extremely large deviation
and hence makes an unusually large contribution to the variance.

This seemingly unusual data value should be checked for accuracy; perhaps some-
one misread the y value or the x value. If it is correct, perhaps it represents a very unusual
case (such as old items that have increased greatly in value since being purchased) and
can be removed from the database with justification for separate handling.

What happens to the analysis if this one data point is removed? The summary
calculations show that

and

These values produce a sample-size estimate of 163, in contrast to the original esti-
mate of 421! So, the estimates in ratio estimation, particularly estimates of variance
and sample size, are quite sensitive to data points that do not fit the ideal pattern for

sN 2
= (1.58)2

= 2.50

r =

15.86

16.76
= 0.95

(yi - rxi)

B = $500

n =

Ns2

ND + s2 =

2100(7.45)

2100(0.01417) + 7.45
= 420.2
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FIGURE 6.5
Scatter plot for the data in Example 6.6
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that technique, so-called influential observations. It is very important to plot the data
and look for these unusual data points before proceeding with an analysis.

6.5
Ratio Estimation in Stratified Random Sampling

For the same reasons indicated in Chapter 5, stratifying the population before using
a ratio estimator is sometimes advantageous. We assume that we can take a large enough
sample of both x and y in each stratum for the variance approximations to work fairly
well. In particular, it is usually suggested that the variance approximations work well
when the coefficient of variation of the mean of x is small (i.e.,
less than 0.10).

There are two different methods for constructing estimators of a ratio in stratified
sampling. One is to estimate the ratio of my to mx within each stratum by 
and then form a weighted average of these separate estimates as a single estimate of 

the population ratio, namely, . The result of this procedure is
called a separate ratio estimator.

The variance of the ith ratio is estimated by

where

In the event the stratum means of x are unknown, can be replaced by in
the usual way. 

The population mean of y can be estimated by

What is special about this estimator is that instead of multiplying the single ratio
by the population mean of x (i.e., ), we use ratio estimation separately for the
mean of y in each stratum, then combine them into an estimate of the population
mean of y. This usually yields a more precise estimator than the simpler formula. The
variance is estimated by

The other method involves first estimating my by the usual and similarly esti-
mating mx by . Then can be used as an estimator of my�mx. This
estimator is called a combined ratio estimator.
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The estimator of the variance of the ratio is

where

Note that the same ratio is used for calculating the variance in all strata.
In this case, the estimator for the mean of y is ,

with variance estimated by

EXAMPLE 6.7 Refer to Example 6.4. Treat the ten observations given there on worker-hours lost due
to sickness as a simple random sample from company A. Thus, ,

, , , and .
A simple random sample of measurements was taken from company B

within the same industry. (Assume companies A and B together form the population
of workers of interest in this problem.) The data are given in Table 6.6. It is known
that employees and . Find the separate ratio estimate of my

and its estimated variance.
txB = 12,800NB = 1500

nB = 10
txA = 16,300NA = 1000rA = 1.05xA = 17.8
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TABLE 6.6
Hours lost to sickness, company B

Worker-hours lost in Worker-hours lost in 
Employee previous year, xB current year, yB

1 10 8
2 8 0
3 0 4
4 14 6
5 12 10
6 6 0
7 4 2
8 0 4
9 8 4

10 16   8
78 46

     



6.5 Ratio Estimation in Stratified Random Sampling 189

SOLUTION The ratio estimator of myA is [see Eq. (6.6)], and its estimated variance
is given by Eq. (6.7). The corresponding estimator of myB is , with a
similar estimated variance.

To obtain an estimator of my, the population mean of the y values, we need to
average the estimators, as in Chapter 5. Thus, myRS (where the subscript RS stands for
separate ratio), given by

will be the estimator of my with estimated variance 

The observed value of from the data is 

The estimated variance is 0.403, which yields an estimated SD of 0.63. Refer to the
Excel tool for details.

From this, it is relatively easy to construct the estimated variance:

■

EXAMPLE 6.8 Refer to the data in Example 6.7 and find a combined ratio estimate of my.

SOLUTION Here we use to estimate my, to estimate mx, and 

(where RC stands for combined ratio) as the combined ratio estimator of my. If we
denote by rC, the estimated variance of is

where is the variance of the terms (yi - rCxi) for data set A and is the variance
of the corresponding deviations for data set B.

s2
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b a 18.7

17.8
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For the data given,

Hence, the observed value of is 

From the Excel tool, the variance is estimated to be 0.66. ■

Comparing Examples 6.7 and 6.8, we see that the combined ratio estimator gives
the larger estimated variance. This is generally the case, and so the separate ratio esti-
mator is used most of the time. However, the separate ratio estimator may have a
larger bias because each stratum ratio estimate contributes to that bias. In summary,
if the stratum sample sizes are large enough (say, 20 or so) so that the separate ratios
do not have large biases and so that the variance approximations work adequately,
then use the separate ratio estimator. If stratum sample sizes are very small, or if the
within-stratum ratios are all approximately equal, then the combined ratio estimator
may perform better. (See the solution to the opening case study, presented at the end
of this chapter.)

Of course, an estimator of the population total can be found by multiplying
either of the two estimators by the population size N and the variances can be adjusted
accordingly. The first of these estimators is then

6.6
Regression Estimation

We have seen in Section 6.3 that the ratio estimator is most appropriate when the
relationship between y and x is linear through the origin. If there is evidence of a linear
relationship between the observed y and x values, but not necessarily one that would
pass through the origin, then this extra information provided by the auxiliary variable
x may be taken into account through a regression estimator of the mean my. We must
still have knowledge of mx before the estimator can be employed, as it was in the case
of ratio estimation of my.

The line that shows the basic relationship between the y and x values is some-
times referred to as the regression line of y upon x. Thus, the subscript L in the ensuing

tNyRS = NmN yRS

10.24

11.80
 (11.64) = 10.10

mN yRC

 mx =

16,300 + 12,800

2500
= 11.64

 rC = 0.868

 xst = (0.4)(17.8) + (0.6)(7.8) = 11.80

 yst = (0.4)(18.7) + (0.6)(4.6) = 10.24
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6.6 Regression Estimation 191

formulas denotes linear regression. Fitting a straight line through a set of data pairs
(x, y) by the least-squares method produces a line of the form

where a is the y-intercept at and b is the slope of the regression line. The
intercept is given by 

Substituting this expression for a allows the equation for the regression line to be
written as

This line can be used to estimate the mean value of y for any value of x that we
choose to substitute for the xi. In particular, the estimator of my is obtained by
substituting mx for xi.

The regression estimator assumes the x values are fixed in advance and the y values
are random variables. We can think of the x value as something that has already been
observed, such as last year’s first-quarter earnings, and the y response as a random
variable yet to be observed, such as the current quarterly earnings of a company for
which x is already known. The probabilistic properties of the estimator then depend
only on y for a given set of x.

mN yL

yN i = y + b(xi - x)

a = y - bx

x = 0

yN i = a + bxi

Regression estimator of a population mean My:

(6.24)

where

Estimated variance of :

(6.25)

(6.26)

where MSE is the mean square error from the standard simple linear
regression of y on x.

 = a1 -

n

N
b aMSE

n
b

 VN (mN yL) = a1 -

n

N
b a 1

n
b Pa

n

i=1
(yi - (a + b)xi)

2

n - 2 Q
MN yL

b =

a
n

i=1
(yi - y)(xi - x)

a
n

i=1
(xi - x)2

mN yL = y + b(mx - x)

EXAMPLE 6.9 A mathematics achievement test was given to 486 students prior to their entering a
certain college. From these students a simple random sample of students was
selected and their progress in calculus observed. Final calculus grades were then

n = 10

     



reported, as given in Table 6.7. It is known that mx = 52 for all 486 students taking
the achievement test. Estimate my for this population and place a bound on the error
of estimation.

SOLUTION The first step of the analysis is to look at a scatter plot of the data. Figure 6.6 shows
that there is a strong positive association between y and x, and a straight line looks
like a reasonable model for this relationship.

In this case, . The observed value of is then

Notice that the regression estimator of my inflates the value of because turns out to
be less than mx and b is positive. The estimated variance (refer to the tool) is 7.42. Thus,

The estimated mean calculus score for this population of students is, then, 80.6 with
a margin of error of about . ■2(5.45) = 10.90

22VN (mN yL) = 5.45

xy

y + b(xi - x) = 76 + (0.766)(52 - 46) = 80.6

mN yLb = 0.766
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TABLE 6.7
Test scores and grades

Achievement Final calculus
Student test score, x grade, y

1 39 65
2 43 78
3 21 52
4 64 82
5 57 92
6 47 89
7 28 73
8 75 98
9 34 56

10 52 75

x

y

25.0 50.0 75.0

60

50

70

80

90

100

FIGURE 6.6
Scatter plot for the data in Example 6.9

     



6.7 Difference Estimation 193

It is good practice to plot the residuals to see if any are unusually large deviations
or if a pattern emerges that suggests the simple linear model is not a good one. For a
good model of y versus x, the residuals should simply be a random scattering of
points about a horizontal line at 0. Figure 6.7 shows the residuals in this case to be
fairly random; no particularly obvious pattern seems to be apparent. This is a good
situation for regression estimation.

A close examination of the data on sugar content and weight of oranges given
in Example 6.2 might suggest that a regression estimator is more appropriate than
a ratio estimator. (A plot of the points show that the regression line does not appear
to go through the origin.) However, the regression estimator of a total is of the form

, specifically requiring knowledge of N. Because the ratio estimator also
works well in this case, determining the number of oranges in the truckload may
not be worth the extra cost and time. In other cases, N may be known or easily
found. Thus, we should carefully consider the choice between ratio and regression
estimators when estimating population means or totals. There is more on this in
Section 6.8.

6.7
Difference Estimation

The difference method of estimating a population mean or total is similar to the re-
gression method in that it adjusts the value up or down by an amount depending
on the difference ( ). However, the regression coefficient b is not computed.
In effect, b is set equal to unity. The difference method is, then, easier to employ
than the regression method and frequently works well when the x values are highly
correlated with the y values and both are measured on the same scale. It is com-
monly employed in auditing procedures, and we consider such an example in this
section. The following formulas hold, provided that simple random sampling has
been employed.

mx - x
y

NmN yL

x
25.0 50.0 75.0

�7.5

�15.0

0.0

7.5

15.0

R
es

id
ua

ls

F IGURE 6.7
Residual plot for the data in Example 6.9

     



EXAMPLE 6.10 Auditors are often interested in comparing the audited value of items with the book
value. Generally, book values are known for every item in the population, and audit
values are obtained for a sample of these items. The book values can then be used to
obtain a good estimate of the total or average audit value for the population.

Suppose a population contains 180 inventory items with a stated book value of
$13,320. Let xi denote the book value and yi the audit value of the ith item. A simple
random sample of items yields the results shown in Table 6.8. A plot of these
data, Figure 6.8, shows them to lie along a straight line through the origin, with a
slope fairly close to unity. Estimate the mean audit value of my by the difference
method and estimate the variance of .

SOLUTION Because , , and mx = 74.0,

Also,

a 1

n - 1
ba

n

i=1
(di - d)2

= 6.27

mN yD = mx + d = 74.0 + (72.1 - 71.7) = 74.4

x = 71.7y = 72.1

mN yD

n = 10
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Difference estimator of a population My:

(6.27)

where .

Estimated variance of :

(6.28)

where di = yi - xi.

VN (mN yD) = a1 -

n

N
b a 1

n
b a

n

i=1
(di - d)2

n - 1

MN yD

d = y - x

mN yD = y + (mx - x) = mx + d

TABLE 6.8
Book and audit values

Sample Audit value, yi Book value, xi di

1 9 10 �1
2 14 12 �2
3 7 8 �1
4 29 26 �3
5 45 47 �2
6 109 112 �3
7 40 36 �4
8 238 240 �2
9 60 59 �1

10 170 167 �3
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50 100 150 200 250
x

50

100

150

200

250

y

FIGURE 6.8
Plot of y versus x for Example 6.10

and

The mean audit value is estimated to be $6.27, with a margin of error of approxi-
mately . ■

6.8
Relative Efficiency of Estimators

Bias

We now want to compare the variances of the three estimators of a population mean
introduced in this section, and compare them with that of the simple random sam-
pling estimator of Chapter 4. First, however, we must consider the question of bias,
because it is inappropriate to compare variances for biased estimators. The mean of
a simple random sample is always an unbiased estimator of my, so there is no bias
problem (theoretically, at least) in dealing with this estimator. On the other hand,
the ratio estimator of my is generally biased because is generally a biased
estimator of The bias becomes negligible if the relationship between
y and x falls along a straight line that runs through the origin. An approximation to
the relative bias of r is given by

where is the sample correlation coefficient between x and y.rN

E(r) - R

R
L aN - n

Nn
b a s2

x

x2 - rN  
sy

y
#
sx

x
b

R = my/mx.
r = y>x

y

220.59 = $1.54

VN (mN yD) = a1 -

n

N
b a 1

n
ba

n

i=1
(di - d)2

n - 1
= a1 -

10

180
b a 6.27

10
b = 0.59

     



As to the bias of the other two estimators, the regression estimator is biased for
finite populations. The bias is generally small if the relationship between y and x (the
regression of y on x) falls along a straight line, not necessarily through the origin. The
bias increases if the relationship between y and x lies along a curve. The difference
estimator is always unbiased in simple random sampling.

Simulations can be helpful in seeing how the bias inherent in ratio and regression
estimators plays out, practically speaking, in various situations. The following simu-
lations are based on two constructed populations, each with 200 elements from
which simple random samples of size 20 are selected. Population I has a strong lin-
ear pattern in the relationship between y and x, whereas population II has a definite
curvature in this relationship. Plots and summary statistics for the two populations
are shown in Figure 6.9.
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FIGURE 6.9
Two populations for simulation

     



6.8 Relative Efficiency of Estimators 197

Sampling distributions of estimators of the population mean were simulated
for each of four situations: ratio estimation from population I, regression esti-
mation from population I, ratio estimation from population II, and regression
estimation from population II. Each simulation consisted of 400 trials. Table 6.9
contains a summary of the results of the simulations. All of the sampling distri-
butions appear approximately normally distributed; one of these is shown in
Figure 6.10.

For population I, the ratio and regression estimators each have very small bias
and about the same amount of variation in the sampling distributions. Either esti-
mator performs well in this situation, although the ratio estimator does tend to
have slightly more bias and slightly larger variation. For population II, which
shows pronounced curvature in the relationship between the variables, the biases
are considerably larger for both estimators. However, the regression estimator
shows less bias and less variation than the ratio estimator. In general, then, as the
population relationship moves away for a straight line with intercept close to zero,
the ratio estimator performs less well than the regression estimator. As the popu-
lation relationship exhibits more curvature, the regression estimator becomes
more biased.

FIGURE 6.10
Simulated sampling distribution of the regression estimator, population I

20

19.0 20.0 21.0 22.0 23.0

40

60

Regression estimates

TABLE 6.9
Summaries of simulated sampling distributions for estimating my

Population I, Population II, 
my = 21.04 my = 12.43

Ratio estimation Mean of sampling distribution of 21.07 12.61
SD of sampling distribution 0.66 1.20

Regression estimation Mean of sampling distribution 21.02 12.55
SD of sampling distribution 0.65 0.88

     



Relative Efficiency

We have seen that the sample mean, ratio estimator, regression estimator, and dif-
ference estimator can all be used as estimators of a population mean my. How do we
tell which one is best for a particular sampling situation? Actually, we cannot always
answer definitively, but there are some guidelines that compare the properties of
estimators. One such guideline can be expressed in terms of the relative efficiency
of estimators.

Suppose we have two estimators El and E2 for a population parameter. If both
El and E2 are unbiased, or nearly unbiased, then we should generally choose the
one with the smaller variance as the better estimator. This will produce the nar-
rower confidence interval estimate for the parameter being estimated. Variances
usually decrease as the sample size increases, so we must compare the variances
of E1 and E2 assuming equal sample sizes for both estimators. It is convenient to
describe the relative size of the two variances by looking at their ratio. This ratio
is called the relative efficiency, denoted by RE, for the two estimators. We set up
the relative efficiency ratio so that a large value is favorable to the estimator
named first. Thus, the relative efficiency of El to E2 (or El with respect to E2) is
given by

If RE (E1�E2) is large (greater than 1), then V(E2) is larger than V(E1), which is fa-
vorable to El as an estimator of the parameter. Remember, the sample sizes for El and
E2 must be equal in this calculation.

Suppose RE(E1�E2) = 2. This implies that V(E2) = 2V(E1), which is a favorable
case for El. Another way to make this comparison is to state that the sample size for
E2 would have to be twice that for El in order to make El and E2 equivalent in terms
of variance. Thus, RE can be thought of in terms of equivalent sample sizes (or sam-
pling effort or sampling cost). An RE of 1 implies that the two estimators are equiv-
alent; it does not matter which one we use.

RE is usually defined in terms of theoretical variances. However, in most situa-
tions we have given only estimated variances in this book. So, we continue in that
spirit and define

We now must be careful in the interpretation. does not necessarily
mean that V(E2) � V(E1), because we are only dealing with estimators of variances,
which could change from sample to sample. However, if we have large samples and
good estimators of the variances, a value of considerably greater than 1
would certainly imply strongly that El is the better estimator.

REn (E1>E2)

REn (E1>E2) 7 1

REn aE1

E2
b =

VN(E2)

VN (E1)

REaE1

E2
b =

V(E2)

V(E1)
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6.8 Relative Efficiency of Estimators 199

On comparing the ratio estimator to the simple mean per element , we have 

Now, if

or

or

or

For situations in which the ratio estimator is commonly used, the y values are updated
values of the x (first-quarter earnings in one year compared to first-quarter earnings in
the previous year, audit value versus book value, and the like). In such cases, the coef-
ficient of variation for the y values should be quite close to that for the x values. Thus,
in such situations, the ratio estimator is more efficient than the simple mean per element
estimator if . In general, the ratio estimator will be more efficient than if the
variation among the x values is small relative to the variation among the y and the
correlation between x and y is a high positive value. If the experimenter has options as
to how to choose the x values, she should choose them to be nearly constant.

A simple comparison of the regression estimator with the mean per element and
the ratio estimator requires some modification of the estimated variance. Recall that 

where b is the usual estimator of the slope of a regression line. The estimated vari-
ance of was given [see Eq. (6.25)] as

If we make the slight change of replacing ( ) by ( ) in the denominator, we
have
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and, since

this becomes

This approximation to is good as long as n is reasonably large; the ( )
was used in the denominator to prevent serious underestimation of the variance in
small-sample situations. Using the simplified variance approximation

which will always be greater than unity if differs from zero. In fact, the RE can
become infinitely large as the correlation approaches unity. Thus, is always more
efficient than as an estimator of my. (However, recall that could have serious
bias problems unless the regression of y on x is truly linear.)

When comparing regression to ratio estimation, 

In this case, implies

or

Because , this can be written 

which implies

Thus, the regression estimator is more efficient than the ratio estimator unless b = r,
in which case they are equivalent. The case will occur when the regression of
y on x is linear through the origin and the variance of y is proportional to x.

The difference estimator

is always an unbiased estimator of my in simple random sampling, and its estimated
variance
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n

N
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can be written

On comparing the difference estimator with the sample mean per element, we have

which is greater than unity when 

or

If the variation in x and y values is about the same, the difference estimator will be
more efficient than when the correlation between x and y is greater than 1�2.

On comparing the regression estimator with the difference estimator, we have

which is greater than unity when

or

Because , the regression estimator will be equivalent to the difference
estimator when . Otherwise, the regression estimator will be more efficient
than the difference estimator.

We now look at some numerical values of REs for data analyzed earlier in this
chapter. The data from Table 6.1 on monthly housing costs are plotted in Figure 6.1.
Notice that the data points do exhibit a strong linear pattern. For this case,

so the relative bias of the ratio estimator is not serious. 
For these data,

It appears that the ratio estimator is a little better than the regression estimator in terms
of estimated variance, but not by much. (Remember, in theory the ratio estimator
cannot beat the regression estimator.) The difference estimator is less efficient than the
regression estimator and will also be less efficient than the ratio estimator. These
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relative efficiencies are reasonable close to unity, and any of the three estimators
would work well for the problem of estimating my or ty with these data. But

so that is a poor estimator of my compared to any one of the three estimators mak-
ing use of the x values. In other words, it would take nearly eight times as many ob-
servations to achieve the same variance with as is achieved with .

The data in Table 6.2 on sugar content versus weight of oranges are plotted in
Figure 6.2. Here, the data points fall along a straight line, but the slope is not close to
unity (in fact, ) and the y-intercept is significantly different from zero. The
relative bias of r is 0.00077, still not serious, but

This implies that better accuracy could be achieved in the estimation of my or ty by
employing the regression estimator rather than the ratio estimator. But the regression
estimator requires knowledge of mx, which, in turn, requires knowledge of N. It
would be prohibitively expensive to count the number of oranges on a truck each
time this estimate was needed.

The data from Example 6.9 on final calculus grades versus achievement test
scores, plotted in Figure 6.6, have a slope not very far from unity (b = 0.766) and a 
y-intercept far from zero. Calculations show that

Regression estimation is considerably better than ratio estimation here, but a differ-
ence estimator could have been used with little loss of efficiency.

For the data in Example 6.10, all three methods, ratio, regression, and difference,
are approximately equivalent; the difference estimator is the easiest to calculate, and
so it is a reasonable choice.

In summary, the analysis of bivariate data should always begin by plotting the
points. If the points fall along a straight line with intercept near zero, either ratio or
regression estimation will perform well. If the points fall along a straight line not
through the origin, then the regression estimator is likely to be better, in terms of effi-
ciency. If the points do not fall along a straight line, both ratio and regression estima-
tion, as presented in this chapter, could suffer from serious bias and large variance. In
such situations more complex regression models can be used, but that is beyond the
scope of this book.

6.9
Summary

This chapter has briefly presented ratio estimation of a population mean, total, and
ratio for simple random sampling. By measuring a variable y and a subsidiary variable
x on each element in the sample, we obtain additional information for estimating the
population parameter of interest. When a strong positive correlation exists between

REn amN yL

mN y
b = 4.84  and  REn amN yL

mN yD
b = 1.22

REn amN yL

mN y
b = 16.79

-

b = 0.123

mN yLy

y

REn amN yL

y
b = 7.63
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the variables x and y, the ratio estimation procedure usually provides more precise
estimators of my and ty than do the standard techniques presented in Chapter 4.

Sample-size requirements have been presented for estimating my, ty, and R with a
bound on the error of estimation equal to B. In each case, we must obtain an estimate
of s2 from prior information or from a preliminary study to approximate the required
sample size.

Regression estimation is another technique for incorporating information on a
subsidiary variable. This method is usually more precise than ratio estimation if the
relationship between the y and x values is a straight line, not necessarily through the
origin.

Although these methods can be employed with any sampling design, we have
concentrated on simple random sampling, while mentioning stratified random sam-
pling for the ratio case.

The method of difference estimation is similar in principle to regression estima-
tion. It works well when the plot of y versus x reveals points lying close to a straight
line with unit slope.

C A S E  S T U D Y R E V I S I T E D

HOW LARGE ARE SECTION SIZES IN ELEMENTARY STATISTICS
COURSES?

The estimation of the mean number of students per section calls for a combined ratio
estimator because the sample sizes are small in all five strata. Separate ratio estima-
tors thus have the potential to be quite biased. The combined ratio estimator uses
stratified sampling estimators of both the mean of the y (enrollments) and the mean of
the x (numbers of sections). The within-stratum components of the calculations are
provided in the accompanying table.

Stratum ni Ni (riC)

1 6 12 323.33 4.00 258 346.688
2 10 21 648.00 11.80 933 327.471
3 5 12 636.00 9.80 584 414.305
4 7 12 1051.29 16.14 853 166.258
5 4 13 633.75 8.00 663 1188.738

VNsrixiyi

Making use of these summary statistics, it follows that and
. Then, the combined ratio estimate is

The variance of this estimator is found by

which yields an estimate of 90.44, which provides a margin of error of 2(9.51) =

19.02.

var(mN Y,CR) = a
L

i=1
aNi

N
b2a1 -

ni

Ni
b  

s2
RCR

ni

rC =

yst

xst
=

656.774
10.159

= 64.65

10.159yst =
yst = 656.774

     



In conclusion, it is estimated that the mean size per discussion section for large-
lecture introductory statistics courses is approximately 65 students, plus or minus
19. This is not a very precise estimate primarily because of the small sample sizes
and the large amount of variation among the numbers of sections per responding
university.

Using the methodology described in Chapter 5, it is easy to see that the estimate
of the total number of students enrolled in these large-section courses (in statistics
departments) in the fall of 2000 is simply N times the estimated mean enrollment, or
70(656.774) 45,974. The margin of error turns out to be approximately 9000, again
suggesting a fairly imprecise estimate.

■

Exercises Some of the exercises are relatively data-intensive; look in the electronic section 6.0 for links
to those data in Excel files.

6.1 A forester is interested in estimating the total volume of trees in a timber sale. He
records the volume for each tree in a simple random sample. In addition, he measures
the basal area for each tree marked for sale. He then uses a ratio estimator of total
volume.

The forester decides to take a simple random sample of from the 
trees marked for sale. Let x denote basal area and y the cubic-foot volume for a tree. The
total basal area for all 250 trees, tx, is 75 square feet. Use the data in the accompanying
table to estimate ty, the total cubic-foot volume for those trees marked for sale, and place
a bound on the error of estimation.

N = 250n = 12

=
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Tree Square-foot Tree Square-foot 
sampled basal area, x Volume, y sampled basal area, x Volume, y

1 0.3 6 7 0.6 12
2 0.5 9 8 0.5 9
3 0.4 7 9 0.8 20
4 0.9 19 10 0.4 9
5 0.7 15 11 0.8 18
6 0.2 5 12 0.6 13

6.2 Use the data in Exercise 6.1 to compute an estimate of ty, using . Place a bound on
the error of estimation. Compare your results with those obtained in Exercise 6.1. Why
is the estimate , which does not use any basal-area data, much larger than the ratio es-
timate? (Look at mx and . Speculate about the reason for this discrepancy?)

6.3 A consumer survey was conducted to determine the ratio of the money spent on food to
the total income per year for households in a small community. A simple random sample
of 14 households was selected from 150 in the community. Sample data are given in the
accompanying table. Estimate R, the population ratio, and place a bound on the error of
estimation. Which points have greatest influence on the estimate?

x
Ny

Ny
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Total Amount spent Total Amount spent 
Household income, x on food, y Household income, x on food, y

1 25,100 3800 8 28,200 3600
2 32,200 5100 9 34,600 3800
3 29,600 4200 10 32,700 4100
4 35,000 6200 11 31,500 4500
5 34,400 5800 12 30,600 5100
6 26,500 4100 13 27,700 4200
7 28,700 3900 14 28,500 4000

Three-month Three-month Three-month Three-month 
data from data from data from data from 

Office previous year, xi current year, yi Office previous year, xi current year, yi

1 550 610 8 1200 1440
2 720 780 9 1350 1570
3 1500 1600 10 1750 2210
4 1020 1030 11 670 980
5 620 600 12 729 865
6 980 1050 13 1530 1710
7 928 977

6.5 Use the data in Exercise 6.4 to estimate the mean earnings for offices within the corpo-
ration. Place a bound on the error of estimation.

6.6 An investigator has a colony of rats that have been subjected to a standard drug.
The average length of time to thread a maze correctly under the influence of the standard drug
was found to be seconds. The investigator now would like to subject a random
sample of 11 rats to a new drug. Estimate the average time required to thread the maze while
under the influence of the new drug. (The data are shown in the accompanying table.) Place
a bound on the error of estimation. [Hint: Employing a ratio estimator formy is reasonable if
we assume that the rats will react to the new drug in much the same way as they reacted to
the standard drug.] What is the most unusual feature of the scatter plot for these data?

mx = 17.2

N = 763

Standard New drug, Standard New drug, 
Rat drug, xi yi Rat drug, xi yi

1 14.3 15.2 7 17.6 17.5
2 15.7 16.1 8 14.3 14.1
3 17.8 18.1 9 14.9 15.2
4 17.5 17.6 10 17.9 18.1
5 13.2 14.5 11 19.2 19.5
6 18.8 19.4

6.4 A corporation is interested in estimating the total earnings from sales of color television
sets at the end of a three-month period. The total earnings figures are available for all
districts within the corporation for the corresponding three-month period of the previous
year. A simple random sample of 13 district offices is selected from the 123 offices within
the corporation. Using a ratio estimator, estimate ty and place a bound on the error of es-
timation. Use the data in the accompanying table and take .tx = 128,200

     



6.8 Return to the data of Table 6.1 and the scenario in Example 6.1. Estimate the percentage
change in mean typical values of houses from 1994 to 2002 for the 47 MSAs covered by
the American Housing Survey, with an appropriate margin of error. Compare this result
to the percentage change in the monthly cost.

6.9 A forest resource manager is interested in estimating the number of dead fir trees in a
300-acre area of heavy infestation. Using an aerial photo, she divides the area into 200
1.5-acre plots. Let x denote the photo count of dead firs and y the actual ground count for
a simple random sample of plots. The total number of dead fir trees obtained
from the photo count is tx = 4200. Use the sample data in the accompanying table to
estimate ty, the total number of dead firs in the 300-acre area. Place a bound on the error
of estimation.

n = 10
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Plot Photo Ground Plot Photo Ground
sampled count, xi count, yi sampled count, xi count, yi

1 12 18 6 30 36
2 30 42 7 12 14
3 24 24 8 6 10
4 24 36 9 36 48
5 18 24 10 42 54

6.10 Members of a teachers’ association are concerned about the salary increases given to
high school teachers in a particular school system. A simple random sample of 
teachers is selected from an alphabetical listing of all high school teachers in the sys-
tem. All 15 teachers are interviewed to determine their salaries for this year and the
previous year (see the accompanying table). Use these data to estimate R, the rate of
change, for high school teachers in the community school system. Place aN = 750

n = 15

Original Current Original Current 
Rabbit weight weight Rabbit weight weight

1 3.2 4.1 6 3.1 4.1
2 3.0 4.0 7 3.0 4.2
3 2.9 4.1 8 3.2 4.1
4 2.8 3.9 9 2.9 3.9
5 2.8 3.7 10 2.8 3.8

6.7 A group of 100 rabbits is being used in a nutrition study. A prestudy weight is recorded
for each rabbit. The average of these weights is 3.1 pounds. After two months, the ex-
perimenter wants to obtain a rough approximation of the average weight of the rabbits.
She selects rabbits at random and weighs them. The original weights and cur-
rent weights are presented in the accompanying table. Estimate the average current
weight, and place a bound on the error of estimation. What does the scatter plot sug-
gest concerning the relationship between current weight and original weight for these
rabbits?

n = 10
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Past year’s Present year’s Past year’s Present year’s 
Teacher salary salary Teacher salary salary

1 30,400 31,500 9 30,416 31,420
2 31,700 32,600 10 30,397 31,600
3 32,792 33,920 11 33,152 34,560
4 34,956 36,400 12 31,436 32,750
5 31,355 32,020 13 34,192 35,800
6 30,108 31,308 14 32,006 33,300
7 32,891 34,100 15 32,311 33,920
8 30,216 31,320

6.11 An experimenter was investigating a new food additive for cattle. Midway through the
two-month study, he was interested in estimating the average weight for the entire herd
of steers. A simple random sample of steers was selected from the herd
and weighed. These data and prestudy weights are presented in the accompanying table
for all cattle sampled. Assume mx, the prestudy average, was 880 pounds. Estimate my,
the average weight for the herd, and place a bound on the error of estimation. Which
points have greatest influence on the estimate? Do these points look like they might be in
error? Why?

n = 12N = 500

6.12 An advertising firm is concerned about the effect of a new regional promotional campaign
on the total dollar sales for a particular product. A simple random sample of stores
is drawn from the regional stores in which the product is sold. Quarterly sales
data are obtained for the current three-month period and the three-month period prior to
the new campaign. Use these data (see the accompanying table) to estimate ty, the total
sales for the current period, and place a bound on the error of estimation. Assume

. Does it look like these stores may be in two different size groups? (Check
the scatter plot.)
tx = 216,256

N = 452
n = 20

Prestudy Present Prestudy Present 
weight weight weight weight

Steer (pounds) (pounds) Steer (pounds) (pounds)

1 815 897 7 1323 1428
2 919 992 8 1067 1152
3 690 752 9 789 875
4 984 1093 10 573 642
5 500 768 11 834 909
6 560 828 12 1049 1122

bound on the error of estimation. What pattern of grouping is suggested by the scatter
plot?
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Cattle, yi Hogs, xi Cattle, yi Hogs, xi

42.40 47.80 39.65 49.40
41.40 48.60 38.45 44.30
39.60 48.20 37.80 43.90
39.45 46.75 37.20 42.70
37.00 46.50 37.60 43.25
37.80 45.40 37.50 44.55
38.55 47.30 36.90 45.10
38.60 48.20 37.30 45.00
38.80 49.40 38.60 45.25

6.13 Use the data in Exercise 6.12 to determine the sample size required to estimate ty, with
a bound on the error of estimation equal to $3800.

6.14 Refer to Exercises 6.4 and 6.5. By using a regression estimator, estimate the mean earn-
ings my and place a bound on the error of estimation. Compare your answer with that in
Exercise 6.5. Are there any advantages to using the regression estimator here?

6.15 Show how to adjust the regression estimator of a mean, Eqs. (6.24) and (6.25), for esti-
mating a total ty rather than a mean my. Show how to make adjustments for estimating a
ratio of means.

6.16 Refer to Exercise 6.9. Estimate ty by using a regression estimator and place a bound on
the error of estimation. Do you think the regression estimator is better than the ratio es-
timator for this problem?

6.17 Traders on the futures market are interested in relative prices of certain commodities
rather than specific price levels; these relative prices can be presented in terms of a ratio.
One such important ratio in agriculture is the cattle/hog ratio. From 64 trading days in the
first quarter of 1977, the cattle and hog prices were sampled on 18 days, with the results
as shown in the accompanying table. Estimate the true value of (my�mx) for this period
and place a bound on the error of estimation.

Precampaign Present Precampaign Present 
Store sales sales Store sales sales

1 208 239 11 599 626
2 400 428 12 510 538
3 440 472 13 828 888
4 259 276 14 473 510
5 351 363 15 924 998
6 880 942 16 110 171
7 273 294 17 829 889
8 487 514 18 257 265
9 183 195 19 388 419

10 863 897 20 244 257

     



a. Estimate the ratio of the average market share calculated by the weekend method
to that calculated by the traditional method. Place a bound on the error of
estimation.

b. Estimate the ratio of the average market share calculated by the purchase
method to that calculated by the traditional method. Place a bound on the error of
estimation.

c. Which of the less costly methods (W or P) compares more favorably with the tradi-
tional method?

d. What problems for this analysis show up in the scatter plots?

6.22 From the data given in the accompanying table on expenditures from six different areas
of the U.S. health-care field, estimate the ratio of health-care expenditures in 1991 to
those for 1980, and place a bound on the error of estimation. What are the shortcomings

Exercises 209

Which data points have greatest influence on the answer? What happens to the estimated
ratio when they are removed?

6.18 Under what conditions should you employ a ratio estimator of a population total, rather
than an estimator of the form ?

6.19 Discuss the relative merits of ratio, regression, and difference estimation.

6.20 Exercise 5.4 in Chapter 5 gives data on the typical sales price and typical size of houses
for certain MSAs and CMSAs in the United States. Treating these data as coming from
a stratified random sample with MSAs and CMSAs as the two strata, estimate the aver-
age price per square foot for new one-family homes in the United States. Place a bound
on the error of estimation.

6.21 A traditional audit expresses retail sales as opening inventory plus store purchases minus
closing inventory. Thus, such an audit looks at these three items for a retail store over a
period (say, six weeks) in order to report total sales. Such data combined from several
stores and collected for a variety of competing brands allow you to estimate market
shares (percentage of the total market held by a certain brand).

Faster methods of estimating market shares are the weekend sell down and store pur-
chase audit methods. The first eliminates the store purchases, because purchases are min-
imal on a weekend, but uses a shorter time frame and is subject to distortion by weekend
specials. The second uses only purchase information to compute market share and
involves no audit of inventories.

Data on market shares calculated by the three methods, traditional (T), weekend
(W), and purchases (P), are given in the accompanying table for one brand of beer.
Observations were taken in six different periods within a year.

Ny

T W P T W P

15 16 12 14 16 11
18 17 14 13 12 8
16 17 20 16 18 15

     



a. Find a ratio estimator of the 1989 total income, and place a bound on the error of
estimation.

b. Find a regression estimator of the 1989 total income, and place a bound on the error
of estimation.

c. Find a difference estimator of the 1989 total income, and place a bound on the error
of estimation.

d. Which of the three methods, parts (a), (b), or (c), is most appropriate in this case? Why?

6.24 Return to the data in Table 6.3 and the scenario in Example 6.3.
a. The yield of a crop is defined as the production per acre. Estimate the mean yield for

1999 and approximate a margin of error for this estimate. Do the same for 1997 and
comment on how the two yield estimates compare.
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Area 1991 1980

Hospital care 288.6 102.4
Physicians’ services 142.0 41.9
Dentists’ services 37.1 14.4
Home health care 9.8 1.3
Drugs 60.7 21.6
Nursing home care 59.9 20.0

SOURCE: U.S. Bureau of the Census, Statistical Abstract of the United States,
1993–94, Washington, D.C., 199.

of this estimate of the true ratio of health-care expenditures in the United States?
(Figures are in billions of dollars.)

Industry 1980 1989

Lumber and wood products 21 26
Electric and electronic 63 91

equipment
Motor vehicles and 91 47

equipment
Food and kindred products 60 70
Textile mill products 70 70
Chemicals and allied 50 50

products

SOURCE: U.S. Bureau of the Census, Statistical Abstract of the United
States, 1993–94, Washington, D.C., 199.

6.23 National income from manufacturing industries is to be estimated for 1989 from a sam-
ple of 6 of the 19 industry categories that reported figures early for that year. Incomes
from all 19 industries are known for 1980 and the total is $674 billion. From the data pro-
vided, estimate the total national income from manufacturing in 1989, with a bound on
the error. All figures are in billions of constant (1982) dollars.

     



6.26 For Exercises 6.1 and 6.2, a regression estimator could be employed. Compute the rela-
tive efficiency of
a. ratio estimation to simple random sampling.
b. regression estimation to simple random sampling. 
c. regression estimation to ratio estimation.

Can you give practical reasons for the results in parts (a), (b), and (c)? 

6.27 For Exercise 6.6 compute the estimated relative efficiencies of
a. regression estimation to ratio estimation.
b. regression estimation to difference estimation. 
c. ratio estimation to difference estimation.

Which method of estimation do you recommend?

6.28 Follow the instructions given in Exercise 6.27 for the data in Exercises 6.9 and 6.11.

6.29 It is desired to estimate the average amount of overdue accounts for a certain firm.
A simple random sample of accounts will yield an observation yi on the current
amount overdue. A check of records will give the overdue amount xi for the same
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Brand I Brand II

xi yi xi yi

204 210 137 150
143 160 189 200
82 75 119 125

256 280 63 60
275 300 103 110
198 190 107 100

159 180
63 75
87 90

b. Estimate the mean acreage per county by making use of the regression method. Com-
ment on how this result compares to the one in Example 6.3, which uses the ratio
method.

c. Estimate the total production for 1999 making use of the auxiliary data for 1997.
Does the ratio or regression method seem better suited for this task?

6.25 A certain manufacturing firm produces a product that is packaged under two brand
names, for marketing purposes. These two brands serve as strata for estimating poten-
tial sales volume for the next quarter. A simple random sample of customers for each
brand is contacted and asked to provide a potential sales figure y (in number of units)
for the coming quarter. Last year’s true sales figure, for the same quarter, is available for
each of the sampled customers and is denoted by x. The data are given in the accompa-
nying table. The sample for brand I was taken from a list of 120 customers for whom
the total sales in the same quarter of last year was 24,500 units. The brand II sample
came from 180 customers with a total quarterly sales last year of 21,200 units. Find a
ratio estimate of the total potential sales for next quarter. Estimate the variance of your
estimator.

     



Suggest an estimator of the average amount of overdue accounts for the firm and show
how you would calculate an approximate variance for this estimator.

6.32 The data in the accompanying table show a number of variables related to police protec-
tion for a random sample of 12 states. The data are for 1999. The variables are

State population in thousands

Total number of police protection employees per 10,000 population

Number of sworn police officers per 10,000 population

Per-capita expenditures for total police protection employees

Crime rate as number of reported crimes per 100,000 population

The total population of the United States in 1999 was approximately 281,375,000.
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period last year. Also, the population mean mx for last year can be determined. Dis-
cuss how you would determine whether to use as an estimator of the mean amount
overdue:
a. The sample mean of the yi values
b. A ratio estimator
c. A regression estimator
d. A difference estimator

6.30 We have seen that it is often of interest to compare audit values (y) with book values (xi),
and that the difference is sometimes a good basis from which to make this
comparison. The ratio of this difference to the book value is called the taint of a particu-
lar item, denoted by Ti. Thus, for item i,

Using the data on audit and book value in Example 6.10, estimate the true ratio of average
difference to average book value (which is one way to describe the average taint).

6.31 It is desired to estimate the average amount of overdue accounts for a firm with two
branches. The branches are treated as strata. In each stratum, a ratio estimator is used
because exact information on the overdue amounts for this time last year can be deter-
mined. A simple random sample of accounts within each stratum yields an observation yi

on the current amount overdue. A check of records gives the overdue amount xi for this
time last year. Also, the population means mx for last year can be determined. The infor-
mation available is presented in the table.

Ti =

di

xi

di = yi - xi

Branch 1 Branch 2

N1 N2

n1 n2

mx1 mx2

x2x1

y2y1
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Population Total police Sworn police Expenditure Crime 
State (thousands) protection officers per capita rate

Maine 1275 25.6 17.8 122.5 2875
New Jersey 8414 39.3 28.6 236.6 3400
Illinois 12,419 36.4 27.3 224.4 4515
Missouri 5595 30.7 21.4 153.9 4578
Virginia 7079 25.4 19.2 156.6 3374
Florida 15,982 33.3 22.6 224.2 6205
Louisiana 4469 34.3 26.0 183.3 5747
Colorado 4301 28.4 20.6 180.9 4063
Washington 5894 23.3 16.5 162.0 5255
California 33,872 28.0 18.8 240.9 3805
Iowa 2926 23.7 17.5 135.8 3224
Texas 20,852 27.8 21.2 148.5 5032

SOURCE: http://www.ojp.usdoj.gov/bjs/pub/sheets/jeeus99.zip; http://www.census.gov/prod/www/statistical-abstract-
02.html

L W L W
Alligator (inches) (pounds) Alligator (inches) (pounds)

1 94 130 14 86 83
2 74 51 15 88 70
3 147 640 16 72 61
4 58 28 17 74 54
5 86 80 18 61 44
6 94 110 19 90 106
7 63 33 20 89 84
8 86 90 21 68 39
9 69 36 22 76 42

10 72 38 23 114 197
11 128 366 24 90 102
12 85 84 25 78 57
13 82 80

a. Choosing an appropriate auxiliary variable and an appropriate method, estimate the
total number of police protection employees in the country in 1999, with a margin of
error. Comment on the influence of California on this result.

b. Estimate the mean cost per police protection employee for the United States, with a
margin of error. Comment on the influence of California on this result.

c. Estimate the ratio of sworn police officers to the number of crimes per 10,000 of pop-
ulation, with an appropriate margin of error. Does any one state appear to have undue
influence on this estimate?

6.33 The Florida Game and Freshwater Fish Commission is interested in estimating weights
of alligators from much more easily observed lengths. Data on the lengths (L) and
weights (W ) of 25 alligators are given in the accompanying table. Estimate the average
weight of a population of alligators for which the average length is 100 inches.

     

http://www.ojp.usdoj.gov/bjs/pub/sheets/jeeus99.zip
http://www.census.gov/prod/www/statistical-abstract-02.html
http://www.census.gov/prod/www/statistical-abstract-02.html


214 Chapter 6 Ratio, Regression, and Difference Estimation

6.34 In building a model to study automobile fuel consumption, Biggs and Akcelik (Journal
of Transportation Engineering, 113, no. 1, January 1987, pp. 101–106) begin by looking
at the relationship between idle fuel consumption and engine capacity. Suppose the data
are as presented in the table. 

Idle fuel 
consumption 
(milliliters Engine size
per second) (liters)

0.18 1.2
0.21 1.2
0.17 1.2
0.31 1.8
0.34 1.8
0.29 1.8
0.42 2.5
0.39 2.5
0.45 2.5
0.52 3.4 
0.61 3.4 
0.44 3.4 
0.62 4.2
0.65 4.2
0.59 4.2

For a population of automobiles with engine size 2.5 liters, estimate the average idle fuel
consumption, with a bound on the error of estimation.

6.35 The Materials Science Department of the University of Florida carried out a research
project to determine properties of self-lubricating bearings made by sintering copper and
tin powders. One important property is the porosity of the resulting metal, measured by
the weight of liquid wax taken up by the metal. (A large value for weight indicates a
highly porous material.) The data in the table come from one of these experiments con-
ducted on a sample of 11 specimens all of the same initial size. Your goal is to estimate
the mean weight of wax (porosity) for a manufacturing process with sintering time set at
10 minutes.
a. Will ratio estimation be useful here? Why or why not?
b. Will regression estimation be useful here? Why or why not?
c. Choose a method and carry out the estimation of mean weight for 10-minute sinter-

ing times, with an appropriate margin of error.
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Time Weight 
(minutes) (grams)

7 0.615
7 0.606
7 0.611
9 0.586

11 0.511
11 0.454
11 0.440
13 0.393
15 0.322
15 0.343
15 0.341

6.1 The data set TEMPS in Appendix C (and on the data disk) shows normal temperature
(T ) and amount of precipitation (P) for weather stations around the United States.
Using the January and March precipitation data as the population of interest, select a
sample of n stations to answer the following. Choose an appropriate sample size and
find a margin of error for each part.

a. Estimate the ratio of the average March precipitation to the average January
precipitation. 

b. Estimate the average March precipitation for all stations, making use of the January
and March data. Choose one of the estimators from this chapter and give reasons for
your choice.

6.2 Data on the U.S. population is provided in the file USPOP, on the data disk and in
Appendix C. 
a. Select a simple random sample of ten states to estimate the proportion of the popula-

tion in the 18–24 age group. From the same sample, estimate the percentage of the
population living in poverty. Calculate a margin of error for each estimate.

b. Divide the states into two strata, those west of the Mississippi River and those east of
the river. Select a stratified random sample of five states from each stratum to use in
estimating the proportion of the population in the 18–24 age group. Calculate a mar-
gin of error. Did stratification help improve the precision in this example? Explain
why or why not.

6.3 An interesting project is to estimate what proportion of the money spent on entertain-
ment by students in your community goes to a specific type of entertainment, such as
movie theaters. You can obtain this estimate by listing a simple random sample of n stu-
dents, calling them on the telephone (or interviewing them personally), and recording the
total amount spent on entertainment (xi) as well as the amount spent on movies (yi), and
then estimating the ratio (my�mx) and placing a bound on the error.

Think about sample size before you begin the study. Also, concentrating on students
in one locality, such as an apartment building or group of fraternity houses (rather than
students at large) may be most convenient. Nonresponse is always a problem when deal-
ing with human populations, so try to think of ways to minimize it.

Sampling
from Real
Populations

     



6.4 Ratio estimation is often a convenient method of estimating properties of physical
objects that are difficult to measure directly. Gather a box of rocks or other irregularly
shaped objects. You wish to estimate the total volume of the rocks. Volume of irregularly
shaped objects is somewhat difficult to measure, but volume is related to weight, which
is quite easy to measure. Thus, volume can be estimated by using the ratio of volume
to weight.

Select a sample of n rocks. Measure the weight and the volume for each rock in the
sample. (You may want to use water displacement as a method of measuring volume.)
Then obtain the total weight of all the rocks in the box. Use these data to construct an
estimate, with a bound on the error, of the total volume of the rocks.

6.5 The data set SCHOOLS in Appendix C and on the data disk contains information for the
2001–2002 school year on various aspects of education for all 50 states. Select a simple
random sample of eight states to answer the following.
a. Estimate the mean per-pupil expenditure for the United States, with a margin of error. 
b. Estimate the mean per-capita expenditure for the United States, with a margin of

error.
c. Estimate the student–teacher ratio (average number of students per teacher) for the

United States, with a margin of error.
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7

Systematic Sampling

C A S E  S T U D Y

IS QUALITY BEING MAINTAINED BY THE MANUFACTURER?

Both consumers and manufacturers are concerned about the quality of items pur-
chased or produced. Consumers want assurances that they are buying a product that
will perform according to specifications, and manufacturers want evidence that their
products are meeting certain standards. Such evidence is most often provided by
quality control sampling plans within the manufacturing operation. These sampling
plans often involve selecting items for inspection from a continuously moving produc-
tion line. The selection process may require the sampling of every 100th manufactured
item, one item every hour, or some similar systematic plan. The observed quality char-
acteristic for each item may be a measurement, such as weight or time to failure, or
simply a classification into the categories of “conforming” and “nonconforming.” The
average value of the observed characteristic is then compared with a standard value
to see whether quality is being maintained.

In the manufacture of certain hydraulic equipment, one important component is
a bronze casting. The main quality characteristic of the casting is the percentage of
copper it contains. In the manufacturing process, one casting is selected after each
half-hour of production, and the data on percentage copper are accumulated over
an eight-hour day. Thus, 16 measurements are obtained. For one day’s production
the percentages of copper averaged 87, with a variance of 18. The standard for the
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bronze was 90% copper. Is the standard being met? The techniques presented in this
chapter will help us answer the question.

■

7.0
Tools

Interactive Excel tools for doing calculations in this chapter can be found on the CD
that accompanies this book. In the Chapter Seven Tools folder, you will find a Word
file named Section 7.0 (tools). Therein links have been provided to the relevant com-
putational tools for this chapter. In the text, we use an icon (pictured on the left) as a
reminder for equations for which we have built tools. Also, data for some of the chap-
ter exercises are available via a link in that section.

7.1
Introduction

As we have seen in Chapters 4 and 5, both simple random sampling and stratified
random sampling require very detailed work in the sample selection process. Sam-
pling units on an adequate frame must be numbered (or otherwise identified) so that
a randomization device, such as a random number table, can be used to select specific
units for the sample. A sample survey design that is widely used primarily because it
simplifies the sample selection process is called systematic sampling.

The basic idea of systematic sampling is as follows. Suppose a sample of n names
is to be selected from a long list. A simple way to make this selection is to choose an
appropriate interval and to select names at equal intervals along the list. Thus, every
tenth name might be selected, for example. If the starting point for this regular selec-
tion process is random, the result is a systematic sample.

DEFINITION 7.1

A sample obtained by randomly selecting one element from the first k elements in
the frame and every kth element thereafter is called a 1-in-k systematic sample with
a random start. ■

As in previous chapters, we present methods for estimating a population mean,
total, and proportion. We also discuss appropriate bounds on the error of estimation
and sample-size requirements.

Systematic sampling provides a useful alternative to simple random sampling for
the following reasons:

1. Systematic sampling is easier to perform in the field and hence is less subject to
selection errors by fieldworkers than are either simple random samples or strati-
fied random samples, especially if a good frame is not available.
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2. Systematic sampling can provide greater information per unit cost than simple
random sampling can for populations with certain patterns in the arrangement of
elements.

In general, systematic sampling involves random selection of one element from
the first k elements and then selection of every kth element thereafter. This procedure is
easier to perform and usually less subject to interviewer error than is simple random
sampling. For example, using simple random sampling to select a sample of 
shoppers on a city street corner would be difficult. The interviewer could not deter-
mine which shoppers to include in the sample because the population size N would
not be known until all shoppers had passed the corner. In contrast, the interviewer could
take a systematic sample (say, 1 in 20 shoppers) until the required sample size was
obtained. This procedure would be an easy one for even an inexperienced interviewer.

In addition to being easier to perform and less subject to interviewer error, sys-
tematic sampling frequently provides more information per unit cost than does sim-
ple random sampling. A systematic sample is generally spread more uniformly over
the entire population and thus may provide more information about the population
than an equivalent amount of data contained in a simple random sample. Consider
the following illustration. We wish to select a 1-in-5 systematic sample of travel
vouchers from a stack of (i.e., sample vouchers) to determine
the proportion of vouchers filed incorrectly. A voucher is drawn at random from the
first five vouchers (e.g., number 3), and every fifth voucher thereafter is included in
the sample.

Suppose that most of the first 500 vouchers have been correctly filed, but because
of a change in clerks the second 500 have all been incorrectly filed. Simple random
sampling could accidentally select a large number (perhaps all) of the 200 vouchers
from either the first or the second 500 vouchers and hence yield a very poor estimate
of p. In contrast, systematic sampling would select an equal number of vouchers
from each of the two groups and would give a very accurate estimate of the propor-
tion of vouchers incorrectly filed.

Additional examples are discussed in Section 7.3 to illustrate how to choose be-
tween systematic and simple random sampling in a given situation. Note, however,
that the accuracy of estimates from systematic sampling depends on the order of the
sampling units in the frame. If the incorrect vouchers are randomly dispersed among
all vouchers, then the advantage of systematic sampling is lost.

Systematic sampling is very commonly used in a wide variety of contexts. The
U.S. Census directs only a minimal number of questions to every resident, but it gathers
much more information from a systematic sample of all residents. In the 2000 cen-
sus, the “long form” of the census questionnaire was distributed to, approximately, a
1-in-6 systematic sample of residents.

The Gallup poll begins its sampling process by listing election districts in the
United States and then systematically selecting 300 or so for a follow-up study of
households. The households, or dwellings, within a sampled district may again be
selected systematically—by choosing the second dwelling in every other block when
moving east to west, for example.

Industrial quality control sampling plans are most often systematic in structure.
An inspection plan for manufactured items moving along an assembly line may call

n = 200N = 1000

n = 50
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for inspecting every 50th item. An inspection of cartons of products stored in a ware-
house may suggest sampling the second carton from the left in the third row down from
the top in every fifth stack. In the inspection of work done at fixed stations, the inspec-
tion plan may call for walking up and down the rows of workstations and inspecting the
machinery at every tenth station. The time of day is often important in assessing qual-
ity of worker performance, and so an inspection plan may call for sampling the output
of a workstation at systematically selected times throughout the day.

Auditors are frequently confronted with the problem of sampling a list of accounts
to check compliance with accounting procedures or to verify dollar amounts. The
most natural way to sample these lists is to choose accounts systematically.

Market researchers and opinion pollsters who sample people on the move very often
employ a systematic design. Every 20th customer at a checkout counter may be asked his
or her opinion on the taste, color, or texture of a food product. Every tenth person board-
ing a bus may be asked to fill out a questionnaire on bus service. Every 100th car enter-
ing an amusement park may be stopped and the driver questioned on various advertising
policies of the park or on ticket prices. All of these samples are systematic samples.

Crop-yield estimates often result from systematic samples of fields and small plots
within fields. Similarly, foresters may systematically sample field plots to estimate the
proportion of diseased trees or may systematically sample the trees themselves to
study growth patterns.

Thus, systematic sampling is a popular design. We next investigate the construc-
tion of these designs and the properties of resulting estimators of means, totals, and
proportions.

7.2
How to Draw a Systematic Sample

Although simple random sampling and systematic sampling both provide useful
alternatives to one another, the methods of selecting the sample data are different. A
simple random sample from a population is selected by using a table of random num-
bers, or random numbers generated using a computer, as noted in Section 4.2. In
contrast, various methods are possible in systematic sampling. The investigator can
select a 1-in-3, a 1-in-5, or, in general, a 1-in-k systematic sample. For example, a
medical investigator is interested in obtaining information about the average number of
times 15,000 specialists prescribed a certain drug in the previous year 
To obtain a simple random sample of specialists, we use the methods in
Section 4.2 and refer to a table of random numbers; however, this procedure requires
a great deal of work. Alternatively, we could select one name (specialist) at random
from the first names appearing on the list and then select every ninth name
thereafter until a sample of size 1600 is selected. This sample is called a 1-in-9
systematic sample.

Perhaps you wonder how k is chosen in a given situation. If the population size
N is known, we can determine an approximate sample size n for the survey (see Sec-
tion 7.5) and then choose k to achieve that sample size. There are N � 15,000 spe-
cialists in the population for the medical survey. Suppose the required sample size

k = 9

n = 1600
(N = 15,000).
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is . We must then choose k to be 150 or less. For , we will obtain ex-
actly observations, whereas for , the sample size will be greater
than 100.

In general, for a systematic sample of n elements from a population of size N,
k must be less than or equal to N�n (i.e., . Note in the preceding illustra-
tion that , that is, .

We cannot accurately choose k when the population size is unknown. We can de-
termine an approximate sample size n, but we must guess the value of k needed to
achieve a sample of size n. If too large a value of k is chosen, the required sample size
n will not be obtained by using a 1-in-k systematic sample from the population. This re-
sult presents no problem if the experimenter can return to the population and conduct
another 1-in-k systematic sample until the required sample size is obtained. However,
in some situations, obtaining a second systematic sample is impossible. For example,
conducting another 1-in-20 systematic sample of shoppers is impossible if the required
sample of shoppers is not obtained at the time they pass the corner.

7.3
Estimation of a Population Mean and Total

As we have repeatedly stressed, the objective of most sample surveys is to estimate
one or more population parameters. We can estimate a population mean m from a sys-
tematic sample by using the sample mean . This outcome is shown in Eq. (7.1).y

n = 50

k … 150k … 15,000/100
k … N>n)

k 6 150n = 100
k = 150n = 100
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You will recognize that the estimated variance of given in Eq. (7.2) is identi-
cal to the estimated variance of obtained by using simple random sampling (Sec-
tion 4.3). This result does not imply that the true variance of is the same as that of
. The variance of is given by

(7.3)V(y) =

s2

n
 a1 -

n

N
b

yy
ysy

y
ysy

Estimator of the population mean M:

(7.1)

where the subscript sy signifies that systematic sampling was used.

Estimated variance of :

(7.2)

assuming a randomly ordered population.

VN (ysy) = a1 -

n

N
b  

s2

n

ysy

mN = ysy =

a
n

i=1
yi

n

     



Similarly, the variance of is given by

(7.4)

where r is a measure of the correlation between pairs of elements within the same
systematic sample. (This is discussed in more detail in Section 7.7.) If r is close to 1,
then the elements within the sample are all quite similar with respect to the charac-
teristic being measured, and systematic sampling will yield a higher variance of the
sample mean than will simple random sampling. If r is negative, then systematic
sampling may be more precise than simple random sampling. The correlation may be
negative if elements within the systematic sample tend to be extremely different.
(Note that r cannot be so large a negative that the variance expression becomes neg-
ative.) For r close to 0 and N fairly large, systematic sampling is roughly equivalent
to simple random sampling.

An unbiased estimate of cannot be obtained by using the data from only
one systematic sample. When systematic sampling is nearly equivalent to simple ran-
dom sampling, we can estimate by the estimated variance from simple random
sampling. In other situations, the simple random sampling variance formula can pro-
vide a useful upper or lower bound to the true variance from systematic sampling. To
provide more detail on how these approximations work we consider here the follow-
ing three types of populations: a random population, ordered population, and peri-
odic population.

DEFINITION 7.2

A population is random if the elements of the population are in random order.

A population is ordered if the elements of a population have values that trend upward
or downward when they are listed.

A population is periodic if the elements of a population have values that tend to cycle
upward and downward in a regular pattern when listed. ■

Figures 7.1 through 7.3 provide examples of these population types.

V(ysy)

V(ysy)

V(ysy) =

s2

n
 31 + (n - 1)r4

ysy
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FIGURE 7.1
Random population elements
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FIGURE 7.2
Ordered population elements
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Periodic population elements
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A random population may occur in an alphabetical listing of student grades on
an exam, because there is generally no reason why students at the beginning of the
alphabet should have lower or higher grades than those at the end (unless students
happen to be seated alphabetically in the room). An ordered population sometimes
occurs in chronological listings, such as a bank’s listing of outstanding mortgage
balances. The older mortgages will tend to have smaller balances than the newer
ones. A periodic population may occur in the average daily sales volume for a chain of
grocery stores. The population of daily sales is generally cyclical, with peak sales
occurring toward the end of each week.

A systematic sample for a random population behaves, for all practical purposes,
like a simple random sample. So, in that case, the variance approximation using the
formula from simple random sampling works well. In samples from an ordered
population, the sample values will tend to be further apart numerically than in a sim-
ple random sample, making the within-sample correlation, r, negative. Envision taking
a systematic sample for the data of Figure 7.2; each sample will have some of the

     



smaller values as well as some of the larger values, which would not necessarily
happen in a simple random sample. This implies that the systematic sampling
mean will have a smaller variance than the one for simple random sampling, so that
the use of the simple random sampling formula produces an overestimate of the
true sampling error.

For a periodic population, the effectiveness of a 1-in-k sample depends on the value
we choose for k. If we sample daily sales every Wednesday, we will probably underes-
timate the true average daily sales volume. Similarly, if we sample sales every Friday,
we will probably overestimate the true average sales. We might sample every ninth
workday to avoid consistently sampling either the low- or high-sales days. Sampling
every Wednesday (or Friday) tends to produce samples that have values nearly alike
and hence a positive within-sample correlation. This makes the variance of a sys-
tematic sample larger than that of a corresponding simple random sample, and the
use of the simple random sampling variance formula will produce an underestimate
of the true sampling error. Choosing a systematic sample that hits both the peaks and
valleys of a cyclical trend will bring the method more in line with a simple random
sample and allow the use of the simple random sample variance formula as a reason-
able approximation.

To avoid the problem of underestimating the variation, which often occurs with
systematic sampling from a periodic population, the investigator could change the
random starting point several times. This procedure would reduce the possibility of
choosing observations from the same relative position in a period population. For ex-
ample, when a 1-in-10 systematic sample is being drawn from a long list of file cards,
a card is randomly selected from the first ten cards (e.g., card 2) and every tenth card
thereafter. This procedure can be altered by randomly selecting a card from the first
ten (e.g., card 2) and every tenth card thereafter for perhaps 15 selections to obtain
the numbers.

Another random starting point can be selected from the next ten numbers:

If 156 is selected, we then proceed to select every tenth number thereafter for the next
15 selections. This entire process is repeated until the desired sample size has been
obtained. The process of selecting a random starting point several times throughout
the systematic sample has the effect of shuffling the elements of the population and
then drawing a systematic sample. Hence, we can assume that the sample obtained
is equivalent to a systematic sample drawn from a random population. The variance
of can then be approximated by using the results from simple random sampling.
Alternatives to this approach are given in Sections 7.6 and 7.7.

EXAMPLE 7.1 The federal government keeps track of various indicators on the performance of in-
dustries in the country by collecting annual data on variables such as the number of
employees and payroll. The Standard Industrial Classification (SIC) system divides
the manufacturing industry into 140 groups. Table 7.1 shows data on number of em-
ployees (in thousands) for 2000 and 2001 and mean annual salary (in thousands of

ysy

153, 154, 155, Á , 162

2, 12, 22, Á , 152
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dollars) for 2001 for a sample of 20 industrial groups. The sample was selected sys-
tematically from the list of the 140 groups appearing in the Statistical Abstract for the
United States (see http://www.bls.gov/oes/2001/oessrci.htm).

a. Estimate the mean number of employees per manufacturing SIC group and
find a margin of error for the estimate.

b. Estimate the mean loss of employees between 2000 and 2001 per SIC manu-
facturing group and find a margin of error for your estimate.

7.3 Estimation of a Population Mean and Total 225

TABLE 7.1
Employee and salary data for a sample of manufacturing industries

2000 2001 2001 mean
employees employees salary 

Sample SIC Description (1000) (1000) (1000)

1 204 Grain mill products 122.4 122.2 34.9
2 212 Cigars 2.9 3.2 26.9
3 225 Knitting mills 120.1 98.6 25.0
4 233 Women’s, misses’, and juniors’ 169.9 137.3 23.0

outerwear
5 241 Logging 78.2 73.6 29.8
6 252 Office furniture 80.4 69.2 32.5
7 265 Paperboard containers and boxes 219.4 207.2 32.8
8 276 Manifold business forms 42.0 36.5 33.5
9 284 Soap, detergents, and cleaning 156.0 149.2 37.8

preparations; perfumes, cosmetics, 
and other toilet preparations

10 299 Miscellaneous products of petroleum 13.2 14.1 41.9
and coal

11 313 Boot and shoe cut stock and findings 1.1 0.8 26.1
12 322 Glass and glassware, pressed or blown 67.6 60.0 32.9
13 329 Abrasive, asbestos, and miscellaneous 74.0 67.1 34.4
14 339 Miscellaneous primary metal products 26.8 25.4 35.7
15 347 Coating, engraving, and allied services 149.6 128.5 29.5
16 355 Special industry machinery 170.9 146.4 42.1
17 363 Household appliances 106.3 104.8 30.6
18 372 Aircraft and parts 466.6 450.5 49.5
19 382 Laboratory apparatus and analytical, 311.4 282.4 46.1

optical, measuring, and controlling 
instruments

20 394 Dolls, toys, games and sporting 101.0 90.7 31.2
and athletic

n Mean Median Standard deviation

2001 employees 20 113.4 94.6 105.6
Reduction in employees 20 10.61 7.25 10.29
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SOLUTION Because all statistical analyses should begin with a plot of the data, let’s first look at
the plots of employees ordered by sample number (Figure 7.4) and loss of employ-
ees by sample number (Figure 7.5). There is little in the way of a pronounced pattern
here except for the fact that the larger industries tend to come toward the end of the
list. In fact, the SIC list does have the more lucrative electronics, transportation, and
medical equipment manufacturing industries close to the end of the list. This is a
good situation for systematic sampling, as a simple random sample could have missed
the bottom end of the list completely. The pattern in loss of employee data across the
sampled values is more balanced, with some large losses coming at both ends of the
list. Again, this could be advantageous for systematic sampling because it seems to
cover a broad range of loss values. (A simple random sample could have sampled all
industries from the middle of the list.)
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FIGURE 7.4
Employees for 2001 by sample number
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FIGURE 7.5
Loss of employees by sample number, 2000–2001
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Note that the results presented in Eqs. (7.5) and (7.6) are identical to those presented
for estimating a population total under simple random sampling. This result does
not imply that the true variance of is the same as the variance of . Again,
we cannot obtain an unbiased estimator of from the data in a single sys-
tematic sample. However, in certain circumstances, as noted earlier, systematic
sampling is equivalent to simple random sampling, and we can use the result pre-
sented in Section 4.3.

V(N ysy)
N yN ysy
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From the statistical summaries given as part of Table 7.1 and using the standard
formulas for simple random sampling, the analysis for mean number of employees
proceeds as follows:

Thus, the estimated mean number of employees per industry is about 113.4 thousand,
give or take approximately 44 thousand.

Similar calculations on the loss of employees yield an estimated mean of
10.61 thousand with a margin of error of about 4.26 thousand. This is a fairly
large loss of employees from manufacturing in one year, but the margin of error is
also large due to the rather small sample and the large amount of variability in the
employee data. ■

Recall that estimation of a population total requires knowledge of the total num-
ber of elements N in the population when we are using the procedures of Chapters 4
and 5. For example, we use

as an estimator of t from simple random sampling. Similarly, we need to know N
to estimate t when we are using systematic sampling, as expressed in Eqs. (7.5)
and (7.6).

tN = N y

 22VN (ysy) = 2
B
a1 -

20

140
b a 1

20
b(105.6) = 43.72

 VN (ysy) = a1 -

20

140
b a 1

20
b (105.6)2

 ysy = 113.4

Estimator of the population total T:

(7.5)

Estimated variance of T:

(7.6)

assuming a randomly ordered population.
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EXAMPLE 7.2 Returning to the data from the systematic sample of 20 industry groups from the pop-
ulation of 140, as shown in Example 7.1, it is now of interest to estimate the total
number of employees lost by the manufacturing segment of U.S. industry between
2000 and 2001. From the data provided, estimate this total and find a bound for the
error of estimation.

SOLUTION The estimated mean loss was 10.61 thousand with a margin of error of approximately
4.26 thousand. The estimate of the total simply multiplies these quantities by 
Thus, the estimated total number of employees lost is 1485 thousand with a bound on
the error of estimation amounting to 596 thousand. This bound is quite large. Again,
we are attempting to estimate a total from highly variable data with a small sample;
the precision of the result is not great in this case. To achieve greater precision, the
sample size should be increased or the sampling design changed, or both. ■

If stratifying the populations is advantageous, systematic sampling can be used
within each stratum in place of simple random sampling. Using the estimator of
Eq. (7.1) with its estimated variance (7.2) within each stratum, the resulting estima-
tor of the population mean will look similar to Eq. (5.1), with an estimated variance
given by Eq. (5.2). Such a situation might arise if we were to stratify an industry by
plants and then take a systematic sample of the records within each plant to estimate
average accounts receivable, time lost to accidents, and so on.

7.4
Estimation of a Population Proportion

An investigator frequently wishes to use data from a systematic sample to estimate a
population proportion. For example, to determine the proportion of registered voters
in favor of an upcoming bond issue, the investigator might use a 1-in-k systematic
sample from the voter registration list. The estimator of the population proportion p
obtained from systematic sampling is denoted by . As in the simple random sam-
pling (Section 4.5), the properties of parallel those of the sample mean if the
response measurements are defined as follows. Let if the ith element sampled
does not possess the specified characteristic and if it does. The estimator 
is then the average of the 0 and 1 values from the sample.

pN syyi = 1
yi = 0

ysypN sy

pN sy

N = 140.
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Estimator of the population proportion p:

(7.7)

Estimated variance of p̂sy:

(7.8)

where , assuming a randomly ordered population.qN sy = 1 - pN sy
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The fpc, (1 - n�N), in Eq. (7.8) can be ignored if the population size N is unknown
but can be assumed large relative to n. Again, note that the estimated variance of is
identical to the estimated variance of using simple random sampling (Section 4.5).
This result does not imply that the corresponding population variances are equal;
however, if N is large and if the observations within a systematic sample are unre-
lated (i.e., ), the two population variances will be equal.

EXAMPLE 7.3 A 1-in-6 systematic sample is obtained from a voter registration list to estimate the
proportion of voters in favor of the proposed bond issue. Several different random
starting points are used to ensure that the results of the sample are not affected by pe-
riodic variation in the population. The coded results of this preelection survey are as
shown in the accompanying table. Estimate p, the proportion of the 5775 registered
voters in favor of the proposed bond issue . Place a bound on the error
of estimation.

(N = 5775)

r = 0

pN
pN sy
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Voter Response

4 1
10 0
16 1
. .
. .
. .

5760 0
5766 0
5772 1

a
962

i=1
yi = 652

SOLUTION The sample proportion is given by 

Because N is large and several random starting points were chosen in drawing the
systematic sample, we can assume that

provides a good estimate of . The bound on the error of estimation is 

 = 2
B
a1 -

962

5775
b  

(0.678)(0.322)

961
L 0.028
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Thus, we estimate that 0.678 (67.8%) of the registered voters favor the proposed
bond issue. We are relatively confident that the error of estimation is less than
0.028 (2.8%). ■

7.5
Selecting the Sample Size

Now let us determine the number of observations necessary to estimate m to within
B units. The required sample size is found by solving the following equation for n:

(7.9)

The solution to Eq. (7.9) involves both s2 and r, which must be known (at least ap-
proximately) in order to solve for n. Although these parameters sometimes can be es-
timated if data from a prior survey are available, we do not discuss this method in this
book. Instead, we use the formula for n for simple random sampling. This formula
could give an extra-large sample for ordered populations and too small a sample for
periodic populations. As noted earlier, the variances of and are equivalent if the
population is random.

yysy

22V( ysy) = B
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Sample size required to estimate M with a bound B on the error of
estimation:

(7.10)

where

D =

B2

4

n =

Ns2

(N - 1)D + s2

EXAMPLE 7.4 The management of a large utility company is interested in the average amount of
time delinquent bills are overdue. A systematic sample will be drawn from an alpha-
betical list of overdue customer accounts. In a similar survey conducted
the previous year, the sample variance was found to be days. Determine the
sample size required to estimate m, the average amount of time utility bills are over-
due, with a bound on the error of estimation of days.

SOLUTION A reasonable assumption is that the population is random; hence, . Then we can
use Eq. (7.10) to find the approximate sample size. Replacing s2 by s2 and setting

we have

n =

Ns2

(N - 1)D + s2 =

2500(100)

2499(1) + 100
= 96.19

D =

B2

4
=

4

4
= 1

r L 0

B = 2

s2
= 100

N = 2500

     



Thus, management must sample approximately 97 accounts to estimate the average
amount of time delinquent bills are overdue, to within two days. ■

To determine the sample size required to estimate t with a bound on the error
of estimation of magnitude B, we use the corresponding method presented in
Section 4.4.

The sample size required to estimate p to within B units is found by using the
sample size formula for estimating p under simple random sampling.
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Sample size required to estimate p with a bound B on the error
of estimation:

(7.11)

where

q = 1 - p and D =

B2

4

n =

Npq

(N - 1)D + pq

In a practical situation, we do not know p. We can find an approximate sample size
by replacing p with an estimated value. If no prior information is available to esti-
mate p, we can obtain a conservative sample size by setting .

EXAMPLE 7.5 An advertising firm is starting a promotional campaign for a new product. The firm
wants to sample potential customers in a small community to determine customer
acceptance. To eliminate some of the costs associated with personal interviews, the
investigators decide to run a systematic sample from names listed in a
community registry and collect the data via telephone interviews. Determine the
sample size required to estimate p, the proportion of people who consider the prod-
uct “acceptable,” with a bound on the error of estimation of magnitude 
(i.e., 3%).

SOLUTION The required sample size can be found by using Eq. (7.11). Although no previous
data are available on this new product, we can still find an approximate sample size.
Set in Eq. (7.11) and

Then the required sample size is

Hence, the firm must interview 910 people to determine consumer acceptance to
within 3%. ■

n =

Npq

(N - 1)D + pq
=

5000(0.5)(0.5)

4999(0.000225) + (0.5)(0.5)
= 909.240

D =

B2

4
=

(0.03)2

4
= 0.000225

p = 0.5

B = 0.03

N = 5000

p = 0.5

     



7.6
Repeated Systematic Sampling

We have stated in Section 7.3 that we cannot estimate the variance of from infor-
mation contained in a single systematic sample unless the systematic sampling gen-
erates, for all practical purposes, a random sample. When this result occurs, we can
use the random sampling estimation procedures outlined in Section 4.3. However, in
most cases, systematic random sampling is not equivalent to simple random sam-
pling. An alternate method must be used to estimate . Repeated systematic
sampling is one such method.

As the name implies, repeated systematic sampling requires the selection of more
than one systematic sample. For example, ten 1-in-50 systematic samples, each con-
taining six measurements, could be acquired in approximately the same time as one
1-in-5 systematic sample containing 60 measurements. Both procedures yield 60
measurements for estimating the population mean m, but the repeated sampling pro-
cedure allows us to estimate by using the square of the deviations of the

individual sample means about their mean. The average of the ten sample
means, , will estimate the population mean m.

To select ns repeated systematic samples, we must space the elements of each
sample further apart. Thus, ten 1-in-50 samples of six measure-
ments each contain the same number of measurements as does a single 1-in-5 sam-
ple containing measurements. The starting point for each of the ns

systematic samples is randomly selected from the first k elements. The remaining
elements in each sample are acquired by adding k�, 2k�, and so forth, to the starting
point until the total number per sample, n�ns, is obtained.

A population consists of elements, which we can number consecu-
tively. To select a systematic sample of size , we choose and
a random number between 1 and 16 as a starting point. What procedure do we follow
to select ten repeated systematic samples in place of the one systematic sample? First,
we choose . Next, we select 10 random numbers between
1 and 160. Finally, the constant 160 is added to each of these random starting points
to obtain ten numbers between 161 and 320; the process of adding the constant is
continued until ten samples of size 6 are obtained.

A random selection of ten integers between 1 and 160 gives the following:

These numbers form the random starting points for ten systematic samples, as shown
in Table 7.2. The second element in each sample is found by adding 160 to the first,
the third by adding 160 to the second, and so forth.

We frequently select ns to be at least 10 to allow us to obtain enough sample
means to acquire a satisfactory estimate of . We choose k� to give the same num-
ber of measurements as would be obtained in a single 1-in-k systematic sample; thus,

The formulas for estimating m from ns systematic samples are shown in Eqs. (7.12)
and (7.13).

k¿ = kns

V(mN )

73, 42, 81, 145, 6, 21, 86, 17, 112, 102

k¿ = 10k¿ = 10(16) = 160

k¿ = N>n = 16n = 60
N = 960

n = 60(k = 5)

(ns = 10, k¿ = 50)

mN
ns = 10

V(ysy)

V(ysy)

ysy
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We can also use repeated systematic sampling to estimate a population total t, if N is
known. The necessary formulas are given in Eqs. (7.14) and (7.15).
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TABLE 7.2
Selection of repeated systematic samples

Random Second Third Sixth 
starting element element element 
point in sample in sample . . . in sample

6 166 326 . . . 806
17 177 337 . . . 817
21 181 341 . . . 821
42 202 362 . . . 842
73 233 393 . . . 873
81 241 401 . . . 881
86 246 406 . . . 886

102 262 422 . . . 902
112 272 432 . . . 912
145 305 465 . . . 945

Estimator of the population mean M, using ns 1-in-k' systematic
samples:

(7.12)

where represents the mean of the ith systematic sample.

Estimated variance of M̂:

where

(7.13)s2 y =

a
ns

i=1
(yi - mN )2

ns - 1

VN (mN ) = a1 -

n

N
b  

s2
y

ns

yi

mN = a
ns

i=1

yi

ns

Estimator of the population total τ using ns 1-in-k' systematic samples:

(7.14)

Estimated variance of τ̂:

(7.15)VN (tN) = N2VN (mN ) = N2a1 -

n

N
b  

sy
2

ns

tN = NmN = Na
ns

i=1

yi

ns

     



EXAMPLE 7.6 A state park charges admission by carload rather than by person, and a park official
wants to estimate the average number of people per car for a particular summer hol-
iday. She knows from past experience that there should be approximately 400 cars
entering the park, and she wants to sample 80 cars. To obtain an estimate of the vari-
ance, she uses repeated systematic sampling with ten samples of eight cars each.
Using the data given in Table 7.3, estimate the average number of people per car and
place a bound on the error of estimation.

SOLUTION For one systematic sample,

Hence, for samples,

The following ten random numbers between 1 and 50 are drawn:

Cars with these numbers form the random starting points for the systematic samples.
For Table 7.3, the quantity is the average for the first row, is the average for the
second row, and so forth. The estimate of m is

with . Thus, the estimated standard error of is

Therefore, our best estimate of the mean number of people per car is 4.16 plus or
minus approximately 0.38. ■

2VN (mN ) =

B
a1 -

n

N
b  

1

ns
sy =

B
a1 -

80

400
b  

1

10
 (0.675) = 0.19

mNsy = 0.675

mN =

1

ns
a
ns

i=1
yi =

1

10
 (3.75 + 3.38 +

Á
+ 4.38) = 4.16

y2y1

13, 35, 2, 40, 26, 7, 31, 45, 5, 46

k¿ = 10k = 10(5) = 50

ns = 10

k =

N

n
=

400

80
= 5
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TABLE 7.3
Data on number of persons per car (the responses yi are in parentheses)

Random
starting Second Third Fourth Fifth Sixth Seventh Eighth
point element element element element element element element

2(3) 52(4) 102(5) 152(3) 202(6) 252(l) 302(4) 352(4) 3.75
5(5) 55(3) 105(4) 155(2) 205(4) 255(2) 305(3) 355(4) 3.38
7(2) 57(4) 107(6) 157(2) 207(3) 257(2) 307(l) 357(3) 2.88

13(6) 63(4) 113(6) 163(7) 213(2) 263(3) 313(2) 363(7) 4.62
26(4) 76(5) 126(7) 176(4) 226(2) 276(6) 326(2) 376(6) 4.50
31(7) 81(6) 131(4) 181(4) 231(3) 281(6) 331(7) 381(5) 5.25
35(3) 85(3) 135(2) 185(3) 235(6) 285(5) 335(6) 385(8) 4.50
40(2) 90(6) 140(2) 190(5) 240(5) 290(4) 340(4) 390(5) 4.12
45(2) 95(6) 145(3) 195(6) 245(4) 295(4) 345(5) 395(4) 4.25
46(6) 96(5) 146(4) 196(6) 246(3) 296(3) 346(5) 396(3) 4.38

yi

     



7.7
Further Discussion of Variance Estimators

To learn more about the behavior of , we may view a systematic sample of n
elements as a single cluster sample selected from k possible cluster samples in the
population under study. Schematically, think of the population as being arranged in a
rectangular array, as shown in Table 7.4. Here, . Systematic sampling, as dis-
cussed earlier, involves randomly selecting one of the k clusters (rows) and hence one
of the k possible sample means. In other words, can take on the values 
with equal probabilities.

We know from Eq. (7.4) that

where r measures the correlation among elements in the same cluster (the intraclus-
ter correlation) and must lie between -[1�(n - 1)] and 1.

If we have a population of measurements, as indicated in Table 7.4, we can make
analysis-of-variance-type calculations of between-cluster mean square (MSB), within-
cluster mean square (MSW), and total sum of squares (SST). These are defined as

(7.16)

(7.17)

(7.18)

where is the overall mean per element. Using these terms,

(7.19)r =

(k - 1)nMSB - SST

(n - 1)SST

y

 SST = a
k

i=1
a
n

j=1
(yij - y= )2

 MSW =

1

k(n - 1)a
k

i=1
a
n

j=1
(yij - yi)

2

 MSB =

n

k - 1a
k

i=1
(yi -

=y )2

V(ysy) =

s2

n
31 + (n - 1)r4

y1, y2, Á , ykysy

N = nk

V(ysy)
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TABLE 7.4
A population of k clusters, each of size n

Cluster
Sample number

number 1 2 3 … n Mean

1 y11 y12 y13 … y1n

2 y21 y22 y23 … y2n

3 y31 y32 y33 … y3n

o o o o o o o

k yk1 yk2 yk3 … ykn yk

y3

y2

y1

     



which for large is approximately

(7.20)

where MST = SST�(nk - 1).
Looking at Eq. (7.20), we can see that MSB plays a key role in the behavior of

. If MSB is small compared to MST, r will be negative, and will be
smaller than the corresponding from simple random sampling. If, on the
other hand, MSB is larger than MST, r will be positive, and will be larger
than A small MSB implies that the cluster means are very nearly equal; thus,
we should choose clusters to have similar means but as much internal variation as
possible.

Some calculations on actual populations of measurements will help us under-
stand these concepts. Table 7.5 shows a population of 20 random digits divided into
four clusters, each of size 5. The analysis of variance (ANOVA) calculations, with

clusters of measurements, yield the values in the table (df = degrees of
freedom, SS = sum of squares, MS = mean square).

From these we identify , , and . Then,
using Eq. (7.19),

We should not be surprised that r is close to zero, because the data are simply ran-
dom digits. Each of the k clusters should behave like a simple random sample of n
observations.

r =

3(5)(14.07) - 156.20

4(156.20)
= 0.088

SST = 156.20MSW = 7.13MSB = 14.07

ANOVA

Source df SS MS

Factor 3 42.20 14.07
Error 16 114.00 7.13
Total 19 156.20

n = 5k = 4

V(y).
V(ysy)

V(y)
V(ysy)V(ysy)

r L

MSB - MST

(n - 1)MST

N = nk
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TABLE 7.5
Clusters of random digits 

Cluster
Population (N � 20) 

number 8152 5722 9504 8399 6423

1 8 5 9 8 6 7.2 0.405
2 1 7 5 3 4 4.0 0.750
3 5 2 0 9 2 3.6 1.845
4 2 2 4 9 3 4.0 1.275

VN (y)yi

     



For a nonrandom situation, look at Table 7.6, which displays a population of the
first 20 ordered integers broken into four clusters of five observations each. The
ANOVA calculations yield the values in the table.

From these we obtain

Because this is a very ordered population, producing ordered systematic samples, we
should expect the large negative value of r. For ordered populations, systematic sam-
pling produces more precise estimates than does simple random sampling.

Either by direct calculation or by using Eq. (7.4), we can find the true variance of
for the situations in which the population is known. Referring to Table 7.5, in

which each of the four values of the sample mean occur with equal probability,

Using Eq. (7.4),

The right-hand column of Table 7.5 shows the estimated variance of the individual
systematic samples (clusters) that could have been obtained using the formula from

 =

156.2

5(20)
31 + (4)(0.088)4 = 2.11

 =

SST

n(kn)
31 + (n - 1)r4

 V(ysy) =

s2

n
31 + (n - 1)r4

V(ysy) = 2.11

ysy

r =

3(5)(8.3)

4(665)
= -0.203

ANOVA

Source df SS MS

Factor 3 25.0 8.3
Error 16 640.0 40.0
Total 19 665.0
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TABLE 7.6
Clusters of ordered integers

Cluster
Population (N � 20)

number 1234 5678 9 10 11 12 13 14 15 16 17 18 19 20

1 1 5 9 13 17 9.0 6.0
2 2 6 10 14 18 10.0 6.0
3 3 7 11 15 19 11.0 6.0
4 4 8 12 16 20 12.0 6.0

VN (y)y

     



simple random sampling, Eq. (7.2). Notice that all four of these estimated variances
are smaller than the true variance but are reasonably close.

Similar calculations for the data in Table 7.6 show . Now, the four
sample estimates of are quite far away from the true value. (All four estimates
equal 6.0.) This is consistent with our earlier discussions; in ordered populations, the
simple random sample formula will overestimate the true variance of .

What can we do about this state of affairs? Can we find another estimator of
that might perform better than the estimator used in simple random sampling?

Fortunately, we can produce a rather simple estimator that does perform well in many
cases, especially in the case of linear trends in the population. This new estimator is
based on the following idea. Suppose y1, y2, . . . , yn is a random sample with E(yi) =
m and V(yi) = s2. The usual estimator of s2 is based on , but if we knew
that m = 0, the estimator of s2 would be based on , and would be an un-
biased estimator of s2.

Now, suppose m is not zero. Choose two sample values, yi and yj and construct
di = yi - yj. It follows that E(di) = 0 and V(di) = 2s2. If we make up nd such differ-
ences, then is an estimator of 2s2, from which an estimator of s2 is easily
obtained. Because we want to estimate a mean with a sample of n measurements
from a population of N measurements, the estimator based on di becomes

(7.21)

Instead of making arbitrary differences, we usually take successive differences of the
form

A sample of size n yields n - 1 such successive differences, and so Eq. (7.21)
becomes

(7.22)

For the random digit data of Table 7.5, the successive differences are given in
Table 7.7. The right-hand column gives calculated from Eq. (7.22). These es-
timated variances are quite close to the ones produced by the simple random sampling
formula (see Table 7.5) and are in the neighborhood of the true .V(ysy) = 2.11

VN d(ysy)

VN d(ysy) = a1 -

n

N
b  

1

2n(n - 1)a
n-1

i=1
d2

i

di = yi+1 - yi,  i = 1, Á , (n - 1)

VN d(ysy) = a1 -

n

N
b  

1

n(2n)d
a
nd

i=1
d2

i

ysy

gnd
i=1d

2
i /nd

gy2
i >ngy2

i

g (yi - y2)

V(ysy)

ysy

V(ysy)
V(ysy) = 1.25
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TABLE 7.7
Successive differences from Table 7.5

Cluster Differences
number (absolute value)

1 3 4 1 2 0.562
2 6 2 2 1 0.844
3 3 2 9 7 2.681
4 0 2 5 6 1.219

VN d(ysy)

     



Moving to the ordered integer data of Table 7.6, we see that the successive dif-
ferences in all four possible systematic samples are (4, 4, 4, 4). Based on these data,

for each systematic sample. Note here that is very close to the
true . Also, the simple random sampling estimate (6, in this case) does
not work well at all.

A good rule for practical work in sampling seems evident—we should use the
variance estimate based on successive differences whenever we suspect the popula-
tion elements to be other than purely randomly ordered. We should use the variance
estimate from simple random sampling only when we have good reason to believe
that the population elements are in purely random order.

The same methods and principles apply to estimation of a proportion. To demon-
strate this, we can take the random digit data of Table 7.5 and code each digit as even
or odd. (The objective here is to estimate the proportion of even digits in the popula-
tion.) The results are shown in Table 7.8. The calculations for come from sim-
ple random sampling formula (7.8) and those for from Eq. (7.22). The true

in this case, so both methods perform reasonably well. That is to be
expected for purely random numbers such as these.

Table 7.9 shows similar calculations for the data in Table 7.6 with integers 
10 coded as 0 and integers coded as 1. (The objective, here, is to estimate the
proportion of integers greater than 10 in the population.) For this situation,

, and we see that the variance estimates based on successive differ-
ences are superior to those based on simple random sampling results. Again, if the
V(pN sy) = 0.01

7 10
…

V(pN st) = 0.030
VN d(pN )

VN (pN )

V(ysy) = 1.25
VN d(ysy)VN d(ysy) = 1.20
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TABLE 7.8
Even–odd random numbers*

Cluster
number 1001 0011 0011 1000 1110

1 1 0 0 1 1 0.6 0.045 0.047
2 0 0 0 0 1 0.2 0.030 0.023
3 0 1 1 0 1 0.6 0.045 0.070
4 1 1 1 0 0 0.6 0.045 0.023

*1 = even.

VN d(pN )VN (pN )pN

TABLE 7.9
Ordered integers 1–20*

Cluster
number 0000 0000 0011 1111 1111

1 0 0 0 1 1 0.4 0.045 0.023
2 0 0 0 1 1 0.4 0.045 0.023
3 0 0 1 1 1 0.6 0.045 0.023
4 0 0 1 1 1 0.6 0.045 0.023

*0 indicates ; 1 indicates .710…10

VN d(pN )VN (pN )pN

     



data in the population do not come about in random order, then the successive dif-
ferences should be used in estimating the variance of the sample proportion.

We now discuss two examples of a more realistic type, in which the population
as a whole is not under study.

EXAMPLE 7.7 The data set TEMPS in Appendix C and on the data disk shows an alphabetical listing
of 88 weather stations across the United States. It is desired to estimate the average
January precipitation across the United States by systematically sampling of
these stations. (A reporter may only have time to call eight stations.) In this case

, so a random start was selected among the first 11 stations on the list. (It
turned out to be number 9.) The January precipitation measurements (in inches) for
the eight sampled stations were

Estimate the average January precipitation for all 88 stations and place a bound on
the error of estimation.

SOLUTION The plot of these data versus sample number, in Figure 7.6, shows a small cyclical
trend as the systematic selection moves across the alphabetical listing. If there is
such a trend in the population, this sample seems to have captured both high and low
values, so the variance approximation from simple random sampling should still be
acceptable.

Now,

and

s2
= 1.728

ysy = 1.98

0.5, 1.8, 1.9, 4.7, 1.7, 0.7, 1.7, 2.8

k = 11

n = 8
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FIGURE 7.6
Plot of the precipitation data for Example 7.7
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Hence,

and

If we had some doubts about the randomness of the order of the measurements on the
list, we could use

and

These estimated variances are quite close to one other, and either will work well with
this somewhat cyclical data. The one based on differences, however, is slightly
smaller because of the pattern in the sample data. ■

EXAMPLE 7.8 The data set RIVER in Appendix C and on the data disk shows the mean daily flow
rates for a certain Florida river. Suppose we choose to estimate the average flow rate
for the fall (October, November, December) of 1977 by looking at every tenth day.
Choosing a random start (4, in this case) between 1 and 10 yields measure-
ments during this three-month period. They are (in cubic feet per second)

Estimate the average daily flow for the period under study.

SOLUTION A plot of these data, in Figure 7.7, shows a definite and pronounced decreasing trend
moving from the earlier to the later observations. The variance approximation from
simple random sampling will overestimate the true variance by a considerable amount
if this trend is also apparent in the population.

Equations (7.1) and (7.2) yield

and

22VN (ysy) = 7.49

 VN (ysy) = a1 -

9

92
b a 139.838

9
b = 14.018

 ysy = 12.63

38, 24, 17, 11, 4.7, 7.5, 4.0, 2.6, 4.9

n = 9

22VN d(ysy) = 0.84

 = a1 -

8

88
b  

1

2(8)(7)
 (21.75) = 0.176

 VN d(ysy) = a1 -

n

N
b  

1

2n(n - 1)a
n-1

i=1
d2

i

22VN (ysy) = 0.89

 VN (ysy) = a1 -

n

N
b  

s2

n
= a1 -

8

88
b a 1.728

8
b = 0.196
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The successive difference estimator of the variance gives 

and

Obviously, the difference method produced a much smaller variance estimate.
But is it realistic? The sample data do seem to have a linearly decreasing trend across
time, which could reflect a similar trend in the population. Also, Florida is fairly dry
in the fall months (but not in the summer), so it would not be surprising to see the
flow rates decreasing during the fall. All things considered, the successive difference
method seems to be the better one. Our sample mean of 12.63 should lie within
2.95 units of the true population mean. ■

7.8
Summary

Systematic sampling is an alternative to simple random sampling. Systematic sam-
pling is easier to perform and therefore less subject to interviewer errors than simple
random sampling. In addition, systematic sampling often provides more information
per unit cost than does simple random sampling.

We have considered the estimation of a population mean, total, and proportion
using the estimators , , and , respectively. The corresponding bounds on
the errors of estimation are given for these estimators.

We must first consider the type of population under investigation in order to
choose between systematic and simple random sampling. For example, when N is
large and , the variance of is smaller than the corresponding variance of yysyr 6 0

pN syNysyysy

22VN d(ysy) = 2.95

VN d(ysy) = a1 -

9

92
b  

348.03

2(9)(8)
= 2.180
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FIGURE 7.7
Plot of the flow rate for Example 7.8
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based on simple random sampling. A systematic sample is preferable when the pop-
ulation is ordered and N is large. When the population is random, the two sampling
procedures are equivalent, and either design can be used. Care must be used in ap-
plying systematic sampling to periodic populations.

Sample-size requirements for estimating m, t, and p are determined by using the
formulas presented for simple random sampling.

Repeated systematic sampling and the use of successive differences allow the ex-
perimenter to estimate the population mean or total and the variance of the estimator
without making any assumptions about the nature of the population.

C A S E  S T U D Y R E V I S I T E D

IS QUALITY BEING MAINTAINED BY THE MANUFACTURER?

The quality control problem involving percentage of copper in bronze castings, given
at the beginning of this chapter, shows a systematic sample of 16 measurements with

and s2
= 18. Even though the sample was selected systematically, we can

estimate the population mean by

assuming N is large compared with n. Thus, we have

or 85–89 as the best estimate of the true mean of the production process. Because
the standard is 90, apparently the process is not performing up to the advertised
standard on this day. The supervisor in charge will want to look into possible causes
for this failure.

In this case, systematic sampling is reasonable because it forces the sample to
cover the entire day of production. If quality tends to decrease (or increase) during the
day, this sampling plan may detect it. A simple random sample could concentrate all
sampled items in the morning (or afternoon) hours.

■

Exercises Some of the exercises are relatively data-intensive; look in the electronic Section 7.0 for links
to those data in Excel files.

7.1 Suppose that a home mortgage company has N mortgages numbered serially in the order
that they were granted over a period of 20 years. There is a generally increasing trend in
the unpaid balances because of the rising cost of housing over the years. The company
wishes to estimate the total amount of unpaid balances. Should you employ a systematic
or a simple random sample? Why?

7.2 A corporation lists employees by income brackets (alphabetically within brackets) from
highest to lowest. If the objective is to estimate the average income per employee, should

87 ; 2
A

18
16

 or 87 ; 2

y ; 2
A

s2

n

y = 87
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systematic, stratified, or simple random sampling be used? Assume that costs are
equivalent for the three methods and that you can stratify on income brackets. Discuss
the advantages and disadvantages of the three methods.

7.3 A retail store with four departments has charge accounts arranged by department, with
past-due accounts at the top of each departmental list. Suppose the departments aver-
age around ten accounts each, with approximately 40% past due. On a given day the
accounts might appear as shown in the accompanying table (with account numbers 1
through 40). The store wishes to estimate the proportion of past-due accounts by sys-
tematic sampling.
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Department

Account numbers 1–11 12–20 21–28 29–40
Delinquent accounts 1, 2, 3, 4 12, 13, 14 21, 22, 23, 24, 25 29, 30, 31, 32

a. List all possible 1-in-10 systematic samples and compute the exact variance of the
sample proportion. (Note that there are ten possible values, not all distinct, for the
sample proportion, each with probability 1�10 of occurring.)

b. List all possible 1-in-5 systematic samples and compute the exact variance of the
sample proportion.

c. Compare the result in part (a) with an approximate variance obtained in a simple ran-
dom sample of size from this population. Similarly, compare the result in part (b)
with that obtained from a simple random sample with . What general conclu-
sions can you make?

7.4 The management of a particular company is interested in estimating the proportion of
employees favoring a new investment policy. A 1-in-10 systematic sample is obtained
from employees leaving the building at the end of a particular workday. Use the data in
the accompanying table to estimate p, the proportion in favor of the new policy and place
a bound on the error of estimation. Assume .N = 2000

n = 8
n = 4

Employee sampled Response

3 1
13 0
23 1

o o

1993 1

a
200

i=1
yi = 132

7.5 For the situation outlined in Exercise 7.4, determine the sample size required to estimate
p to within 0.01 unit. What type of systematic sample should be run?

7.6 The quality control section of an industrial firm uses systematic sampling to estimate the
average amount of fill in 12-ounce cans coming off an assembly line. The data in the

     



accompanying table represent a 1-in-50 systematic sample of the production in one day.
Estimate m and place a bound on the error of estimation. Assume .N = 1800

Exercises 245

Amount of fill (in ounces)

12.00 11.97 12.01 12.03 12.01 11.80
11.91 11.98 12.03 11.98 12.00 11.83
11.87 12.01 11.98 11.87 11.90 11.88
12.05 11.87 11.91 11.93 11.94 11.89
11.75 11.93 11.95 11.97 11.93 12.05
11.85 11.98 11.87 12.05 12.02 12.04

7.7 Use the data in Exercise 7.6 to determine the sample size required to estimate m to within
0.03 unit.

7.8 Soil experts want to determine the amount of exchangeable calcium (in parts per million)
in a plot of ground. So that the sampling scheme is simplified, a rectangular grid is su-
perimposed on the field. Soil samples are taken at each point of intersection on the grid
(see the diagram). Use the following data to determine the average amount of exchange-
able calcium on the plot of ground. Place a bound on the error of estimation.

 s =  250  ppm

 a yi = 90,320  ppm

 n = 45

7.9 The highway patrol of a particular state is concerned about the proportion of motorists
who carry their licenses. A checkpoint is set up on a major highway, and the driver of
every seventh car is questioned. Use the data in the accompanying table to estimate the
proportion of drivers carrying their licenses. Place a bound on the error of estimation.
Assume that N � 2800 cars pass the checkpoint during the sampling period.

Car Response, yi

1 1
2 1
3 0

o o

400 1

a
400

i=1
yi = 324

     



7.10 The highway patrol expects at least cars to pass the checkpoint. Determine
the sample size required to estimate p to within unit.

7.11 A college is concerned about improving its relations with a neighboring community. A
1-in-150 systematic sample of the students listed in the directory is taken to
estimate the total amount of money spent on clothing during one quarter of the school
year. The results of the sample are listed in the accompanying table. Use these data to
estimate and place a bound on the error of estimation.t

N = 4500

B = 0.015
N = 3000
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Amount Amount Amount 
spent spent spent

Student (dollar) Student (dollars) Student (dollars)

1 30 11 29 21 9
2 22 12 21 22 15
3 10 13 13 23 6
4 62 14 15 24 93
5 28 15 23 25 21
6 31 16 32 26 20
7 40 17 14 27 13
8 29 18 29 28 12
9 17 19 48 29 29

10 51 20 50 30 38

7.12 What sample size is needed to estimate in Exercise 7.11 with a bound on the error of
estimation approximately equal to $10,000? What systematic sampling scheme do you
recommend?

7.13 Refer to the scenario in Example 7.1 and the data in Table 7.1. Estimate the total
payroll of the 140 manufacturing industries for 2001, with an appropriate margin of
error.

7.14 A group of guidance counselors is concerned about the average yearly tuition for out-
of-state students in 371 junior colleges. From an alphabetical list of these colleges,
a 1-in-7 systematic sample is drawn. Data concerning out-of-state tuition expenses
for an academic year (September to June) are obtained for each college sampled. Let
yi be the amount of tuition required for the ith college sampled. Use the following
data summary to estimate the mean yearly tuition and place a bound on the error of
estimation. 

7.15 How many pages of this book contain a figure? What is the total number of tables in this
book? Select an appropriate-sized systematic sample of pages to estimate the answers to
each of these questions. Attach a margin of error to each estimate.

a
53

i=1
yi = $11,950  and  s2

= 705

t

     



Exercises 247

Plot Volume Plot Volume 
sampled (in board feet) sampled (in board feet)

4 7030 279 7540
29 6720 304 6720
54 6850 329 6900
79 7210 354 7200

104 7150 379 7100
129 7370 404 6860
154 7000 429 6800
179 6930 454 7050
204 6570 479 7420
229 6910 504 7090
254 7380

7.17 The officers of a certain professional society wish to determine the proportion of the
membership that favors several proposed revisions in refereeing practices. They conduct
a 1-in-10 systematic sample from an alphabetical list of the registered mem-
bers. Let if the ith person sampled favors the proposed changes and if he
opposes the changes. Use the following sample data to estimate p, the proportion of
members in favor of the proposed changes. Place a bound on the error of estimation.

7.18 In a sociological survey, a 1-in-50 systematic sample is drawn from city tax records to
determine the total number of families in the city who rent their homes. Let if the
family in the ith household sampled rents and let if the family does not. There are

households in the community. Use the following to estimate the total num-
ber of families who rent. Place a bound on the error of estimation.

[Hint: If is the estimated fraction who rent, then is an estimate of the total number
who rent; .]

7.19 A farmer wishes to estimate the total weight of fruit to be produced in a field of zucchini
(squash) by sampling just prior to harvest. The plot consists of 20 rows with 400 plants
per row. The manufacturer of the seeds says that each plant can yield up to 8 pounds of
fruit. Outline an appropriate systematic sampling plan for this problem so as to estimate
the total weight of fruit to within 2000 pounds.

VN (NpN ) = N2
 VN (pN )

NpNpN

a
304

i=1
yi = 88

N = 15,200
yi = 0

yi = 1

a
65

i=1
yi = 48

yi = 0yi = 1
N = 650

7.16 Foresters are interested in determining the mean timber volume per acre for 520 one-acre
plots (N = 520). A 1-in-25 systematic sample is conducted. Using the data presented in
the accompanying table, estimate m, the average timber volume per plot, and place a
bound on the error of estimation.

     



7.20 The following table shows the number of births (in thousands) and the birth rate (in births
per thousand of population) in the United States for a systematic sample of years be-
tween 1950 and 1990.
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Year 1950 1955 1960 1965 1970 1975 1980 1985 1990
Births 3632 4097 4258 3760 3731 3144 3612 3761 4158
Rate 24.1 25.0 23.7 19.4 18.4 14.6 15.9 15.8 16.7

SOURCE: U.S. Bureau of the Census, Statistical Abstract of the United States, 1993–94, 113th ed., Washington, D.C., 1994.

Year 1950 1955 1960 1965 1970 1975 1980 1985 1990
Divorces 385 377 393 479 708 1036 1189 1190 1175

SOURCE: U.S. Bureau of the Census, Statistical Abstract of the United States, 1993–94, 113th ed., Washington, D.C., 1994.

a. Estimate the total number of births during this 41-year period. Find an appropriate
estimate of the variance.

b. Estimate the mean birth rate during this period and find an appropriate estimator of
the variance. Do you think this mean would be a good predictor of the birth rate for
1995? Explain. 

7.21 The following table shows the number of divorces (in thousands) in the United States for
a systematic sample of years between 1950 and 1990. Estimate the total number of di-
vorces for this period and find an appropriate variance approximation for your estimate.

Would the mean number of divorces over this period be a good predictor of the number
of divorces for 1995? Explain.

7.22 A quality control inspector must sample silicon wafers, from which computer chips will
be made, after they are baked in an oven. Slotted trays containing many wafers are put
through the oven, one after another, all day long. Position on the tray and time of day
may have important bearings on the quality of the wafer. Suggest a sampling plan, with
the goal being to estimate the proportion of defective wafers.

7.23 A warehouse contains stacks of automobile batteries that must be sampled for quality in-
spection. Each stack has a different production date code, and the stacks are arranged
chronologically. The stacks are of approximately equal size. Suggest a sampling plan for
estimating the proportion of defective batteries.

7.24 An auditor is confronted with a long list of accounts receivable for a firm. She must verify
the amounts on 10% of these accounts and estimate the average difference between the
audited and book values.
a. Suppose the accounts are arranged chronologically, with the older accounts tending

to have smaller values. Should you choose a systematic or a simple random sampling
design to select the sample?

b. Suppose the accounts are arranged randomly. Should you choose a systematic or a
simple random sampling design to select the sample?

c. Suppose the accounts are grouped by department and then listed chronologically
within departments. The older accounts again tend to have smaller values. Should
you choose a systematic or a simple random sampling design to select the sample?

     



7.25 The market share for a certain food product is to be estimated by recording store pur-
chases of the product for certain weeks selected throughout the year. Discuss the advan-
tages and disadvantages of a systematic selection of the weeks for this study.

7.26 Crop yield for a large field of wheat is to be estimated by sampling small plots within the
field while the grain is ripening. The field is on sloping land, with higher fertility toward
the lower side.
a. Suggest a systematic sampling design for the small plots.
b. Could other sampling designs be used effectively in this case?

7.27 The variance of estimators from simple random sampling can be calculated using simple
random sampling results or using successive differences. Does the use of successive dif-
ferences produce a better estimator of the variance in
a. Exercise 7.6?
b. Exercise 7.11?
c. Exercise 7.16?
d. Exercise 7.20?
e. Exercise 7.21?

7.28 A certain bank has 20,000 home mortgages numbered serially in the order that they
were granted, over a period of years. There is a tendency for unpaid balances to in-
crease from the lowest to highest number on the list because housing costs have been
rising. It is desired to estimate the total unpaid balance. A sample of size 200 is to be
used, and four clerks are available to do the work. How would you design the sam-
pling scheme and estimate the desired total? Construct an approximate variance from
your estimator.

7.29 An ordered list of addresses of individual family dwellings along a long street that
intersects a city is available. For estimating the proportion of households contain-
ing an unemployed adult, would you use systematic or simple random sampling?
Why?

7.1 Locate the stock price summaries for the week in your local weekend newspaper. These
summaries usually list the high and low prices of each stock for the week, along with the
difference between the closing price for the current week and that for the previous week.
(a) Select a systematic sample of stocks, and estimate the proportion that have a lower
closing price this week than they had the previous week. Place a bound on the error of
estimation. (b) How do you think systematic sampling would compare with simple or
stratified random sampling in this case?

7.2 The data set TEMPS in Appendix C and on the data disk shows normal monthly temper-
atures and amounts of precipitation reported by weather stations around the United
States. For the month of March, estimate the mean temperature and the mean amount of
precipitation across these weather stations by using
a. A single systematic sample of size 30, with an appropriate variance approximation. 
b. Three repeated systematic samples of size 10 each, with an appropriate variance

approximation.
Which method do you prefer, and why?

Sampling
from Real
Populations

Sampling from Real Populations 249

     



7.3 The data set RIVER in Appendix C and on the data disk shows the daily discharge rates
of a certain Florida river over a two-year period. Estimate the mean discharge rate for the
entire period by using
a. A single systematic sample of 100 observations, with an appropriate variance

approximation. 
b. Five repeated systematic samples of 20 observations each, with an appropriate vari-

ance approximation.
c. A simple random sample of 100 observations, with an appropriate variance approxi-

mation. Discuss the relative merits of these three methods.

7.4 From a list of names, such as those in a student directory, select a systematic sample and
interview the selected people to find out whether they favor a certain issue of current im-
portance (such as a proposed government action or a pending campus decision). Estimate
the population proportion favoring the issue and place a bound on the error of estimation.

Repeat the procedure just outlined three more times so that four independent sys-
tematic samples are available. Compare the results from the individual samples with the
combined result of the four samples analyzed according to the methods in Section 7.6. If
you prefer to work with something other than lists of people, use other listed records in
a similar way. For example, you could systematically sample names of employees from
a file and estimate average age, income, and so on.
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8

Cluster Sampling

C A S E  S T U D Y

WHAT ARE THE CHARACTERISTICS OF THE PEOPLE LIVING 
IN YOUR NEIGHBORHOOD?

Suppose a firm wants to locate a business in your neighborhood. How can it find in-
formation on the characteristics of the people living there without conducting its own
survey? One way is to consult the block statistics data from the U.S. Census Bureau.
Block statistics give demographic information—such as the total number of residents,
number in certain minority groups, number over the age of 65, and number of owners
and renters—on very small regions that often conform to city blocks. These data are
used by market researchers, housing and transportation planners, and community
associations, among others.

The business that is considering a location in your neighborhood caters to those ages
65 and over. Thus, it wants to estimate the proportion of residents in this age category
who live in a 40-block area.The firm decides to sample 5 of the 40 blocks and obtain the
data from block statistics. The sampled blocks form clusters of people, and hence the
techniques of cluster sampling must be used. (This problem is a scaled-down version of
a real problem. Usually, the number of blocks and the sample size are much larger.)

■

8.0
Tools

Interactive Excel tools for doing calculations in this chapter can be found on the CD
that accompanies this book. In the Chapter Eight Tools folder, you will find a Word
file named Section 8.0 (tools). Therein links have been provided to the relevant com-
putational tools for this chapter. In the text, we use an icon (pictured on the left) as a
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reminder for equations for which we have built tools. Also, data for some of the chap-
ter exercises are available via a link in that section.

8.1 
Introduction

Recall that the objective of sample survey design is to obtain a specified amount of in-
formation about a population parameter at minimum cost. Stratified random sampling
is often better suited for this than is simple random sampling for the three reasons in-
dicated in Section 5.1. Systematic sampling often gives results at least as accurate as
those from simple random sampling, and it is easier to perform, as discussed in Sec-
tion 7.1. This chapter introduces a fourth design, cluster sampling, which sometimes
gives more information per unit cost than do any of the other three designs.

DEFINITION 8.1

A cluster sample is a probability sample in which each sampling unit is a collection,
or cluster, of elements. ■

Cluster sampling is less costly than simple or stratified random sampling if the
cost of obtaining a frame that lists all population elements is very high or if the cost of
obtaining observations increases as the distance separating the elements increases.

To illustrate, suppose we wish to estimate the average income per household in a
large city. How should we choose the sample? If we use simple random sampling, we
will need a frame listing all households (elements) in the city, and this frame may be very
costly or impossible to obtain. We cannot avoid this problem by using stratified random
sampling because a frame is still required for each stratum in the population. Rather than
drawing a simple random sample of elements, we could divide the city into regions such
as blocks (or clusters of elements) and select a simple random sample of blocks from the
population. This task is easily accomplished by using a frame that lists all city blocks.
Then the income of every household within each sampled block could be measured.

To illustrate a second reason for using cluster sampling, suppose that a list of
households in the city is available. We could select a simple random sample of house-
holds, which probably would be scattered throughout the city. The cost of conduct-
ing interviews in the scattered households would be large due to the interviewers’
travel time and other related expenses. Stratified random sampling could lower these
expenses, but using cluster sampling is a more effective method of reducing travel
costs. Elements within a cluster should be close to one another geographically, and
hence travel expenses should be reduced. Obviously, travel within a city block would
be minimal when compared with the travel associated with simple random sampling
of households within the city.

To summarize, cluster sampling is an effective design for obtaining a specified
amount of information at minimum cost under the following conditions:

1. A good frame listing population elements either is not available or is very costly
to obtain, but a frame listing clusters is easily obtained.

2. The cost of obtaining observations increases as the distance separating the elements
increases.
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City blocks are frequently used as clusters of households or people because the
U.S. Census Bureau reports very detailed block statistics. In census data, a block may
be a standard city block or an irregularly shaped area with identifiable political or ge-
ographic boundaries. Block statistics are reported for all urban areas and for all other
places with concentrations of 10,000 or more people. In total, block statistics cover
approximately 80% of the nation’s population. Data reported for each block include
total population, racial mix, and number of housing units, and they may include the
dollar value of the property, whether the unit is owned or rented by the inhabitants,
and whether the unit has complete plumbing facilities.

Block statistics from the Census Bureau are widely used in cluster sampling by
market research firms, which may want to estimate the potential market for a prod-
uct, the potential sales if a new store were to open in the area, or the potential num-
ber of clients for a new service, such as an emergency medical facility.

State and local governments sample blocks (clusters of housing units or people)
to plan new transportation methods and facilities and to plan housing developments.
Similarly, community organizations, such as churches, use block statistics to deter-
mine optimal sites for expansion.

There are many other common examples of the uses of cluster sampling. Hous-
ing units themselves are clusters of people and may form convenient sampling units
when sampling college students, for example. Hospitals form convenient clusters of
patients with certain illnesses for studies on the average length of time a patient is
hospitalized or the average number of recurrences of these illnesses.

Elements other than people are often sampled in clusters. An automobile forms a
nice cluster of four tires for studies on tire wear and safety. A circuit board manufactured
for a computer forms a cluster of semiconductors for testing. An orange tree forms a
cluster of oranges for investigating an insect infestation. A plot in a forest contains a
cluster of trees for estimating timber volume or proportions of diseased trees. As you can
see, the list of possible clusters that are convenient units for sampling is endless. 

We now discuss the details of selecting a cluster sample.

8.2 
How to Draw a Cluster Sample

The first task in cluster sampling is to specify appropriate clusters. Elements within
a cluster are often physically close together and hence tend to have similar charac-
teristics. Stated another way, the measurement on one element in a cluster may be
highly correlated with the measurement on another. Thus, the amount of information
about a population parameter may not be increased substantially as new measure-
ments are taken within a cluster. Because measurements cost money, an experimenter
will waste money by choosing too large a cluster size. However, situations may arise
in which elements within a cluster are very different from one another. In such cases,
a sample containing a few large clusters could produce a very good estimate of a pop-
ulation parameter, such as the mean.

For example, suppose clusters are formed by boxes of components coming off pro-
duction lines, one cluster of components per line. If all lines have approximately the
same rate of defects, then the components in each cluster (box) are about as variable with
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respect to quality as the population as a whole. In this situation, a good estimate of the
proportion of defectives produced could be obtained from one or two clusters.

In contrast, suppose school districts are specified as clusters of households for
estimating the proportion of households that favor a rezoning plan. Because the clus-
ters contain many households, resources allow only a small number of clusters—say,
two or three—to be sampled. In this case, most households in one district may be
happy with their schools and not favor rezoning, whereas most households in another
district may be unhappy with their schools and strongly favor rezoning. A small sam-
ple of school districts may miss one or the other of these groups entirely, thereby
yielding a very poor estimate. More information may be obtained by sampling a
larger number of clusters of smaller size.

The problem of choosing an appropriate cluster size can be even more difficult
when an infinite number of possible cluster sizes are available, as in the selection of
forest plots to estimate the proportion of diseased trees. If there is variability in the
density of diseased trees across the forest, then many small plots (clusters), ran-
domly or systematically located, are desirable. However, randomly locating a plot in
a forest is quite time-consuming, and once it is located, sampling many trees in that
one plot is economically desirable. Thus, many small plots are advantageous for
controlling variability, but a few large plots are advantageous economically. A bal-
ance between size and number of plots must be achieved. There are no good rules
that always hold for making this decision. Each problem must be studied on its own,
but pilot surveys with various plot sizes might help point the experimenter in the
correct direction.

Notice the main difference between the optimal construction of strata (Chap-
ter 5) and the construction of clusters. Strata are to be as homogeneous (alike) as
possible within, but one stratum should differ as much as possible from another
with respect to the characteristic being measured. Clusters, on the other hand,
should be as heterogeneous (different) as possible within, and one cluster should
look very much like another in order for the economic advantages of cluster sam-
pling to pay off.

Once appropriate clusters have been specified, a frame that lists all clusters in the
population must be composed. A simple random sample of clusters is then selected
from this frame by using the methods in Section 4.2. We illustrate with the following
example.

EXAMPLE 8.1 A sociologist wants to estimate the per-capita income in a certain small city. No list
of resident adults is available. How should he design the sample survey?

SOLUTION Cluster sampling seems to be the logical choice for the survey design because no lists
of elements are available. The city is marked off into rectangular blocks, except for
two industrial areas and three parks that contain only a few houses. The sociologist
decides that each of the city blocks will be considered one cluster, the two industrial
areas will be considered one cluster, and finally, the three parks will be considered one
cluster. The clusters are numbered on a city map, with the numbers from 1 to 415.
The experimenter has enough time and money to sample clusters and to
interview every household within each cluster. Hence, 25 random numbers between
1 and 415 are selected, and the clusters having these numbers are marked on the map.
Interviewers are then assigned to each of the sampled clusters. ■

n = 25
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8.3 
Estimation of a Population Mean and Total

Cluster sampling is simple random sampling with each sampling unit containing a
number of elements. Hence, the estimators of the population mean m and total t are
similar to those for simple random sampling. In particular, the sample mean y is a
good estimator of the population mean m. An estimator of m and two estimators of t
are discussed in this section.

The following notation is used in this chapter:

N = the number of clusters in the population

n = the number of clusters selected in a simple random sample

mi = the number of elements in cluster 

= the average cluster size for the sample

= the number of elements in the population 

= the average cluster size for the population 

yi = the total of all observations in the ith cluster

The estimator of the population mean m is the sample mean , which is given by 

Thus, takes the form of a ratio estimator, as developed in Chapter 6, with mi taking
the place of xi. Then the estimated variance of has the form of the variance of a ratio
estimator, given by Eq. (6.2).

y
y

y =

a
n

i=1
yi

a
n

i=1
mi

y

M = M>N
M = a

N

i=1
mi

m =

1

na
n

i=1
mi

i, i = 1, Á , N
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Ratio estimator of the population mean M: 

(8.1)

Estimated variance of :

(8.2)

where

(8.3)

Here can be estimated by if M is unknown.mM

s2
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n

i=1
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TABLE 8.1
Per-capita income

Total income Total income
Number of per cluster, yi Number of per cluster, yi

Cluster residents, mi (dollars) Cluster residents, mi (dollars)

1 8 $96,000 14 10 $49,000
2 12 121,000 15 9 53,000
3 4 42,000 16 3 50,000
4 5 65,000 17 6 32,000
5 6 52,000 18 5 22,000
6 6 40,000 19 5 45,000
7 7 75,000 20 4 37,000
8 5 65,000 21 6 51,000
9 8 45,000 22 8 30,000

10 3 50,000 23 7 39,000
11 2 85,000 24 3 47,000
12 6 43,000 25 8 41,000
13 5 54,000

$1,329,000

a
25

i=1
yi =a

25

i=1
mi = 151

The estimated variance in Eq. (8.2) is biased and a good estimator of  only
if n is large—say, . The bias disappears if the cluster sizes ml, m2, . . . , mN are
equal. As in all cases of ratio estimation, the estimator and its standard error can be
calculated by fitting a weighted regression line forced through the origin with
weights equal to the reciprocal of the m values. Example 8.2 illustrates this estima-
tion procedure.

EXAMPLE 8.2 Interviews are conducted in each of the 25 blocks sampled in Example 8.1. The data
on incomes are presented in Table 8.1. Use the data to estimate the per-capita income
in the city and place a bound on the error of estimation.

SOLUTION Because the estimator of the mean per element is a ratio estimator, computations
proceed exactly as they do for ratio estimators in Chapter 6. A summary of the basic
statistics for these data is presented in the table.

n Ú 20
V(y)

N Mean Median SD

Resident 25 6.040 6.000 2.371
Income 25 53,160 49,000 21,784

25 0 993 25,189yi - ymi

     



The best estimate of the population mean m is given by Eq. (8.1) and calculated as
follows:

Because M is not known, the appearing in Eq. (8.2) must be estimated by ,
where

Example 8.1 gives . Then from Eq. (8.2),

Thus, the estimate of with a bound on the error of estimation is given by

The best estimate of the average per-capita income is $8801, and the error of estima-
tion should be less than $1617 with probability close to .95. This bound on the error
of estimation is rather large; it could be reduced by sampling more clusters. ■

Recall that the ratio estimator is nearly unbiased when the plot of y versus m
shows points falling close to a straight line through the origin. A plot of the data from
Table 8.1 is shown in Figure 8.1.

Although there is something of a linear trend here, it does not appear to be strong
( ). Even so, the relative bias, approximated by

is small, and the ratio estimate of m should be reasonably good.
The population total t is now because M denotes the total number of ele-

ments in the population. Consequently, as in simple random sampling, provides
an estimator of t.
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=

$53,160
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= $8801
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Note that the estimator is useful only if the number of elements in the population,
M, is known.

EXAMPLE 8.3 Use the data in Table 8.1 to estimate the total income of all residents of the city and
place a bound on the error of estimation. There are 2500 residents of the city. 

SOLUTION The sample mean y is calculated to be $8801 in Example 8.2. Thus, the estimate of
t is

My = 2500(8801) = $22,002,500

My
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Estimator of the population total T:

(8.4)

Estimated variance of :

(8.5)VN (My) = M2VN (y ) = N2a1 -

n

N
b  

s2
r

n

My

My = M
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yi

a
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FIGURE 8.1
Data from Table 8.1
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The quantity is calculated by the method used in Example 8.2, except that
can now be used in place of . The estimate of t with a bound on the error of

estimation is

Again, this bound on the error of estimation is large, and it could be reduced by
increasing the sample size. ■

Often the number of elements in the population is not known in problems for
which cluster sampling is appropriate. Thus, we cannot use the estimator , but we
can form another estimator of the population total that does not depend on M. The
quantity given by

(8.6)

is the average of the cluster totals for the n sampled clusters. Hence, is an unbiased
estimator of the average of the N cluster totals in the population. By the same rea-
soning as employed in Chapter 4, is an unbiased estimator of the sum of the clus-
ter totals or, equivalently, of the population total t.

For example, it is highly unlikely that the number of adult males in a city would
be known, and hence the estimator , rather than , would have to be used to
estimate t.
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 = 22,002,500 ;  4,042,848

 = 22,002,500 ; 22(2500)2(653,785)
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Estimator of the population total T, which does not depend on M:

(8.7)

Estimated variance of :

(8.8)

where

(8.9)s2
t =

a
n

i=1
(yi - yt)

2

n - 1

VN (Nyt) = N2VN (yt) = N2a1 -

n
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b  
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n

Nyt

Nyt =

N

n a
n

i=1
yi

If there is a large amount of variation among the cluster sizes and if cluster sizes
are highly correlated with cluster totals, the variance of in Eq. (8.8) is generally
larger than the variance of in Eq. (8.5). The estimator does not use the
information provided by the cluster sizes m1, m2, . . . , mn and hence may be less
precise.

NytMy
Nyt

     



EXAMPLE 8.4 Use the data in Table 8.1 to estimate the total income of all residents of the city if M
is not known. Place a bound on the error of estimation.

SOLUTION Example 8.1 gives . From Eq. (8.7) and Table 8.1, the estimate of the total
income t is

This figure is fairly close to the estimate given in Example 8.3.
To place a bound on the error of estimation, we first note that

from the data summary in Example 8.2. Then the estimate of the total income of all
residents of the city, with a bound on the error of estimation, is .
Substituting into Eq. (8.8), we calculate

The bound on the error of estimation is slightly smaller than the bound for the esti-
mator (Example 8.3), partly because the cluster sizes are not highly correlated
with the cluster total in this example. In other words, the cluster sizes are providing
little information on cluster totals; hence, the unbiased estimator appears to be
better than the estimator . ■

8.4 
Equal Cluster Sizes: Comparison to Simple Random Sampling

For a more precise study of the relationships between cluster sampling and simple
random sampling, we confine our discussion to the case in which all of the mi values
are equal to a common value—say, m. We assume this to be true for the entire popu-
lation of clusters, as in the case of sampling cartons of canned foods where each car-
ton contains exactly 24 cans. In this case, , and the total sample size is nm
elements (n clusters of m elements each).

The estimators of and t possess special properties when all cluster sizes are equal
(i.e., m1 = m2 = . . . = mN). First, the estimator , given by Eq. (8.1), is an unbiased
estimator of the population mean m. Second, , given by Eq. (8.2), is an unbiased
estimator of the variance of . Finally, the two estimators, and , of the popu-
lation total t are equivalent.

The estimator (8.1) of the population mean per element is denoted in this equal
cluster size case by , and it becomes
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where yij denotes the jth-sample observation from cluster i. Note that can be thought
of as the overall average of all nm sample measurements or as the average of the sam-
pled cluster totals divided by m. From the latter point of view, it is easy to see that 

where

If we let the sample average for cluster i be denoted by , we have , or
. We can then write

To simplify the variance computations and to explore the relationship between clus-
ter sampling and simple random sampling, we use a sum-of-squares identity similar
to that developed in classical analysis of variance (ANOVA) arguments. It can be
shown that 

The three terms, from  left to right, are named total sum of squares (SST), within-
cluster sum of squares (SSW), and between-cluster sum of squares (SSB). The above
equality is then 

With appropriate divisors, these sums of squares become the usual mean squares of
ANOVA. Thus, the between-cluster mean square MSB is given by

and the within-cluster mean square MSW is given by

It now follows that
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EXAMPLE 8.5 The circulation manager of a newspaper wishes to estimate the average number of
newspapers purchased per household in a given community. Travel costs from house-
hold to household are substantial. Therefore, the 4000 households in the community
are listed in 400 geographical clusters of 10 households each, and a simple random
sample of 4 clusters is selected. Interviews are conducted, with the results as shown
in the accompanying table. Estimate the average number of newspapers per house-
hold for the community and place a bound on the error of estimation.

SOLUTION From Eq. (8.1),

When , the equation becomes

Standard ANOVA computations were performed (using MINITAB) on the data
with results as shown in the table.

In this output, “Factor” denotes the between-cluster calculations, and “Error”
denotes the within-cluster calculations. Thus, MSB = 0.36 and MSW = 1.20. It
follows that

 = 0.0089

 = a 396

400
b  

1

4(10)
 (0.36)

 VN (yc) = a1 -

n

N
b  

1

nm
MSB

ANOVA

Source df SS MS

Factor 3 1.07 0.36
Error 36 43.30 1.20
Total 39 44.38

yc =

a
n

i=1
yi

nm
=

19 + 20 + 16 + 20

4(10)
= 1.875

m1 = m2 = . . . = mn = m

y =

a
n

i=1
yi

a
n

i=1
mi

Cluster Number of newspapers Total

1 1  2  1  3  3  2  1  4  1  1 19
2 1  3  2  2  3  1  4  1  1  2 20
3 2  1  1  1  1  3  2  1  3  1 16
4 1  1  3  2  1  5  1  2  3  1 20
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and

Therefore, our best estimate of the number of newspapers per household is
. ■

How can we compare the precision of cluster sampling with that of simple ran-
dom sampling? If we had taken the nm observations in a simple random sample and
computed the mean and variance s2, then we would have

because there would be Nm total observations in the population. Thus, we can meas-
ure the relative efficiency of compared to by comparing MSB to s2. But we did
not take a simple random sample; we took a cluster sample, so s2 is not available.
Fortunately, it turns out that we can approximate s2 (the variance we would have
obtained in a simple random sample) from quantities available in the cluster sample
results. This approximation is

when N is large. Using the calculations from Example 8.5, we see that

The estimated relative efficiency of compared to is thus

In this case, cluster sampling is more efficient because there is so little variation be-
tween clusters (each cluster seems to be fairly representative of the entire population).
This is somewhat unusual because, in most cases of naturally occurring clusters, clus-
ter sampling will be less efficient than simple random sampling.

As another example, we sample clusters of contiguous random
digits from a random number table. If the goal is to estimate the mean of the random
digits (known to be 4.5 in this case), how should our cluster sample compare to taking

random digits in a simple random sample? Because the clusters them-
selves contain randomly generated digits, we would expect the relative efficiency to
be close to 1.
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The ANOVA results for our sample are as shown in the table.

From this,

and

This is a little lower than expected, but not far from 1.0.
We continue this discussion of comparisons between cluster sampling and simple

random sampling in Chapter 9.

8.5 
Selecting the Sample Size for Estimating Population 
Means and Totals

The quantity of information in a cluster sample is affected by two factors: the number
of clusters and the relative cluster size. We have not encountered the latter factor in any
of the sampling procedures discussed previously. In the problem of estimating the num-
ber of homes with inadequate fire insurance in a state, the clusters could be counties,
voting districts, school districts, communities, or any other convenient grouping of
homes. As we have already seen, the size of the bound on the error of estimation de-
pends crucially on the variation among the cluster totals. Thus, in attempting to achieve
small bounds on the error of estimation, we select clusters with as little variation as
possible among these totals. We now assume that the cluster size (sampling unit) has
been chosen and consider only the problem of choosing the number of clusters, n. From
Eq. (8.2), the estimated variance of is

where
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3(19)(8.04) + 13.514 = 8.31

ANOVA

Source df SS MS

Factor 3 40.54 13.51
Error 76 610.85 8.04
Total 79 651.39

     



The actual variance of is approximately

(8.11)

where is the population quantity estimated by .
Because we do not know or the average cluster size M, choice of the sample

size for the number of clusters necessary to purchase a specified quantity of infor-
mation concerning a population parameter is difficult. We overcome this difficulty by
using the same method we use for ratio estimation. That is, we use an estimate of 
and available from a prior survey, or we select a preliminary sample containing n�
elements. Estimates of and can be computed from the preliminary sample and
used to acquire an approximate total sample size n. Thus, as in all problems of
selecting a sample size, we equate two standard errors of our estimator to a bound on
the error of estimation, B. This bound is chosen by the experimenter and represents
the maximum error that he or she is willing to tolerate. That is,

Using Eq. (8.11), we can solve for n.
We obtain similar results when using to estimate the population total t

because .V(My) = M2V(y)
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EXAMPLE 8.6 Suppose the data in Table 8.1 represent a preliminary sample of incomes in the city.
How large a sample should be taken in a future survey in order to estimate the aver-
age per-capita income m with a bound of $500 on the error of estimation?

SOLUTION To use Eq. (8.12), we must estimate ; the best estimate available is , which can
be calculated by using the data in Table 8.1. Using the calculations in Example 8.2,
we have

The quantity can be estimated by , calculated from Table 8.1. Then D is
approximately

B2m2

4
=

(500)2(6.04)2

4
= (62,500)(6.04)2

m = 6.04M

s2
r =

a
n

i=1
(yi - ymi)

2

n - 1
= (25,189)2

s2
rs2

r

Approximate sample size required to estimate M, with a bound B on
the error of estimation:

(8.12)

where is estimated by and .D = (B2M2)>4s2
rs2

r

n =

Ns2
r

ND + s2
r

     



Using Eq. (8.12) yields

Thus, 167 clusters should be sampled. ■

n =

Ns2
r

ND + s2
r

=

415(25,189)2

415(6.04)2(62,500) + (25,189)2 = 166.58
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EXAMPLE 8.7 Again using the data in Table 8.1 as a preliminary sample of incomes in the city, how
large a sample is necessary to estimate the total income of all residents, t, with a
bound of $1,000,000 on the error of estimation? There are 2500 residents of the city

.

SOLUTION We use Eq. (8.13) and estimate by

as in Example 8.6. When estimating t, we use

Then, using Eq. (8.13) gives 

Thus, 213 clusters should be sampled to estimate the total income with a bound of
$1,000,000 on the error of estimation. ■

The estimator , shown in Eq. (8.7), is used to estimate t when M is unknown.
The estimated variance of shown in Eq. (8.8) is
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Thus, the population variance of is

(8.14)

where is the population quantity estimated by .The estimation of twith a bound
of B units on the error of estimation leads to the following equation:

Using Eq. (8.14), we can solve for n.
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EXAMPLE 8.8 Assume the data in Table 8.1 are from a preliminary study of incomes in the city and
M is not known. How large a sample must be taken to estimate the total income of all
residents, t, with a bound of $1,000,000 on the error of estimation?

SOLUTION The quantity must be estimated by , which is calculated from the data in
Table 8.1. Using the calculations of Example 8.4 gives

The bound on the error of estimation is . Hence,

From Eq. (8.15),

Thus, a sample of 183 clusters must be taken to have a bound of $1,000,000 on the
error of estimation. ■

8.6 
Estimation of a Population Proportion

Suppose an experimenter wishes to estimate a population proportion, or fraction,
such as the proportion of houses in a state with inadequate plumbing or the propor-
tion of corporation presidents who are college graduates. The best estimator of the
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population proportion p is the sample proportion . Let ai denote the total number of
elements in cluster i that possess the characteristic of interest. Then the proportion of
elements in the sample of n clusters possessing the characteristic is given by

where mi is the number of elements in the ith cluster, i = 1, 2, . . . , n. Note that has
the same form as [see Eq. (8.1)], except that yi is replaced by ai. The estimated vari-
ance of is similar to that of .ypN

y
pN

pN =

a
n

i=1
ai

a
n

i=1
mi

pN
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The variance formula (8.17) is a good estimator only when the sample size n is
large—say, . If m1 = m2 =

. . .
= mN, then is an unbiased estimator of p, and

, shown in Eq. (8.17), is an unbiased estimator of the actual variance of for
any sample size.

EXAMPLE 8.9 In addition to being asked about their income, the residents of the sample survey in
Example 8.2 are asked whether they rent or own their homes. The results are given in
Table 8.2. Use the data in Table 8.2 to estimate the proportion of residents who live
in rented housing. Place a bound on the error of estimation.

SOLUTION The best estimate of the population of renters is , shown in Eq. (8.16), where
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The quantity is estimated by , where

Then from Eq. (8.17),
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TABLE 8.2
Number of renters

Cluster Residents, m Renters, a

1 8 4 0.16000
2 12 7 1.24000
3 4 1 - 0.92000
4 5 3 0.60000
5 6 3 0.12000
6 6 4 1.12000
7 7 4 0.64000
8 5 2 - 0.40000
9 8 3 - 0.84000

10 3 2 0.56000
11 2 1 0.04000
12 6 3 0.12000
13 5 2 - 0.40000
14 10 5 0.20000
15 9 4 - 0.32000
16 3 1 - 0.44000
17 6 4 1.12000
18 5 2 - 0.40000
19 5 3 0.60000
20 4 1 - 0.92000
21 6 3 0.12000
22 8 3 - 0.84000
23 7 4 0.64000
24 3 0 - 1.44000
25 8 3 - 0.84000

N Mean Median SD

Resident 25 6.040 6.000 2.371
Renters 25 2.880 3.000 1.509

25 -0.019 0.120 0.726ai - pN mi

ai - pN mi

     



The estimate of p with a bound on the error is

Thus, the best estimate of the proportion of people who rent homes is 0.48. The error
of estimation should be less than 0.05 with a probability of approximately .95. The
fact that we are estimating a proportion here saves us no calculation effort as it did in
the case of simple random sampling, and so other versions of may be consid-
ered (such as fitting a weighted regression model). ■

As in all ratio estimators, the relationship between a and m should be somewhat
linear with positive slope and intercept near zero for this methodology to work well.
A plot of the data from Table 8.2 is given in Figure 8.2. Note that the linearity is fairly
strong here.

8.7 
Selecting the Sample Size for Estimating Proportions

The estimation of the population proportion p with a bound of B units on the error of
estimation implies that the experimenter wants

This equation can be solved for n, and the solution is similar to Eq. (8.12). That is, 

where , and is estimated by
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pN ; 22VN (pN ) = 0.48 ; 220.00054 = 0.48 ; 0.05
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FIGURE 8.2
Data from Table 8.2
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EXAMPLE 8.10 The data in Table 8.2 are out of date. A new study will be conducted in the same city
for the purpose of estimating the proportion p of residents who rent their homes.
How large a sample should be taken to estimate p with a bound of 0.04 on the error
of estimation?

SOLUTION The best estimate of is , which is calculated by using data from Table 8.2:

Quantity is estimated by . Also, D is approximated by

Then

Thus, 34 clusters should be sampled to estimate p with a bound of 0.04 on the error
of estimation. ■

8.8
Cluster Sampling Combined with Stratification

As is the case with all other sampling methods, cluster sampling can be combined
with stratified sampling, in the sense that the population may be divided into L strata
and a cluster sample can then be selected from each stratum.

Recall that Eq. (8.1) has the form of a ratio estimator and can be thought of as the
ratio of an estimator of the average cluster total to an estimator of the average cluster
size. Thinking in terms of ratio estimators, then, we have two ways to form the esti-
mator of a population mean across strata: the separate estimator and the combined
estimator. A little investigation will show that if the separate estimator is employed,
the total number of elements in each stratum must be known in order to assign proper
stratum weights. We accommodate that case in our tools (see electronic Section 6.0),
but because these quantities are usually unknown, we here investigate only the com-
bined form of the ratio estimator in the context of cluster sampling.

Instead of presenting formidable-looking general formulas, we will illustrate the
technique with a numerical example.

EXAMPLE 8.11 Let the data in Table 8.1 form the sample of stratum 1, with, as in Example 8.2, 
and . A smaller neighboring city is taken to be stratum 2. For stratum 2,n1 = 25
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blocks are to be sampled from . Estimate the average per-capita
income in the two cities combined and place a bound on the error of estimation, given
the additional data shown in the accompanying table.

SOLUTION The average cluster totals in the samples are and . The
average cluster sizes in the samples are in and .

The estimate of the population average cluster total is then 

and the estimate of the average cluster size is

An estimate of the population mean per element is then

and this equation does have the form of a combined ratio estimate. A difference in the
use here and that in Section 6.5 is that, here, the mean is estimated by the ratio itself.
This is a consequence of different statistics forming the ratio. Analogous to the vari-
ance used in Section 6.5, the variance of the ratio can be estimated by

where M is the total number of elements in the population and can be estimated
by if it is not known. The first variance, , is the variance of terms

from stratum 1. The second variance, , is the variance of terms
from stratum 2.(yi - ycmi)
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N
 (N1yt1 + N2yt2)

m2 = 4.90m1 = 6.04
yt2 = 54,700yt1 = 53,160

Total income
Number of per cluster, yi

Cluster residents, mi (dollars)

1 2 18,000
2 5 52,000
3 7 68,000
4 4 36,000
5 3 45,000
6 8 96,000
7 6 64,000
8 10 115,000
9 3 41,000

10 1 12,000

N2 = 168n2 = 10

     



From the data provided,

For stratum 1,

and for stratum 2,

Because

it follows that

and

Thus, the average per-capita income for the two cities combined is $9385 ; $1285.
The bound on the error of estimation is slightly smaller than the bound for stratum 1
alone, as found in Example 8.2. ■

8.9
Cluster Sampling with Probabilities Proportional to Size

Up to this point, all the sampling designs that have been discussed in Chapters 4
through 8 have involved random samples of elements or clusters of elements. It turns
out that this is not always the best way to conduct the sampling, as is shown in
Section 3.3. Sometimes estimates can be improved by varying the probabilities with
which units are sampled from the population. Suppose, for example, we want to
estimate the number of job openings in a city by sampling industrial firms from
within that city. Typically, many such firms will be small and employ few workers,
whereas some firms will be large and employ many workers. In a simple random sample
of firms, the size of the firms is not taken into account, and a typical sample will consist
of mostly small firms. The number of job openings, however, is heavily influenced by
the large firms. Thus, we should be able to improve the estimate of the number of job
openings by giving the large firms a greater chance to appear in the sample. A method
for accomplishing this is called sampling with probabilities proportional to size, or
pps sampling.

22VN (yc) = 1285

VN (yc) = 412,563.8

N1m1 + N2m2 = 3329.8

s2
c2 = (8657)2

s2
c1 = (25,998)2

yc =

415(53,160) + 168(54,700)

415(6.04) + 168(4.90)
= 9385
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An unbiased estimator of the population total (see Section 3.3) is given by 

where di is the probability of selecting the value yi on any one selection when sam-
pling with replacement. In simple random sampling with replacement each di is 1�N.

The estimator is unbiased for any choices of di, but it is clearly in the best in-
terest of the experimenter to choose these di so that the variances of the estimators are
as small as possible. The best practical way to choose the di is to choose them pro-
portional to a known measurement that is highly correlated with yi. In the problem
of estimating total number of job openings, firms can be sampled with probabilities
proportional to their total work force, which should be known fairly accurately be-
fore the sample is selected. The number of job openings per firm is not known before
sampling, but it should be highly correlated with the total number of workers in the
firm. Thus, we use pps sampling.

In summary, pps sampling involves sampling with replacement, which means
that a sampled item is not removed from the population after it is selected for the
sample. In theory, a particular sampling unit can be selected more than once. A re-
peated selection is usually undesirable, but it will not happen often if n�N is small.
Moreover, this undesirable feature is often more than offset by the reduction in vari-
ance that can occur. The pps estimator of t only produces smaller variance if the
probabilities di are proportional, or approximately proportional, to the size of the yi

values under investigation.
Cluster sampling often provides an ideal situation in which to use pps sampling

because the number of elements in a cluster, mi, forms a natural measure of the size
of the cluster. Sampling with probabilities proportional to mi pays big dividends in
terms of reducing the bound on the error of estimation when the cluster total yi is
highly correlated with the number of elements in the cluster, which is often the case.

Choosing di as

produces the estimator of a population total, , as

where is the average of the observations in the ith cluster. The estimated variance
of has a particularly simple form, as given later.

Because there are M elements in the population, the estimator of the population
mean, , is simply

mN pps =

1

M
 tNpps =

1

na
n

i=1
yi

mN pps

tNpps

yi

 =

M

n a
n

i=1

yi

mi
=

M

n a
n

i=1
yi

 tNpps =

1

na
n

i=1
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di
=

1
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i=1
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(mi>M)

tNpps

di =
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M
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1

na
n

i=1
a yi
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b
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These estimators are essentially those associated with simple random sampling and
are a result of the choice of weights, without need for the finite population correction,
due to sampling with replacement. We illustrate the technique of sampling with prob-
abilities proportional to cluster sizes in the next two examples.

EXAMPLE 8.12 An auditor wishes to sample sick-leave records of a large firm in order to estimate the
average number of days of sick leave per employee over the past quarter. The firm
has eight divisions, with varying numbers of employees per division. Because num-
ber of days of sick leave used within each division should be highly correlated with
the number of employees, the auditor decides to sample n = 3 divisions with proba-
bilities proportional to number of employees. Show how to select the sample if the
numbers of employees in the eight divisions are 1200, 450, 2100, 860, 2840, 1910,
290, and 3200.

SOLUTION We first list the number of employees and the cumulative range for each division,
as shown in Table 8.3. Because divisions are to be sampled, we must select
three random numbers between 00001 and 12,950. We can make this selection by
starting anywhere on a random number table and selecting five-digit numbers, but
we chose to start on line 1, column 4 of Appendix A, Table A.2. The first three num-
bers between 00001 and 12,950, as we proceed down the column, are 02011,
07972, and 10,281. The first appears in the cumulative range of division 3, the sec-
ond appears in the range of division 6, and the third appears in the range of division 8.

n = 3
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Estimator of the population mean M:

(8.19)

where is the mean for the ith cluster.

Estimated variance of :

(8.20)

Estimator of the population total T:

(8.21)

Estimated variance of :

(8.22)VN (tNpps) =

M2

n(n - 1)a
n

i=1
(yi - mN pps)

2

TN pps

tNpps =

M

n a
n

i=1
yi

VN (mN pps) =

1

n(n - 1)a
n

i=1
(yi - mN pps)

2

MN pps

yi

mN pps = y =

1

na
n

i=1
yi

The estimated variance of is given in the following box.mN pps

     



Thus, divisions 3, 6, and 8 constitute the sample. (Note that one division can be
selected more than once. In that event, we treat the resulting data as two separate
but equal sample values.)

EXAMPLE 8.13 Suppose the total number of sick-leave days used by the three sampled divisions dur-
ing the past quarter are, respectively,

Estimate the average number of sick-leave days used per person for the entire firm
and place a bound on the error of estimation.

SOLUTION We must first compute the cluster means for the sampled clusters, which are

(Note that the numbers of employees per sampled firm come from the data in
Table 8.3.) Now by Eq. (8.19),

Also, by Eq. (8.20),

 = 0.0119

 =

1

3(2)
3(2.06 - 2.02)2

+ (2.18 - 2.02)2
+ (1.81 - 2.02)24

 VN (mN pps) =

1

n(n - 1)a
n

i=1
(yi - mN pps)

2

mN pps =

1

na
n

i=1
yi =

1

3
(2.06 + 2.18 + 1.81) = 2.02

y1 =

4320

2100
= 2.06  y2 =

4160

1910
= 2.18  y3 =

5790

3200
= 1.81

y1 = 4320  y2 = 4160  y3 = 5790
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TABLE 8.3
Number of employees and range

Number of
Division employees Cumulative range

1 1200 1–1200
2 450 1201–1650
3 2100 1651–3750
4 860 3751–4610
5 2840 4611–7450
6 1910 7451–9360
7 390 9361–9750
8 3200 9751–12,950

12,950 ■

     



Thus, the bound on the error of estimation is 

Our estimate of the average number of sick-leave days used by employees of the firm
is 2.02 ; 0.22. ■

We now have three estimators of the population total in cluster sampling: the
ratio estimator (8.4), the unbiased estimator (8.7), and the pps estimator (8.21). How
do we know which is best? Here are some guidelines about how to answer this ques-
tion. If yi is uncorrelated with mi, then the unbiased estimator is better than either of
the other two. If yi is positively correlated with mi, then the ratio and pps estimators
are more precise than the unbiased estimator. The pps estimator is better than the
ratio estimator if the within-cluster variation does not change with changing mi. The
ratio estimator is better than the pps estimator if the within-cluster variation increases
with increasing mi.

In Examples 8.12 and 8.13, the number of sick-leave days used should in-
crease as the number of employees increases. Thus, the unbiased estimator is a
poor choice here. The variation of sick-leave days within divisions, however, may
remain relatively constant across divisions. In that case the pps estimator is the
best choice.

8.10 
Summary

This chapter introduces a third sample survey design, cluster sampling. In this de-
sign, each sampling unit is a group, or cluster, of elements. Cluster sampling may
provide maximum information at minimum cost when a frame listing population
elements is not available or when the cost of obtaining observations increases with
increasing distance between elements.

The estimator of the population mean m is the sample mean , given by Eq. (8.1).
The estimated variance of is given by Eq. (8.2). Two estimators of the population
total t have been given with their estimated variances. The estimator is presented
in Eq. (8.4); it is used when the number of elements M in the population is known.
Estimator , Eq. (8.7), is used when M is unknown. Sample size considerations
have been discussed for all of these estimators.

In cluster sampling, the estimator of a population proportion p is the sample pro-
portion , given by Eq. (8.16). The estimated variance of is given by Eq. (8.17).
The problem of selecting a sample size for estimating a proportion is similar to the
problem for estimating a mean.

Cluster sampling can also be used within strata in a stratified population; an
example is given in Section 8.8. When cluster sizes vary greatly, there may be an
advantage in sampling with probabilities proportional to cluster size.

pNpN

Nyt

My
y

y

220.0119 = 0.22
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C A S E  S T U D Y  R E V I S I T E D

WHAT ARE THE CHARACTERISTICS OF THE PEOPLE LIVING IN
YOUR NEIGHBORHOOD?

At the beginning of this chapter we suggest using U.S. census data on block statistics to
estimate the proportion of residents ages 65 and over in a 40-block area.The n = 5 blocks
were randomly sampled from the 40 and the data obtained are presented in the table.
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So the best estimate of the proportion of people ages 65 or over is 0.24. The bound
on the error of estimation is

Thus, the estimate of the true proportion for the 40-block area is 0.24 ; 0.08, or 0.16
to 0.32. We are confident that over 16% of the residents are ages 65 or older.

■

Exercises Some of the exercises are relatively data-intensive; look in the electronic Section 8.0 for links
to those data in Excel files.

8.1 An experimenter working in an urban area desires to estimate the average value of a vari-
able highly correlated with race. She thinks she should use cluster sampling, with city
blocks as clusters and adults within blocks as elements. Explain why you would, or
would not, use cluster sampling in each of the following situations.
a. Most of the adults in certain blocks are white, and most in other blocks are non-

white. 
b. The proportion of nonwhites is the same in every block and is not close to 0 or 1. 
c. The proportion of nonwhites differs from block to block in the manner that would be

expected if the clusters were made up by randomly assigning adults in the population
to clusters.
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b a 1
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b a1
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90 15 21.60 -6.60
32 8 7.68 0.32
47 14 11.28 2.72
25 9 6.00 3.00
16 4 3.84 0.16
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8.2 A manufacturer of band saws wants to estimate the average repair cost per month for the
saws he has sold to certain industries. He cannot obtain a repair cost for each saw, but he
can obtain the total amount spent for saw repairs and the number of saws owned by each
industry. Thus, he decides to use cluster sampling, with each industry as a cluster. The
manufacturer selects a simple random sample of n = 20 from the N = 96 industries he
services. The data on total cost of repairs per industry and number of saws per industry
are as given in the accompanying table. Estimate the average repair cost per saw for the
past month and place a bound on the error of estimation.

Exercises 279

8.3 For the data in Exercise 8.2, estimate the total amount spent by the 96 industries on band
saw repairs. Place a bound on the error of estimation.

8.4 After checking his sales records, the manufacturer in Exercise 8.2 finds that he sold a total of
710 band saws to these industries. Using this additional information, estimate the total
amount spent on saw repairs by these industries and place a bound on the error of estimation.

8.5 The same manufacturer (Exercise 8.2) wants to estimate the average repair cost per saw
for next month. How many clusters should he select for his sample if he wants the bound
on the error of estimation to be less than $2?

8.6 A political scientist developed a test designed to measure the degree of awareness of
current events. She wants to estimate the average score that would be achieved on this
test by all students in a certain high school. The administration at the school will not allow
the experimenter to randomly select students out of classes in session, but it will allow
her to interrupt a small number of classes for the purpose of giving the test to every member
of the class. Thus, the experimenter selects 25 classes at random from the 108 classes in ses-
sion at a particular hour. The test is given to each member of the sampled classes, with re-
sults as shown in the accompanying table. Estimate the average score that would be achieved
on this test by all students in the school. Place a bound on the error of estimation.

Number Total repair cost for 
Industry of saws past month (dollars)

1 3 50
2 7 110
3 11 230
4 9 140
5 2 60
6 12 280
7 14 240
8 3 45
9 5 60

10 9 230
11 8 140
12 6 130
13 3 70
14 2 50
15 1 10
16 4 60
17 12 280
18 6 150
19 5 110
20 8 120
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Numbers of Number favoring
Plant employees new policy

1 51 42
2 62 53
3 49 40
4 73 45
5 101 63
6 48 31
7 65 38
8 49 30
9 73 54

10 61 45
11 58 51
12 52 29
13 65 46
14 49 37
15 55 42

8.7 The political scientist in Exercise 8.6 wants to estimate the average test score for a sim-
ilar high school. She wants the bound on the error of estimation to be less than 2 points.
How many classes should she sample? Assume the school has 100 classes in session
during each hour.

8.8 An industry is considering revision of its retirement policy and wants to estimate
the proportion of employees that favor the new policy. The industry consists of 87 sep-
arate plants located throughout the United States. Because results must be obtained
quickly and with little cost, the industry decides to use cluster sampling with each
plant as a cluster. A simple random sample of 15 plants is selected, and the opinions of
the employees in these plants are obtained by questionnaire. The results are as shown
in the accompanying table. Estimate the proportion of employees in the industry who
favor the new retirement policy and place a bound on the error of estimation.

Number of Total Number of Total
Class students score Class students score

1 31 1590 14 40 1980
2 29 1510 15 38 1990
3 25 1490 16 28 1420
4 35 1610 17 17 900
5 15 800 18 22 1080
6 31 1720 19 41 2010
7 22 1310 20 32 1740
8 27 1427 21 35 1750
9 25 1290 22 19 890

10 19 860 23 29 1470
11 30 1620 24 18 910
12 18 710 25 31 1740
13 21 1140

     



8.9 The industry in Exercise 8.8 modified its retirement policy after obtaining the results
of the survey. It now wants to estimate the proportion of employees in favor of the
modified policy. How many plants should be sampled to have a bound of 0.08 on
the error of estimation? Use the data from Exercise 8.8 to approximate the results of
the new survey.

8.10 An economic survey is designed to estimate the average amount spent on utilities for
households in a city. Because no list of households is available, cluster sampling is used,
with divisions (wards) forming the clusters. A simple random sample of 20 wards is se-
lected from the 60 wards of the city. Interviewers then obtain the cost of utilities from
each household within the sampled wards; the total costs are shown in the accompanying
table. Estimate the average amount a household in the city spends on utilities and place
a bound on the error of estimation.

Exercises 281

Total amount Total amount
spent on spent on

Sampled Number of utilities Sampled Number of utilities
ward households (dollars) ward households (dollars)

1 55 2210 11 73 2930
2 60 2390 12 64 2470
3 63 2430 13 69 2830
4 58 2380 14 58 2370
5 71 2760 15 63 2390
6 78 3110 16 75 2870
7 69 2780 17 78 3210
8 58 2370 18 51 2430
9 52 1990 19 67 2730

10 71 2810 20 70 2880

8.11 In the survey in Exercise 8.10, the number of households in the city is not known. Esti-
mate the total amount spent on utilities for all households in the city and place a bound
on the error of estimation.

8.12 The economic survey in Exercise 8.10 is to be performed in a neighboring city of
similar structure. The objective is to estimate the total amount spent on utilities by
households in the city, with a bound of $5000 on the error of estimation. Use the data
in Exercise 8.10 to find the appropriate number of clusters needed to achieve this
bound.

8.13 An inspector wants to estimate the average weight of fill for cereal boxes packaged
in a certain factory. The cereal is available to him in cartons containing 12 boxes
each. The inspector randomly selects five cartons and measures the weight of fill for
every box in the sampled cartons, with the results (in ounces) as shown in the ac-
companying table. Estimate the average weight of fill for boxes packaged by this fac-
tory and place a bound on the error of estimation. Assume that the total number of
cartons packaged by the factory is large enough for the finite population correction to
be ignored.
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Number Number Number Number Number Number 
of voters favoring A of voters favoring A of voters favoring A

1290 680 1893 1143 843 321
1170 631 1942 1187 1066 487

840 475 971 542 1171 596
1620 935 1143 973 1213 782
1381 472 2041 1541 1741 980
1492 820 2530 1679 983 693
1785 933 1567 982 1865 1033
2010 1171 1493 863 1888 987

974 542 1271 742 1947 872
832 457 1873 1010 2021 1093

1247 983 2142 1092 2001 1461
1896 1462 2380 1242 1493 1301
1943 873 1693 973 1783 1167

798 372 1661 652 1461 932
1020 621 1555 523 1237 481
1141 642 1492 831 1843 999
1820 975 1957 932

8.14 A newspaper wants to estimate the proportion of voters favoring a certain candidate, can-
didate A, in a statewide election. Because selecting and interviewing a simple random
sample of registered voters is very expensive, cluster sampling is used, with precincts as
clusters. A simple random sample of 50 precincts is selected from the 497 precincts in
the state. The newspaper wants to make the estimation on election day but before final re-
turns are tallied. Therefore, reporters are sent to the polls of each sample precinct to ob-
tain the pertinent information directly from the voters. The results are shown in the ac-
companying table. Estimate the proportion of voters favoring candidate A and place a
bound on the error of estimation.

8.15 The newspaper in Exercise 8.14 wants to conduct a similar survey during the next election.
How large a sample size will be needed to estimate the proportion of voters favoring a simi-
lar candidate with a bound of 0.05 on the error of estimation? Use the data in Exercise 8.14.

8.16 A forester wishes to estimate the average height of trees on a plantation. The plantation
is divided into quarter-acre plots. A simple random sample of 20 plots is selected from
the 386 plots on the plantation. All trees on the sampled plots are measured, with the
results as shown in the accompanying table. Estimate the average height of trees on the
plantation and place a bound on the error of estimation. [Hint: the total for cluster i can
be found by taking times the cluster average.]mi

Carton Fill (ounces)

1 16.1 15.9 16.1 16.2 15.9 15.8 16.1 16.2 16.0 15.9 15.8 16.0
2 15.9 16.2 15.8 16.0 16.3 16.1 15.8 15.9 16.0 16.1 16.1 15.9
3 16.2 16.0 15.7 16.3 15.8 16.0 15.9 16.0 16.1 16.0 15.9 16.1
4 15.9 16.1 16.2 16.1 16.1 16.3 15.9 16.1 15.9 15.9 16.0 16.0
5 16.0 15.8 16.3 15.7 16.1 15.9 16.0 16.1 15.8 16.0 16.1 15.9

     



8.17 To emphasize safety, a taxicab company wants to estimate the proportion of unsafe tires on
their 175 cabs. (Ignore spare tires.) Selecting a simple random sample of tires is imprac-
tical, so cluster sampling is used, with each cab as a cluster. A random sample of 25 cabs
gives the following number of unsafe tires per cab:

2, 4, 0, 1, 2, 0, 4, 1, 3, 1, 2, 0, 1, 1, 2, 2, 4, 1, 0, 0, 3, 1, 2, 2, 1

Estimate the proportion of unsafe tires being used on the company’s cabs and place a
bound on the error of estimation.

8.18 Accountants frequently require their business clients to provide cost inventories. Because
a complete inventory is costly, quarterly inventories can conveniently be accomplished by
sampling. Suppose a plumbing supply firm desires a cost inventory for many small items
in stock. To obtain a simple random sample of items is difficult. However, the items are
arranged on shelves, and selecting a simple random sample of shelves is relatively easy,
treating each shelf as a cluster of items. Sampling 10 of the 48 shelves gave the results
shown in the accompanying table. Estimate the total dollar amount of the items on the
shelves and place a bound on the error of estimation

Exercises 283

Number of trees Average height (feet) Number of trees Average height (feet)

42 6.2 57 6.0
51 5.8 63 4.9
49 6.7 43 4.3
55 4.9 59 5.2
47 5.2 48 5.7
58 6.9 41 6.1
60 6.3 45 5.3
52 6.7 46 6.7
61 5.9 62 6.1
49 6.1 58 7.0

Number Total dollar
Cluster of items, mi amount, yi

1 42 83
2 27 62
3 38 45
4 63 112
5 72 96
6 12 58
7 24 75
8 14 58
9 32 67

10 41 80

8.19 A certain firm specializing in the manufacture and sale of leisure clothing has 80 retail
stores in Florida and 140 in California. With each state as a stratum, the firm wishes to
estimate average sick-leave time used per employee for the past year. Each outlet can be

     



viewed as a cluster of employees, and total sick-leave time used for each store can be
determined from records. Simple random samples of eight stores from Florida and ten
stores from California gave the results shown in the accompanying table (m denotes the
number of employees, and yi denotes total sick-leave days for the ith store). Estimate the
average amount of sick leave per employee and calculate an estimate of the variance of
your estimator.
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Florida California

mi yi mi yi

12 40 16 51
20 52 8 32
8 30 4 11

14 36 3 10
24 71 12 33
15 48 17 39
10 39 24 61
6 21 30 37

21 40
9 41

Number of
housing Number of Number of

Block units residents rooms

1 12 40 58
2 14 39 72
3 3 12 26
4 20 52 98
5 12 37 74
6 8 33 57
7 10 41 76
8 6 14 48

8.20 Block statistics report the number of housing units, the number of residents, and the total
number of rooms within housing units for a random sample of eight blocks selected from
a large city. (Assume the number of blocks in the city is very large.) The data are given
in the accompanying table.

a. Estimate the average number of residents per housing unit and place a bound on the
error of estimation.

b. Estimate the average number of rooms per resident and place a bound on the error of
estimation.

8.21 A certain type of circuit board manufactured for installation in computers has 12 microchips
per board. During the quality control inspection of ten of these boards, the numbers of
defective microchips on each of the ten boards were as follows:

2, 0, 1, 3, 2, 0, 0, 1, 3, 4

     



Estimate the proportion of defective microchips in the population from which this sam-
ple was drawn and place a bound on the error of estimation.

8.22 Refer to Exercise 8.21. Suppose the sample of ten boards used there came from a
shipment of 50 such boards. Estimate the total number of defective microchips in the
shipment and place a bound on the error of estimation.

8.23 A large firm has its equipment inventories listed separately by department. From the 15
departments in the firm, 5 are to be randomly sampled by an auditor, who will then check
to make sure that all equipment is properly identified and located. The proportion of in-
ventory items not properly identified is of interest to the auditor. The data are given in the
accompanying table. Estimate the proportion of inventory items in the firm not properly
identified and place a bound on the error of estimation.

Exercises 285

Number of
Number of items not
equipment properly

Department items identified

1 15 2
2 27 3
3 9 1
4 31 1
5 16 2

8.24 Suppose that for the firm discussed in Exercise 8.23 the 15 departments have the number
of inventory items given in the accompanying table. Select a sample of three departments
with probabilities proportional to number of inventory items.

8.25 Suppose the three departments selected in Exercise 8.24 each has two improperly identi-
fied inventory items. Estimate the total number of improperly identified items in the firm
and place a bound on the error of estimation.

8.26 An investigator wishes to estimate the average number of defects per board on boards of
electronic components manufactured for installation in computers. The boards contain
varying numbers of components, and the investigator thinks that the number of defects
should be positively correlated with the number of components on a board. Thus, pps

Number of Number of
Department items Department items

1 12 9 31
2 9 10 26
3 27 11 22
4 40 12 19
5 35 13 16
6 15 14 33
7 18 15 6
8 10
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sampling is used, with the probability of selecting any one board for the sample being
proportional to the number of components on that board. A sample of boards is to
be selected from the boards of one day of production. The number of compo-
nents on each of the ten boards are

10, 12, 22, 8, 16, 24, 9, 10, 8, 31

Show how to select boards with probabilities proportional to size.

8.27 After the sampling in Exercise 8.26 was completed, the number of defects found on
boards 2, 3, 5, and 7 was 1, 3, 2, and 1, respectively. Estimate the average number of
defects per board and place a bound on the error of estimation.

8.28 A state agriculture department wants to measure the total yield of tomatoes for a sample
of fields, with the goal of estimating the total tomato yields for the state. Discuss the
merits of simple random sampling as compared with sampling with probabilities
proportional to size.

8.29 Refer to the U.S. population figures given in USPOP in Appendix C. From the nine
northeastern states, select a sample of four states with probabilities proportional to their
total population sizes in 2000. Is this procedure an appropriate sampling scheme for
estimating total unemployment in the Northeast? Is this procedure an appropriate sam-
pling scheme for estimating acres of forestland in the Northeast?

8.30 For the states selected in Exercise 8.29, record their 2000 population sizes
from Appendix C. Use these data to estimate the total population aged 65 and over in
the northeastern states and place a bound on the error of estimation. Is the actual total
included in your interval estimate? Do you think this method of sampling is better
than selecting a simple random sample of four states for purposes of estimating total
population? Why?

8.31 A large shipment of frozen seafood is packaged in cartons, each containing twenty-four
50-pound packages. There are 100 cartons in the shipment. The seafood thawed and then
refroze. The total weight (in pounds) of spoiled seafood is determined by a government
inspector for each of a sample of five cartons. These data are as follows:

9, 6, 3, 10, 2

Estimate the total weight of spoiled seafood in the shipment and place a bound on the
error of estimation.

8.32 Using the data in Exercise 8.31, estimate the average amount of spoiled seafood per
5-pound package and place a bound on the error of estimation.

8.33 A political scientist wishes to sample resident students on a large university campus.
Individual housing units can be conveniently used as clusters of students, or collec-
tions of housing units (freshmen dormitories, fraternity houses, and so on) can be used
as strata. Discuss the merits of cluster versus stratified random sampling if the goal is
to estimate the proportion of students favoring a certain candidate in the following
types of elections:
a. A student government election
b. A national presidential election

8.34 Under what conditions does cluster sampling produce a smaller bound on the error of
estimation for a mean than simple random sampling?

n = 4

n = 4

N = 10
n = 4

     



a. Estimate the proportion of students in the district who have nursing services available
to them.

b. Show how to calculate a variance for the estimator in part (a). You need not carry out
the calculations.

8.37 An industry produces customized truck bodies in 20 plants scattered throughout the
country. Only a small number of truck bodies are completed at each plant on any given
day. For a particular day, it is desired to estimate the average worker-hours of work for
items completed that day in the industry. Discuss the relative merits of cluster sampling
(plants as clusters) versus stratified random sampling (plants as strata) for estimating the
desired average. Which design do you recommend?

8.1 The data set USPOP in Appendix C and on the data disk gives the percentage of people
ages 65 and over for each state. Using these percentages from a random sample of ten
states, estimate the percentage of people ages 65 and over in the United States as a whole
for 2000, with a bound on the error of estimation, using
a. a ratio estimator based on each state being a cluster of people.
b. a simple average of the percentages for the sampled states. 
Compare the two techniques and comment on which one you prefer.

8.2 Using the same sample of states as in 8.1 and following the same instructions, estimate
the proportion of people living in poverty in the United States.

8.3 Try an economic study, perhaps by treating households in a certain fixed geographic area
(perhaps a few city blocks) as clusters of people. Sample n households and, upon gain-
ing permission for an interview, record the total weekly amount spent on food by all in-
dividuals in the household and the number of individuals. Then estimate the average
amount spent on food per person among the households in this population. Even if all the
money is actually spent by one person (say, the mother), that total amount is the same as
would have been recorded if each individual had purchased his or her own food. Thus,
the cluster total is available even though the observations per element may not be.

8.4 Think of the accompanying grid of 0s and 1s as a rough aerial map of a planted forest in
which the 1s represent diseased trees. You can see something of the pattern of the trees,

Sampling
from Real
Populations
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School mi Provides nurse

1 1200 Yes
2 800 No
3 1000 No
4 600 Yes
5 1000 No

8.35 Disregarding the costs of sampling, what criteria would you use for selecting appropriate
clusters in a cluster sampling problem, assuming you had some freedom in constructing
clusters?

8.36 A school district has schools, with the ith school containing mi students. A sim-
ple random sample of schools is selected and asked whether they provide a nurse
whose services are available to all students. The results of the survey are as follows:

n = 5
N = 30

     



but assume that you cannot count them accurately from the air. You need to conduct a
ground survey to estimate the proportion of diseased trees. From the 150 trees in the for-
est you are to sample 30 trees from which to construct your estimate. Design and carry
out a sample survey and complete the analysis (estimate the proportion and calculate a
margin of error) for each of the following designs:
a. Simple random sample
b. Systematic sample
c. Stratified random sample with either rows or columns as strata, explaining your choice
d. Cluster sample with either rows or columns as clusters, explaining your choice
Compare your results with those of other students, and discuss which sampling design
you think is best.
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TREE GRID

Row C1 C2 C3 C4 C5

1 0 0 0 1 1
2 0 0 1 1 1
3 0 0 0 0 0
4 0 0 1 0 1
5 0 0 0 0 1
6 1 0 1 0 0
7 0 0 1 0 1
8 0 1 1 0 1
9 0 0 0 1 1

10 0 0 0 1 1
11 0 0 0 1 0
12 0 1 1 1 1
13 0 1 0 1 1
14 0 0 0 1 1
15 0 1 0 1 1
16 0 0 1 1 1
17 0 0 1 1 1
18 0 0 0 1 1
19 0 0 1 1 1
20 0 0 0 0 0
21 1 0 0 1 0
22 0 1 0 0 1
23 0 0 1 1 0
24 0 0 0 1 1
25 0 0 0 1 1
26 0 1 0 0 1
27 0 0 1 0 1
28 1 0 0 0 1
29 0 0 0 0 1
30 0 0 1 1 1
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9

Two-Stage Cluster Sampling

C A S E  S T U D Y

HOW MUCH DO STUDENTS SPEND FOR ENTERTAINMENT?

The entertainment dollars are important to the businesses in a town containing a uni-
versity. How can we estimate the average monthly amount spent on entertainment per
student? Locating students who may be randomly selected from a directory is difficult,
but locating randomly selected classrooms, all of which should contain students at a
prime class hour, such as 10:00 A.M. on Monday, is relatively easy. Because classes
may be large, sufficient information can be obtained by sampling a subset of those
students in each sampled class. The result is a two-stage cluster sample.

A certain midsized university has 12,000 students divided into 150 classes at
10:00 A.M. on Mondays. Almost all the students should be in class at this hour. For the
purpose of estimating the average monthly amount spent on entertainment, four
classes are randomly selected, and approximately 10% of the students in each class
are interviewed. The methods of two-stage cluster sampling are used in the analysis.

■

9.0
Tools

Interactive Excel tools for doing calculations in this chapter can be found on the CD
that accompanies this book. In the Chapter Nine Tools folder, you will find a Word
file named Section 9.0 (tools). Therein links have been provided to the relevant com-
putational tools for this chapter. In the text, we use an icon (pictured on the left) as a
reminder for equations for which we have built tools. Also, data for some of the chap-
ter exercises are available via a link in that section.

     



9.1 
Introduction 

Two-stage cluster sampling is an extension of the concept of cluster sampling. Recall
from the discussion of cluster sampling in Chapter 8 that a cluster is usually a con-
venient or natural collection of elements, such as blocks of households or cartons of
flashbulbs. A cluster often contains too many elements to obtain a measurement on
each, or it contains elements so nearly alike that measurement of only a few elements
provides information on an entire cluster. When either situation occurs, the experi-
menter can select a probability sample of clusters and then take a probability sample
of elements within each cluster. The result is a two-stage cluster sample.

DEFINITION 9.1

A two-stage cluster sample is obtained by first selecting a probability sample of
clusters and then selecting a probability sample of elements from each sampled
cluster. ■

Our discussion is limited to simple random samples at each stage. For example, a
national survey of university students’ opinions can be conducted by selecting a sim-
ple random sample of universities from all those in the country and then selecting a
simple random sample of students from each university. Thus, a university corre-
sponds to a cluster of students. Similarly, the total amount of accounts receivable for
a chain store can be estimated by first taking a simple random sample of stores and
then selecting a simple random sample of accounts from each. Thus, each chain store
provides a cluster of accounts.

Two-stage cluster sampling is commonly used in large surveys involving the
sampling of housing units. We have mentioned in Chapter 4 that the Gallup poll sam-
ples approximately 300 election districts from around the United States. At the second
stage, this poll randomly (or systematically) selects approximately five households
per district, for a total sample size of approximately 1500 households. In other polls,
block statistics from the U.S. Census Bureau form clusters of households, as discussed
in Chapter 8, which are then subsampled before interviews are conducted.

Sampling for quality control purposes often involves two (or more) stages of sam-
pling. For example, when an inspector samples packaged products, such as frozen
food, he or she commonly samples cartons and then samples packages from within car-
tons. When we sample products turned out at various workstations, we might sample
workstations and then sample items produced at each sampled station. When sampling
requires the detailed investigation of components of products, such as measuring plate
thicknesses in automobile batteries, a quite natural procedure is to sample some of the
products (batteries) and then sample components (plates) within these products.

There is a certain similarity between cluster sampling and stratified random sam-
pling. Think of a population being divided into nonoverlapping groups of elements.
If these groups are considered to be strata, then a simple random sample is selected from
each group. If these groups are considered to be clusters, then a simple random sample
of groups is selected, and the sampled groups are then subsampled. Stratified random
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sampling provides estimators with small variance when there is little variation among
elements within each group. Cluster sampling does well when the elements within
each group are highly variable, and all groups are quite similar to one another.

The advantages of two-stage cluster sampling over other designs are the same as
those listed in Chapter 8 for cluster sampling. First, a frame listing all elements in the
population may be impossible or costly to obtain, whereas obtaining a list of all clus-
ters may be easy. For example, compiling a list of all university students in the coun-
try would be expensive and time-consuming, but a list of universities can be readily
acquired. Second, the cost of obtaining data may be inflated by travel costs if the
sampled elements are spread over a large geographic area. Thus, sampling clusters of
elements that are physically close together is often economical.

9.2 
How to Draw a Two-Stage Cluster Sample

The first problem in selecting a two-stage cluster sample is the choice of appropriate
clusters. Two conditions are desirable: (1) geographic proximity of the elements
within a cluster and (2) cluster sizes that are convenient to administer.

The selection of appropriate clusters also depends on whether we want to sample a
few clusters and many elements from each or many clusters and a few elements from
each. Ultimately, the choice is based on costs. Large clusters tend to possess heteroge-
neous elements, and hence, a large sample is required from each in order to acquire ac-
curate estimates of population parameters. In contrast, small clusters frequently contain
relatively homogeneous elements, in which case accurate information on the charac-
teristics of a cluster can be obtained by selecting a small sample from each cluster.

Consider the problem of sampling personal incomes in a large city. The city can be
divided into large clusters—for example, precincts, which contain a heterogeneous
assortment of incomes. Thus, a small number of precincts may yield a representative
cross section of incomes within the city, but a fairly large sample of elements from each
cluster will be required in order to accurately estimate its mean (because of the hetero-
geneity of incomes within the cluster). In contrast, the city can be divided into small,
relatively homogeneous clusters—say, city blocks. Then a small sample of people from
each block will give adequate information on each cluster’s mean, but obtaining accu-
rate information on the mean income for the entire city will require many blocks.

As another example, consider the university student opinion poll. If students
within a university hold similar opinions on the question of interest but opinions dif-
fer widely from university to university, then the sample should contain a few repre-
sentatives from many different universities. If the opinions vary greatly within each
university, then the survey should include many representatives from each of a few
universities.

To select the sample, we first obtain a frame listing all clusters in the population.
We then draw a simple random sample of clusters, using the random sampling pro-
cedures presented in Chapter 4. Third, we obtain frames that list all elements in each
of the sampled clusters. Finally, we select a simple random sample of elements from
each of these frames.
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9.3
Unbiased Estimation of a Population Mean and Total

As in previous chapters, we are interested in estimating a population mean m or a
population total i and placing a bound on the error of estimation. The following
notation is used:

N = the number of clusters in the population

n = the number of clusters selected in a simple random sample 

Mi = the number of elements in cluster i

mi = the number of elements selected in a simple random sample from cluster i

= the number of elements in the population

= the average cluster size for the population

yij = the jth observation in the sample from the ith cluster 

= the sample mean for the ith cluster 

In constructing an estimator of the population mean m, we might try to parallel what
was done in Chapter 8 on single-stage cluster sampling. Equation (8.7) gives

as an unbiased estimator of t. Thus, if we divide by M,

becomes an unbiased estimator of m, but we cannot evaluate this estimator now be-
cause we no longer know the cluster totals, yi. We can, however, estimate yi by 
, and, on substituting for yi, we have an unbiased estimator of m, which we can
calculate from our sample data.

Miyi

Miyi

N

Mna
n

i=1
yi

N

n a
n

i=1
yi

yi =

1

mi
a
mi

j=1
yij

M =

M

N

M = a
N

i=1
Mi
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Unbiased estimator of the population mean M: 

(9.1)

assuming simple random sampling at each stage. 

mN = aN

M
b  

a
n

i=1
Miyi

n
=

1

M
 
a
n

i=1
Miyi

n
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The estimator shown in Eq. (9.1) depends on M, the number of elements in the pop-
ulation. A method of estimating m when M is unknown is given in the next section.

Note that is the sample variance for the sample selected from cluster i. 

EXAMPLE 9.1 A garment manufacturer has 90 plants located throughout the United States and
wants to estimate the average number of hours that the sewing machines were down
for repairs in the past months. Because the plants are widely scattered, she decides to
use cluster sampling, specifying each plant as a cluster of machines. Each plant con-
tains many machines, and checking the repair record for each machine would be
time-consuming. Therefore, she uses two-stage sampling. Enough time and money
are available to sample plants and approximately 20% of the machines in
each plant. Using the data in Table 9.1, estimate the average downtime per machine

n = 10

s2
i

mN

Estimated variance of :

(9.2)

where

(9.3)

and

i = 1, 2, . . . , n (9.4)

Notice that is simply the sample variance among the terms .Miyis2
b

s2
i =

a
mi

j=1
(yij - yi)

2

mi - 1

s2
b =

a
n

i=1
(Miyi - MmN )2

n - 1

VN (mN ) = a1 -

n

N
b a 1

nM2 b s2
b +

1

nNM2a
n

i=1
M2

i a1 -

mi

Mi
b a s2

i

mi
b

MN

TABLE 9.1
Downtime for sewing machines 

Plant Mi mi Downtime (hours)

1 50 10 5, 7, 9, 0, 11, 2, 8, 4, 3, 5 5.40 11.38
2 65 13 4, 3, 7, 2, 11, 0, 1, 9, 4, 3, 2, 1, 5 4.00 10.67
3 45 9 5, 6, 4, 11, 12, 0, 1, 8, 4 5.67 16.75
4 48 10 6, 4, 0, 1, 0, 9, 8, 4, 6, 10 4.80 13.29
5 52 10 11, 4, 3, 1, 0, 2, 8, 6, 5, 3 4.30 11.12
6 58 12 12, 11, 3, 4, 2, 0, 0, 1, 4, 3, 2, 4 3.83 14.88
7 42 8 3, 7, 6, 7, 8, 4, 3, 2 5.00 5.14
8 66 13 3, 6, 4, 3, 2, 2, 8, 4, 0, 4, 5, 6, 3 3.85 4.31
9 40 8 6, 4, 7, 3,  9, 1, 4, 5 4.88 6.13

10 56 11 6, 7, 5, 10, 11, 2, 1, 4, 0, 5, 4 5.00 11.80

s2
iyi
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and place a bound on the error of estimation. The manufacturer knows she has a com-
bined total of 4500 machines in all plants.

SOLUTION The best estimate of m is , shown in Eq. (9.1), which yields 

To estimate the variance of , we must calculate 

and

Then from Eq. (9.2), 

The estimate of m with a bound on the error of estimation is given by 

Thus, the average downtime is estimated to be 4.80 hours. The error of estimation
should be less than 0.39 hour with a probability of approximately .95. ■

An unbiased estimator of a population total can be found by taking an unbiased
estimator of the population mean and multiplying by the number of elements in the
population in a manner similar to that used in simple random sampling. Thus, is
an unbiased estimator of t for two-stage cluster sampling.

MmN
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Estimation of the population total T: 

(9.5)

assuming simple random sampling at each stage.

Estimated variance of : 

(9.6)

where is given by Eq. (9.3) and is given by Eq. (9.4).s2
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EXAMPLE 9.2 Estimate the total amount of downtime during the past month for all machines owned
by the manufacturer in Example 9.1. Place a bound on the error of estimation. 

SOLUTION The best estimate of t is

The estimated variance of is found by using the value of calculated in Exam-
ple 9.1 and substituting as follows:

The estimate of t with a bound on the error of estimation is

Thus, the estimate of total downtime is 21,602 hours. We are fairly confident that the
error of estimation is less than 1733 hours. ■

9.4 
Ratio Estimation of a Population Mean

The estimator , given by Eq. (9.1), depends on the total number of elements in the
population, M. When M is unknown, as is frequently the case, it must be estimated
from the sample data. We obtain an estimator of M by multiplying the average clus-
ter size, , by the number of clusters in the population, N. If we replace M
by its estimator, we obtain a ratio estimator, denoted by , because the numerator
and denominator are both random variables.

mN r
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i=1Mi>n

mN

tN ; 22VN (tN) or 21,605.31 ; 22(4500)2(0.0371) or 21,602 ; 1733
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Ratio estimator of the population mean M:

(9.7)
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The estimator is biased, but the bias is negligible when n is large.

EXAMPLE 9.3 Using the data in Table 9.1, estimate the average downtime per machine and place a
bound on the error of estimation. Assume the manufacturer does not know how many
machines there are in all plants combined.

SOLUTION Because M is unknown, we must use given by Eq. (9.7) to estimate m. Our calcu-
lations yield

To find the estimated variance of , we must calculate 

Note that as in Example 9.1,

We can estimate by using the average cluster size for the sample: 
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where

(9.9)

and
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Substituting into Eq. (9.8) yields the estimated variance of : 

The estimate of the average downtime with a bound on the error of estimation is 

Thus, the estimated mean downtime per machine is 4.60 hours with a bound on the
error of estimation of 0.44 hour. ■

9.5 
Estimation of a Population Proportion

Consider the problem of estimating a population proportion p such as the propor-
tion of university students in favor of a certain law or the proportion of machines
that have had no downtime for the past month. An estimate of p can be obtained by
using , given in Eq. (9.1), or , given in Eq. (9.7), and letting or 0 de-
pending on whether or not the jth element in the ith cluster falls into the category
of interest.

Because M is usually unknown, we present the formula for estimating p with a
ratio estimator analogous to , given in Eq. (9.7). Let denote the proportion of
sampled elements from cluster i that fall into the category of interest.
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Estimator of a population proportion p:

(9.11)

Estimated variance of p:
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EXAMPLE 9.4 The manufacturer in Example 9.1 wants to estimate the proportion of machines that
have been shut down for major repairs (those requiring parts from stock outside the
factory). The sample proportions of machines requiring major repairs are given in
Table 9.2. The data are for the machines sampled in Example 9.1. Estimate p, the
proportion of machines involved in major repairs for all plants combined, and place
a bound on the error of estimation.

SOLUTION The best estimate of p is given by

To estimate the variance of , we calculate
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TABLE 9.2
Proportion of sewing machines requiring major repairs

Proportion of machines
Plant Mi mi requiring major repairs, 

1 50 10 0.40
2 65 13 0.38
3 45 9 0.22
4 48 10 0.30
5 52 10 0.50
6 58 12 0.25
7 42 8 0.38
8 66 13 0.31
9 40 8 0.25

10 56 11 0.36

pN i

where

(9.13) 

and .qN i = 1 - pN i
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and

Then the estimated variance of when is estimated by the sample average,
52.2, is

The best estimate of the proportion of machines that have undergone major repairs is 

We estimate the proportion of machines involved in major repairs to be 0.34, with a
bound of 0.057 on the error of estimation. ■

9.6 
Sampling Equal-Sized Clusters

Suppose that each cluster contains elements; that is, 

In this case, it is common to take samples of equal size from each cluster, so that 

Under these conditions, Eq. (9.1) gives 

(9.14)

which is equivalent to the overall sample average 
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where denotes the jth measurement within the ith cluster. This situation might
occur in sampling packaged products (each cluster being, say, a carton of 24 cans of
vegetables) or in sampling manufactured items (each cluster perhaps being the sol-
dered connections inside a microcomputer).

Eq. (9.2) now becomes

(9.15)

where , ,

and

Remember that MSB is the between-cluster mean square and MSW is the within-
cluster mean square from Chapter 8.

Given Eq. (9.15), we can make a series of important observations on the behav-
ior of two-stage cluster sampling:

1. If N is large, and depends only on the cluster means. Thus, we
can produce a good estimator of the variance of even if the terms are poor
estimators of the within-cluster variance. This may happen, for example, if sys-
tematic sampling is used within the clusters.

2. If , then two-stage cluster sampling reduces to one-stage
cluster sampling, as in Chapter 8.

3. If n = N, then

which is the variance estimate we would obtain in a stratified random sample
with strata and m observations from each.

Thus, we see that when m is close to , two-stage cluster sampling behaves like sin-
gle-stage cluster sampling. When n is close to N, two-stage cluster sampling behaves
like stratified random sampling. If clusters are heterogeneous within, we should
choose to sample as in the former case. If clusters are homogeneous within, we
should choose to sample as in the latter case. More specific information on sample
size selection is provided next.
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When N is large, the variance estimate

(9.16) 

actually estimates the true variance

(9.17) 

where

variance among the cluster means

variance among the elements within clusters

Because MSB/m estimates , and MSW estimates , it follows that

(9.18) 

estimates . Separate estimators of and will be needed for sample-size
calculations.

As in the case of stratified random sampling, we now want to find sample sizes
m and n that either minimize for a fixed cost or minimize total cost of sam-
pling for a fixed . Suppose the cost associated with sampling each cluster is cl

and the cost associated with sampling each element within a cluster is c2. Then the
total cost c is

(9.19) 

The value of m that minimizes for fixed cost, or minimizes c for fixed variance,
is given by

(9.20) 

After m is determined, n is found from Eq. (9.17) if is fixed or Eq. (9.19) if c is
fixed. Note that m increases as increases and decreases as increases. Thus, more
elements are sampled from within clusters (and hence fewer clusters are sampled) as

gets large compared to .

EXAMPLE 9.5 One of the key quality assurance measurements in the manufacturing of automobile
batteries is the thickness of the lead plates. Positive plates are manufactured to be
thicker than negative plates, so the two must be treated separately. It is desired to set
up a sampling plan to sample n batteries per day and make m negative plate thickness
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measurements per battery, so that the variance of the estimate mean plate thickness
is 0.1. (Measurements of thickness are in thousandths of an inch.) The cost of cutting
a battery open is six times the cost of measuring a plate.

A preliminary study of four batteries, with nine plate thickness measurements per
battery gave the following data:

B1: 97, 101, 97, 97, 99, 100, 96, 100, 100

B2: 95, 96, 96, 99, 96, 97, 95, 96, 100

B3: 99, 96, 97, 97, 96, 98, 99, 98, 100

B4: 94, 95, 97, 98, 97, 97, 97, 95, 96

SOLUTION The computations for MSB and MSW are quickly found by analysis of variance (the
following are done on MINITAB):

Note that and , from which the estimate of ,
Eq. (9.18), becomes

Now, the optimum value of m is

We would take thickness measurements per battery. Setting and
using Eq. (9.17) yields

Thus, the quality assurance plan should call for sampling batteries and mak-
ing negative plate thickness measurements per battery. This should result in
an estimated mean thickness with variance of around 0.1, for the day, at minimum
cost. The fact that should not be surprising in view of the fact that the data
show little variability within batteries. ■

n 7 m

m = 4
n = 15

 n =

1

0.1
 (1.47) = 14.7 L 15

 0.1 =
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n
 a0.85 +

2.48

4
b

V(mN ) = 0.1m = 4
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B

s2
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bc2

L
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2.48

0.85
a 6

1
b = 4.18

1

9
 (MSB - MSW) = 0.85

s2
bMSB = 10.10MSW = 2.48

ANOVA

Source df SS MS

Factor 3 30.31 10.10 
Error 32 79.33 2.48 
Total 35 109.64
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9.7 
Two-Stage Cluster Sampling with Probabilities 
Proportional to Size

Because the number of elements in a cluster may vary greatly from cluster to cluster,
a technique that is often advantageous is to sample clusters with probabilities pro-
portional to their sizes, as discussed in Section 8.9. Generally, pps sampling is used
only at the first stage of a two-stage sampling procedure because the elements within
clusters tend to be somewhat similar in size. Hence, we present estimators of m and
t for two-stage cluster sampling in which the first-stage sampling is carried out with
probabilities proportional to size.

Equation (8.19) provides an estimator of m, in the case of single-stage cluster
sampling, of the form

(9.21)

In Chapter 8, is calculated from all the elements in cluster i and is exactly the clus-
ter mean. In this chapter, is calculated from a sample of elements from cluster i and
is only an estimate of the cluster mean. Nevertheless, Eq. (9.21) still forms an unbi-
ased estimate of m, with an estimated variance as given in Eq. (8.20).

To form an unbiased estimate of t, we merely multiply Eq. (9.21) by M, the num-
ber of elements in the population.
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Estimator of the population mean M: 

(9.22)

Estimated variance of :

(9.23) 

Estimator of the population total T:

(9.24)

Estimated variance of : 
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We illustrate this pps procedure with the following examples.

     



EXAMPLE 9.6 From the six hospitals in a city, a researcher wants to sample three hospitals
for the purpose of estimating the proportion of current patients who have been (or
will be) in the hospital for more than two consecutive days. Because the hospi-
tals vary in size, they will be sampled with probabilities proportional to their
numbers of patients. For the three sampled hospitals, 10% of the records of
current patients will be examined to determine how many patients will stay in the
hospital for more than two days. Given the information on hospital sizes in
the accompanying table, select a sample of three hospitals with probabilities
proportional to size.

304 Chapter 9 Two-Stage Cluster Sampling

Number of Cumulative Number of Cumulative 
Hospital patients range Hospital patients range

1 328 1–328 4 220 870–1089
2 109 329–437 5 280 1090–1369
3 432 438–869 6 190 1370–1559

SOLUTION Because three hospitals are to be selected, three random numbers between 0001 and
1559 must be chosen from the random number table. Our numbers turned out to be
1505, 1256, and 0827. Locating these numbers in the cumulative range column leads
to the selection of hospitals 3, 5, and 6. ■

EXAMPLE 9.7 Suppose the sampled hospitals in Example 9.6 yielded the following data on number
of patients staying more than two days:

Estimate the proportion of patients staying more than two days, for all six hospitals,
and place a bound on the error of estimation.

SOLUTION The proportion of interest for each hospital is simply the sample mean and, by
Eq. (9.22), the best estimate of the population proportion is the average of the three
sample means. Thus,

mN pps =

1

3
 a 25

43
+

15

28
+

8

19
b =

1

3
(0.58 + 0.54 + 0.42) = 0.51

Number of Number staying
Hospital patients sampled more than two days

3 43 25
5 28 15
6 19 8

     



9.8  Summary 305

By Eq. (9.23),

Thus, the bound on the error of estimation is 

and our estimate of the true population proportion is . ■

One further comment about when we use pps sampling is in order. If the varia-
tion as measured by sb is small in comparison with that measured by si [i.e., if the sec-
ond term dominates the variance expression (9.2)], then we want to select few clus-
ters and many elements from within each sampled cluster. In that case, any sampling
plan for clusters will work well.

If, however, the si terms are small compared with sb [Eq. (9.2) is dominated by the
first term], then great care should be taken in planning the selection of clusters. In this
case, the comments made at the end of Section 8.9 still hold; the pps method works
well if the cluster sizes vary appreciably.

9.8 
Summary 

The concept of cluster sampling can be extended to two-stage sampling by taking a
simple random sample of elements from each sampled cluster. Two-stage cluster
sampling is advantageous when we wish to have sample elements in geographic
proximity because of travel costs.

Two-stage cluster sampling eliminates the need to sample all elements in each
sampled cluster. Thus, the cost of sampling can often be reduced with little loss of
information.

An unbiased estimator of m is presented for the case when M, the total number of
elements in the population, is known. When M is unknown, a ratio estimator is
employed. Estimators are also given for a population total t and for a population
proportion p.

C A S E  S T U D Y R E V I S I T E D

HOW MUCH DO STUDENTS SPEND FOR ENTERTAINMENT?

The sampling plan for estimating average monthly entertainment expenses among
students, outlined at the beginning of this chapter, involved the selection of n = 4

0.51 ; 0.10

22VN (mN pps) = 220.0025 = 0.10

 = 0.0025 

 VN (mN pps) =

1

3(2)
 [(0.58 - 0.51)2

+ (0.54 - 0.51)2
+ (0.42 - 0.51)24

     



The best estimate of the average monthly amount spent on entertainment among all
students at the university is . The bound on the error of estimation is

Hence, we are confident that the true average monthly entertainment amount is be-
tween 25 - 11 = $14 and 25 + 11 = $36. (This interval could be reduced in size by
sampling more classrooms or more students per classroom. Which procedure would
you recommend?)

■

Exercises Some of the exercises are relatively data-intensive; look in the electronic Section 9.0 for links
to those data in Excel files.

9.1 Suppose a large retail store has its accounts receivable listed by department. The firm
wishes to estimate the total accounts receivable on a given day by sampling. Discuss the
relative merits of stratified random sampling, single-stage cluster sampling, systematic
sampling, and two-stage cluster sampling. What extra information would you like to
have on these accounts before selecting the sampling design?
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classrooms from N = 150 and subsampling students from each. The data are shown
in the table (averages in dollars):

Number of students Number of students 
per class, Mi sampled, mi Mi

80 8 16 9 1280 518,400
47 5 30 15 1410 55,225
62 6 21 22 1302 61,504
39 4 45 18 1755 608,400

228 5747 1,243,529

[Mi (yi - mN r)]
2yis2

iyi

     



Exercises 307

9.2 A nurseryman wants to estimate the average height of seedlings in a large field that is di-
vided into 50 plots that vary slightly in size. He believes the heights are fairly constant
throughout each plot but may vary considerably from plot to plot. Therefore, he decides
to sample 10% of the trees within each of 10 plots using a two-stage cluster sample. The
data are as given in the accompanying table. Estimate the average height of seedlings in
the field and place a bound on the error of estimation.

9.3 In Exercise 9.2, assume that the nurseryman knows there are approximately 2600
seedlings in the field. Use this additional information to estimate the average height and
place a bound on the error of estimation.

9.4 A supermarket chain has stores in 32 cities. A company official wants to estimate the pro-
portion of stores in the chain that do not meet a specified cleanliness criterion. Stores
within each city appear to possess similar characteristics; therefore, she decides to select
a two-stage cluster sample containing one-half of the stores within each of four cities.
Cluster sampling is desirable in this situation because of travel costs. The data collected
are given in the accompanying table. Estimate the proportion of stores not meeting the
cleanliness criterion and place a bound on the error of estimation.

9.5 Repeat Exercise 9.4, given that the chain contains 450 stores. [Hint: Use the unbiased
estimator of Eq. (9.1) and adapt it to proportions.]

9.6 To improve telephone service, an executive of a certain company wants to estimate the
total number of phone calls placed by secretaries in the company during one day. The
company contains 12 departments, each making approximately the same number of calls
per day. Each department employs approximately 20 secretaries, and the number of calls
made varies considerably from secretary to secretary. The executive decides to employ

Number of Number of Number of stores not 
City stores in city stores sampled meeting criterion

1 25 13 3
2 10 5 1
3 18 9 4
4 16 8 2

Number of Heights of
Number of seedlings seedlings

Plot seedlings sampled (in inches)

1 52 5 12, 11, 12, 10, 13
2 56 6 10, 9, 7, 9, 8,10
3 60 6 6, 5, 7, 5, 6, 4
4 46 5 7, 8, 7, 7, 6
5 49 5 10, 11, 13, 12, 12
6 51 5 14, 15, 13, 12, 13
7 50 5 6, 7, 6, 8, 7
8 61 6 9, 10, 8, 9, 9, 10
9 60 6 7, 10, 8, 9, 9, 10

10 45 6 12, 11, 12, 13, 12, 12
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two-stage cluster sampling, using a small number of departments (clusters) and selecting
a fairly large number of secretaries (elements) from each. Ten secretaries are sampled
from each of four departments. The data are summarized in the accompanying table.
Estimate the total number of calls placed by the secretaries in this company and place a
bound on the error of estimation.

9.7 A city zoning commission wants to estimate the proportion of property owners in a cer-
tain section of a city who favor a proposed zoning change. The section is divided into
seven distinct residential areas, each containing similar residents. Because the results
must be obtained in a short period of time, two-stage cluster sampling is used. Three of
the seven areas are selected at random, and 20% of the property owners in each area se-
lected are sampled. The figure of 20% seems reasonable because the people living within
each area seem to be in the same socioeconomic class and hence tend to hold similar
opinions on the zoning question. The results are given in the accompanying table. Esti-
mate the proportion of property owners who favor the proposed zoning change and place
a bound on the error of estimation.

9.8 A forester wants to estimate the total number of trees in a certain county that are infected
with a particular disease. There are ten well-defined forest areas in the county; these
areas can be subdivided into plots of approximately the same size. Four crews are avail-
able to conduct the survey, which must be completed in one day. Hence, two-stage clus-
ter sampling is used. Four areas (clusters) are chosen with six plots (elements) randomly
selected from each. (Each crew can survey six plots in one day.) The data are given in the
accompanying table. Estimate the total number of infected trees in the county and place
a bound on the error of estimation.

Number of Number of Number of infected 
Area plots plots sampled trees per plot

1 12 6 15, 14, 21, 13, 9, 10
2 15 6 4, 6, 10, 9, 8, 5
3 14 6 10, 11, 14, 10, 9, 15
4 21 6 8, 3, 4, 1, 2, 5

Number of Number of property Number in favor of 
Area property owners owners sampled zoning change

1 46 9 1
2 67 13 2
3 93 20 2

Number of Number of Mean, Variance, 
Department secretaries secretaries sampled

1 21 10 15.5 2.8
2 23 10 15.8 3.1
3 20 10 17.0 3.5
4 20 10 14.9 3.4

s2
iyi

     



Exercises 309

9.9 A new bottling machine is being tested by a company. During a test run, the machine fills
24 cases, each containing 12 bottles. The company wishes to estimate the average num-
ber of ounces of fill per bottle. A two-stage cluster sample is employed using six cases
(clusters), with four bottles (elements) randomly selected from each. The results are
given in the accompanying table. Estimate the average number of ounces per bottle and
place a bound on the error of estimation.

9.10 A certain manufacturing plant contains 40 machines, all producing the same product
(say, boxes of cereal). An estimate of the proportion of defective products (say, boxes
underfilled) for a given day is desired. Discuss the relative merits of two-stage cluster
sampling (machines as clusters of boxes) and stratified random sampling (machines as
strata) as possible designs for this study.

9.11 A market research firm constructed a sampling plan to estimate the weekly sales of brand
A cereal in a certain geographic area. The firm decided to sample cities within the area
and then to sample supermarkets within cities. The number of boxes of brand A cereal
sold in a specified week is the measurement of interest. Five cities are sampled from the
20 in the area. Using the data given in the accompanying table, estimate the average sales
for the week for all supermarkets in the area. Place a bound on the error of the estima-
tion. Is the estimator you used unbiased?

Average ounces 
Case of fill for sample, Sample variance, 

1 7.9 0.15
2 8.0 0.12
3 7.8 0.09
4 7.9 0.11
5 8.1 0.10
6 7.9 0.12

s2
iyi

Number of 
Number of supermarkets 

City supermarkets sampled

1 45 9 102 20
2 36 7 90 16
3 20 4 76 22
4 18 4 94 26
5 28 6 120 12

s2
iyi

9.12 In Exercise 9.11, do you have enough information to estimate the total number of boxes
of cereal sold by all supermarkets in the area during the week? If so, explain how you
would estimate this total, and place a bound on the error of estimation.

9.13 If a study such as the one outlined in Exercise 9.11 is to be done again, do you recom-
mend that cities be sampled with probabilities proportional to their numbers of super-
markets? Why?
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9.14 Suppose a sociologist wants to estimate the total number of retired people residing in a
certain city. She decides to sample blocks and then sample households within blocks.
(Block statistics from the Census Bureau aid in determining the number of households in
each block.) Four blocks are randomly selected from the 300 of the city. From the data
in the accompanying table, estimate the total number of retired residents in the city and
place a bound on the error of estimation. 

9.15 Using the data in Exercise 9.14, estimate the average number of retired residents per
household and place a bound on the error of estimation.

9.16 From the data in Exercise 9.14, can you estimate the average number of retired residents
per block? How can you construct this estimate and place a bound on the error of
estimation?

9.17 In the estimation of the amount of impurities in a bulk product such as sugar, the sam-
pling procedure may select bags of sugar from a warehouse and then select small test
samples from each bag. The test samples are analyzed for amount of impurities. Discuss
how you might choose the number of bags to sample and the number and size of the test
samples taken from each bag.

9.18 A quality assurance program requires a sampling of manufactured products as they come
off assembly lines in a production facility. You could treat the assembly lines as clusters
or as strata. Discuss the relative merits of these two options and design a sampling plan
for each case.

9.19 It is desired to estimate the total amount of money spent during a quarter for entertain-
ment by students housed on a particular campus. There are N students housed on cam-
pus, of which a simple random sample of n could be selected. There are also M housing
units on campus, of which a simple random sample of m could be selected. The housing
units range from small fraternity houses to large dormitories. Discuss the relative merits
of using individual students or housing units as sampling units. Which do you recom-
mend, and why?

9.20 Estimate the total number of tables in this book by sampling chapters and pages within
chapters. Choose what you believe to be reasonable sample sizes. Include the tables in
the exercises. 

Number of Number of 
Number of households retired residents

Block households sampled per household

1 18 3 1, 0, 2
2 14 3 0, 3, 0
3 9 3 1, 1, 2
4 12 3 0, 1, 1
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9.1 Refer to the U.S. population (USPOP) data in Appendix C. Construct a two-stage cluster
sampling estimate of the total population in the United States for 2010 by first sampling
divisions and then sampling states within divisions. Sample four of the nine divisions and
at least two states within each sampled division. Compute an estimate of the variance at-
tached to your estimator. Would you recommend this procedure over stratified random
sampling? Why?

9.2 When we are sampling people, the naturally occurring frames typically involve people
grouped in clusters. Hence, two-stage cluster sampling is commonly employed as a
matter of economic convenience. For example, try estimating the total number of li-
brary books currently checked out by students on your campus. (Any other numerical
variable of interest to you can be substituted for the number of library books.) Some nat-
urally occurring clusters of students are those in residence halls, classrooms, fraternities
and sororities, and pages of a student directory. (Can you think of others?) Estimate the
total of interest, and place a bound on the error of estimation, by using the following
procedures:
a. Sampling residences and students within residences
b. Sampling classrooms in use and students within classrooms
c. Sampling pages of the student directory and students’ names within pages

Whichever method you choose, think carefully about the relative sample sizes for the
first and second stages. If the experiment with students is not applicable to your situation,
a simpler exercise to carry out is to estimate the number of words in this (or any other)
book by randomly sampling pages and then sampling lines within a page. Should the
two-stage sampling scheme for a statistics book with formulas and tables differ from the
scheme for a novel?

Sampling
with Real
Populations

     



10

Estimating the Population Size

C A S E  S T U D Y

HOW MANY PEOPLE ATTENDED THE CONCERT?

A newspaper reporter wants to estimate the number of people in attendance at a
free rock concert, and she goes to a statistician for advice. The statistician observes
that the newspaper is handing out free orange hats to some attendees, and he asks
how many are to be given out. Armed with this knowledge, he suggests the follow-
ing estimation scheme.

Suppose t hats are being worn by a subgroup of the N people in attendance. After
the concert begins, n people are randomly selected, and the number s wearing the
orange hats is observed. Now the sample proportion of those wearing the hats,

, is an estimate of the population proportion t�N. In other words,

or

The details of this estimator are given in Chapter 10.

■

10.0
Tools

Interactive Excel tools for doing calculations in this chapter can be found on the
CD that accompanies this book. In the Chapter Ten Tools folder, you will find a Word
file named Section 10.0 (tools). Therein links have been provided to the relevant
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computational tools for this chapter. In the text, we use an icon (pictured on the left)
as a reminder for equations for which we have built tools. Also, data for some of the
chapter exercises are available via a link in that section.

10.1
Introduction

In the preceding chapters, we estimated means, totals, and proportions, assuming that
the population size is either known or so large that it can be ignored if not expressly
needed to calculate an estimate. Frequently, however, the population size is not
known and is important to the goals of the study. In fact, in some studies, the estima-
tion of the population size is the main goal. The study of the growth, evolution, and
maintenance of wildlife populations depends crucially on accurate estimates of pop-
ulation sizes, and estimating the size of such populations will motivate much of our
discussion in this chapter. The techniques can also be used for estimating the number
of people at a concert or a sporting event, the number of defects in a bolt of material,
and many similar quantities. We present and discuss five methods for estimating pop-
ulation sizes.

The first method is direct sampling. This procedure entails drawing a random
sample from a wildlife population of interest, tagging each animal sampled, and re-
turning the tagged animals to the population. At a later date, another random sample
(of a fixed size) is drawn from the same population, and the number of tagged ani-
mals is observed. If N represents the total population size, t represents the number of
animals tagged in the initial sample, and p represents the proportion of tagged ani-
mals in the population, then

Consequently, . We can obtain an estimate of N because t is known and p
can be estimated by , the proportion of tagged animals in the second sample. Thus,

or, equivalently,

The second technique is inverse sampling. It is similar to direct sampling, but the
second sample size is not fixed. That is, we sample until a fixed number of tagged an-
imals is observed. Using this procedure, we can also obtain an estimate of N, the total
population size, using

NN =

t

pN

NN =

t

pN

NN =

Number of animals tagged

 Proportion of tagged animals in the second sample 

pN
N = t>p

t

N
= P
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The third technique depends on first estimating the density of elements in the
population and then multiplying by an appropriate measure of area. If we estimate
that there are animals per acre and the area of interest contains A acres, then 
provides an estimate of the population size.

The fourth method is similar to the third, but depends only on being able to identify
the presence or absence of animals on the sampled plots. Then under certain conditions
the density and the total number of animals can still be estimated.

The fifth method extends the density estimation method to make use of adaptive
sampling, a technique for adding to the sampled units while the fieldwork is in
process so as to make good use of high-density areas as they are discovered. 

10.2
Estimation of a Population Size Using Direct Sampling

Direct sampling can be used to estimate the size of a mobile population. First, a ran-
dom sample of size t is drawn from the population. At a later date a second sample of
size n is drawn. For example, suppose a conservationist is concerned about the ap-
parent decline in the number of seals in Alaskan waters. Estimates of the population
size are available from previous years. For a determination of whether there has been
a decline, a random sample of seals is caught, tagged, and then released. A
month later a second sample of size is obtained. Using these data (often
called recapture data), we can estimate N, the population size. This method assumes
that tagging does not affect the likelihood of recapture.

Let s be the number of tagged individuals observed in the second sample. The
proportion of tagged individuals in the sample is

An estimate of N is given by 

NN =

t

pN
=

nt

s

pN =

s

n

n = 100
t = 200

AlNlN
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Estimator of N:

(10.1)

Estimated variance of :

(10.2)VN (NN ) =

t2n(n - s)

s3

NN

NN =

nt

s

     



10.2 Estimation of a Population Size Using Direct Sampling 315

Note that s must be greater than zero for Eqs. (10.1) and (10.2) to hold. We assume
that n is large enough so that s is greater than zero with high probability. You should
also realize that , which is presented in Eq. (10.1), is not an unbiased estimator
of N. For ,

Hence, for fairly large sample sizes—that is, large t and n—the term 

is small, and the bias of the estimator approaches zero. The estimator tends to
overestimate the true value of N. 

EXAMPLE 10.1 Before posting a schedule for the upcoming hunting season, the game commission
for a particular county wishes to estimate the size of the deer population. A random
sample of 300 deer is captured . The deer are tagged and released. A sec-
ond sample of 200 is taken two weeks later . If 62 tagged deer are recap-
tured in the second sample , estimate N and place a bound on the error of
estimation.

SOLUTION Using Eq. (10.1), we have 

or .

A bound on the error of estimation is given by

Thus, the game commission estimates that the total number of deer is 968, with a
bound on the error of estimation of approximately 205 deer. ■

Chapman (1952) gives the following estimator of N, along with its approximate
variance, which is nearly unbiased for most direct sampling situations. 

Using this estimator with the data from Example 10.1 gives an estimated population
size of 960 (smaller than the 968 found in Example 10.1) with a margin of error of
2(88.45) = 176.9 (also smaller than the 204.18 of the earlier method).

 VN (NN c) =

(t + 1)(n + 1)(t - s)(n - s)

(s + 1)2(s + 2)

 NN c =

(t + 1)(n + 1)

(s + 1)
- 1

22VN (NN ) =

B

t2n(n - s)
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(62)3 = 204.18
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As might be expected, we can obtain a more precise estimator of N (using either
method) by increasing either or both of the two sample sizes (n and t). Further infor-
mation on the choice of t and n is given in Section 10.4.

10.3
Estimation of a Population Size Using Inverse Sampling

Inverse sampling is the second method for estimating N the total size of a population.
We again assume that an initial sample of t individuals is drawn, tagged, and released.
Later, random sampling is conducted until exactly s tagged animals are recaptured. If
the sample contains n individuals, the proportion of tagged individuals in the sample
is given by . We use this sample proportion to estimate the proportion of
tagged individuals in the population.

Again, the estimator of N is given 

but note that s is fixed and n is random.

NN =

t

pN
=

nt

s

pN = s>n
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Estimator of N:

(10.3)

Estimated variance of :

(10.4)VN (NN ) =

t2n(n - s)

s2(s + 1)

NN

NN =

nt

s

Note that Eqs. (10.3) and (10.4) hold only for . This restriction offers no difficulty;
we simply specify that s must be greater than zero, and we sample until s tagged in-
dividuals are recaptured. The estimator , obtained by using inverse sam-
pling, provides an unbiased estimator of N, and the variance given by Eq. (10.4) is an
unbiased estimator of the true variance of .

Variance (10.4) for the inverse case looks very much like variance (10.2) for the
direct case, and the estimators appear to be identical. However, the inverse method
offers the advantages that s can be fixed in advance, is unbiased, and an unbiased
estimator of the true variance of is available. (In fact, n has a negative binomial
distribution, which is a common distribution discussed in statistical theory courses.)

The estimators for the two procedures appear to be identical; the critical differ-
ence is that for inverse sampling, s is chosen (i.e., it is not a random value arising
from the sampling). Equation (10.1) is in fact a ratio of random variables, and so can
be biased for small sample sizes, whereas the apparently identical Eq. (10.3) has ran-
dom elements only in the numerator. 

NN
NN

NN

NN

NN = nt>s
s 7 0

     



EXAMPLE 10.2 Authorities of a large wildlife preserve are interested in the total number of birds of
a particular species that inhabit the preserve. A random sample of birds is
trapped, tagged, and then released. In the same month, a second sample is drawn
until 35 tagged birds are recaptured . In total, 100 birds are recaptured in
order to find 35 tagged ones. Estimate N and place a bound on the error of estimation. 

SOLUTION Using Eq. (10.3), we estimate N by 

A bound on the error of estimation is found by using Eq. (10.4) as follows: 

Hence, we estimate that 429 birds of the particular species inhabit the preserve. We
are quite confident that our estimate is within approximately 116 birds of the true
population size. ■

10.4
Choosing Sample Sizes for Direct and Inverse Sampling

We have been discussing direct sampling and inverse sampling techniques. You prob-
ably wonder which is the better one to use. Either method can be used. Inverse sam-
pling yields more precise information than does direct sampling, provided the second
sample size n required to recapture s tagged individuals is small relative to the pop-
ulation size N. However, if nothing is known about the size of N, a poor choice of t
could make n quite large when inverse sampling is used. For example, if 
and a first sample of individuals is drawn, a large second sample would be
needed to obtain exactly tagged animals. 

Let 

and

denote the sampling fractions for the first and second sampling sessions. It turns out
that

Given an approximate estimate of N, and a targeted value of it is easy to deter-
mine either of the required sampling fractions, given a choice for the other. More dif-
ficult, but more interesting and useful is to choose the combination of p1 and p1 that
would yield the desired precision with the smallest total sample size. Our interactive
Excel tool makes this easy to do graphically.

V(NN ),

V(NN )

N
L

1 - p1

p1p2

p2 =

n

N
p1 =

t

N

s = 10
t = 50

N = 10,000

22VN (NN ) = 2
B

t2n(n - s)

s2(s + 1)
= 2

B

(150)2(100)(65)

(35)2(36)
= 115.173

NN =

nt

s
=

100(150)

35
= 428.57

(s = 35)

t = 150
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EXAMPLE 10.3a The game commission in Example 10.1 believes that the size of the deer population this
year is approximately the same as in the preceding year, when there were between
800 and 1000 deer. Determine the sampling fractions p1 and p2 that would yield a
bound on the error of 200 with the smallest total sample size. 

SOLUTION The simplest way to proceed is to show you the graphical output from the tool (Fig-
ure 10.1). If the researcher were to tag 315 animals , and subsequently
capture 215 more , a standard deviation of approximately 100 would
be achieved.

Sample size calculations for inverse sampling are very close to identical to those
for direct sampling; thus, the tool we created looks very similar and is used in much
the same way. ■

EXAMPLE 10.3b The game commission in Example 10.1 believes that the size of the deer popula-
tion this year is approximately the same as in the preceding year, when there were
between 800 and 1000 deer. Determine the sampling fractions p1 and the number of
recaptures s that would yield a bound on the error of 200 with the smallest total
sample size. 

SOLUTION Similar to Example 10.3a, an initial sampling fraction of 31.5% and a targeted num-
ber of recaptures of 68.5 (in practice you would use 69, of course) would yield a sec-
ond fraction of 21.7%. 

The reason the two solutions are virtually identical is that with large enough sam-
ple sizes, the random variability of s in direct sampling is very small; in that case, the
two methods are indeed virtually indistinguishable in their qualities. ■

The preceding tag-recapture techniques can be extended to more than two stages.
At the second stage, the (n s) untagged animals can be tagged, and all n returned-

(p2 = 21.7%)
(p1 = 31.5%)
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FIGURE 10.1
Sampling fractions p1 and p2 that would yield a standard deviation of approximately 100 for
the problem in Example 10.3a. The cross shows the combination that requires the smallest
total sample size.
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to the population. At a later time, a third sample can be taken, and the counting and
tagging operation repeated. This multistage approach will result in an improved esti-
mator of N and is especially useful in ongoing studies where samples might be taken
every week or so. These approaches can be adjusted for births and deaths of animals
and for differing probabilities of capture at each stage. See Seber (1982, 1986) for de-
tails on the more advanced methods.

10.5 
Estimating Population Density and Size from Quadrat Samples

Estimation of the number of elements in a defined area can be accomplished by first
estimating the number of elements per unit area (i.e., the density of the elements) and
then multiplying the estimated density by the size of the area under study. For exam-
ple, if a loom produces 2 defects per square yard of material, on the average, then a
bolt containing 40 square yards should contain approximately 80 defects. We discuss
here estimates of both the density and the total number of elements. Our discussion,
however, need not be confined to areas because the same methods work for estimat-
ing the total number of bacteria in a fixed volume of liquid or the total number of tele-
phone calls coming into a switchboard over a fixed interval of time. Talking in terms
of areas is convenient for illustrative purposes.

Suppose a region of total area A is to be sampled by randomly selecting n plots, each
of area a. For convenience, we assume . Each plot will be called a quadrat
(even though they may not be square). In the terminology of earlier chapters, a quadrat
can be thought of as a cluster of elements. We let mi denote the number of elements
in quadrat i, and we let M, given by

denote the total number of elements in the population (having area A). Also, we let 

denote the density of elements, or the number of elements per unit area. Our goal is
to estimate l and then . In this discussion, note that the mi values are ran-
dom variables, because they are the numbers of elements that happen to be located in
a randomly located quadrat of fixed area.

Suppose the element counts mi are obtained from n independently and randomly
selected quadrats, each of area a. Then

m =

1

na
n

i=1
mi

M = lA

l =

M

A

M = a
N

i=1
mi

A = Na
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is an estimator of the number of elements per quadrat, and is an estimator
of the number of elements per unit area. From principles discussed in Chapter 4, it
follows that the variance of can be estimated by

(10.5)

where

From here it is easy to form and develop an estimator for the variance
of .

It seems that there is nothing new here. However, it is often the case that the ele-
ments being counted (diseased trees, bacteria colonies, traffic accidents, etc.) are
themselves randomly distributed over area, volume, or time. Then we can simplify
the previous results by taking into account the randomness of the elements. (The
reader who has studied probability theory may recognize that we are assuming mi to
have a Poisson distribution.) Under the assumption of randomly dispersed elements,
we have the following estimators of l and M.

MN

MN
= lN A

s2
m =

a
n

i=1
(mi - m)2

n - 1

1

a2  VN (m) =

1

a2 
s2

m

n

lN

lN = ma
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Estimator of the density L:

(10.6)

Estimated variance of :

(10.7)

Estimator of the total M: 

(10.8)

Estimated variance of :

(10.9)VN (MN ) = A2VN (lN ) = A2 a lN
an
b

MN

MN = lN A

VN (lN ) =

lN

an

LN

lN =

m

a

We illustrate the use of these estimators in the following examples.

     



EXAMPLE 10.4 Florida has a serious problem with fire ants, and estimating the number of ant hills
per unit area (at some key locations) is an important consideration in keeping track
of population increases. Fifty sample quadrats of approximately 16 m2 each gave the
results in the table.

10.5 Estimating Population Density and Size from Quadrat Samples 321

Number of hills Frequency

0 13
1 8
2 12
3 10
4 5
5 2

50

From these data, estimate the density of ant hills per unit area.

SOLUTION For the data given above,

and

Then

The variance of can be estimated by 

and the bound on the error of estimation is . Thus, our esti-
mated density of 0.11 should be within 0.026 units of the true density. ■

If we think the ant hills are randomly dispersed in the region under study, we can
estimate the variance of by

and

22VN (lN ) = 0.023

VN (lN ) =

lN

an
=

11

(16)(50)
= 0.00014

lN

220.00017 = 0.026

1

a2 
s2

m

n
=

2.178

(16)2(50)
= 0.00017

lN

lN =

m

a
=

1

16
a 92

50
b = 0.11 hills>m2

s2
m = 2.178

a
n

i=1
mi = 0(13) + 1(8) + 2(12) +

Á
+ 5(2) = 92

     



about the same as found previously. The closeness of the two variance estimators sug-
gests that the randomness assumption may be reasonable. Note that, under the random-
ness assumption, both the estimator and depend on the data only through .

EXAMPLE 10.5 The density of trees having fusiform rust on a southern-pine plantation of 200 acres
is to be estimated from a sample of n 10 quadrats of 0.5 acre each. The ten sam-
pled plots had an average of 2.8 infected trees per quadrat. Estimate the density of
infected trees and place a bound on the error of estimation.

SOLUTION Using Eq. (10.6) with a 0.5, we determine the estimated density as 

The bound on the error is

Thus, we estimate the density as 5.6 2.1, or from 3.5 to 7.7 infected trees per acre.
This interval is a fairly large interval because the sample size is relatively small. ■

EXAMPLE 10.6 For the situation and data in Example 10.5, estimate the total number of infected
trees in the 200-acre plantation. Place a bound on the error of estimation.

SOLUTION Using Eq. (10.8), we see that the estimated total is

trees

The bound on the error, from Eq. (10.9), is

Thus, we estimate the total number of infected trees to be 1120 ; 420, or 700 to
1540. ■

Notice that the bound on the error of estimation, for both and M, contains both
a and n in the denominator. Hence, this bound will decrease as a is increased or as n
is increased. A useful sample size can be determined by fixing a at some desirable
level for convenient fieldwork and then choosing n to produce the desired bound, as-
suming some preliminary knowledge of . A rough rule for optimally determining a
will be given in the next section for a slightly different estimator of .

Quadrat sampling, as described, assumes that counts are made within each sam-
pled quadrat without error. In counting diseased trees, for example, each sampled
quadrat is thoroughly searched so that every diseased tree is discovered. In contrast,
line transect sampling generally allows for missed items and adjusts the estimate of
a population total accordingly. In line transect sampling, the investigator walks along
a predetermined line and counts all the items in the category of interest that can be

l

l

l

22VN (MN ) = 2A
A
lN

an
= 2(200)

A

5.6

(0.5)(10)
= 420

MN = lN A = (5.6)(200) = 1120

;

2
A
lN

an
= 2

A

5.6

(0.5)(10)
= 2.1

lN =

m

a
=

2.8

5
= 5.6 trees per acre 

=

m
=

mVN (lN )lN
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seen on either side of the line, no matter how far the items might be from the line. An
adjustment is made for the fact that items have a decreasing probability of being spot-
ted as their distance from the line transect increases. Such adjustments can become
quite complicated and are beyond the scope of this book. A good reference for line
transect sampling is Thompson (1992).

10.6 
Estimating Population Density and Size from Stocked Quadrats

In quadrat sampling of plants or animals, counting the exact number of the species under
investigation is often difficult. In contrast, detecting the presence or absence of the
species of interest is often easy. We now show that just knowing whether a species is
present in a sample quadrat can lead to an estimate of density and of population size.

Foresters refer to a quadrat that contains the species of interest as being stocked.
We adopt this terminology here. For a sample of n quadrats, each of area a, from a
population of area A, let y denote the number of sampled quadrats that are not stocked.
Under the assumption of randomness of elements, introduced in Section 10.5, the pro-
portion of unstocked quadrats in the population is approximately . We know from
our discussions of estimating proportions in Chapter 4 that the sample proportion of
unstocked quadrats is a good estimator of the population proportion. Thus, (y�n) is an
estimator of . This result leads to the following estimators of and M.le-la

e-la
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Estimator of the density L:

(10.10) 

where ln denotes natural logarithm.

Estimated variance of :

(10.11)

Estimator of the total M:

(10.12)

Estimated variance of :

(10.13) VN (MN ) = A2VN (lN ) =

A2

na2(elNa
- 1)

MN

MN = lN A

VN (lN ) =

1

na2(elNa
- 1)

LN

lN = - a 1

a
b  ln a y

n
b

The following example illustrates the use of these estimators.

     



EXAMPLE 10.7 Again, refer to the 200-acre tree plantation in Example 10.5. Now for the estimation
of the density of trees infected by fusiform rust, n 20 quadrats of 0.5 acre each
will be sampled, but only the presence or absence of infected trees will be noted for
each sampled quadrat. (Because this task is easier than counting trees, the sample
size can be increased.) Suppose y 4 of the 20 quadrats show no signs of fusiform
rust. Estimate the density and number of infected trees, placing bounds on the error
of estimation in both cases.

SOLUTION From Eq. (10.10), we see that the density is estimated by

trees per acre

The bound on the error is, according to Eq. (10.11),

We then estimate the density as 3.2 1.8, or 1.4 to 5.0 infected trees per acre. From
Eq. (10.12), we have

and the bound on the error, from Eq. (10.13), is

Our estimate of the total number of infected trees is 640 360, or 280 to 1000.
Generally, the estimator based on stocked quadrats alone is less precise than

that based on actual count data. However, since making the measurements is easier
when we are looking only for stocked quadrats, the sample size can usually be
quite large. The stocked-quadrat estimator does not work if y 0 or y n. Thus,
choice of the quadrat size a is very important. Swindel (1983) gives a rough rule
for choosing a as

when some preliminary knowledge of is available. If, for example, we expect to
see approximately four infected trees per acre, then each sampled quadrat should be 
1.6�4 0.4 acre.

The stocked-quadrat technique can also be used with volume or time samples.
Cochran (1950) discusses the use of this technique, and modifications of it, for esti-
mating bacterial densities in liquids. ■

=

l

a =

1.6

l

==

;
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10.7
Adaptive Sampling

Continuing in the spirit of density estimation for a population total, envision a rec-
tangular forest for which you wish to estimate the number of trees of a certain
species, say maple. One way to accomplish this is to lay a regular grid over a map of
the forest (similar to the grid shown in Figure 10.2), sample a certain number of cells
of that grid, and then go out into the forest to count the number of maple trees in the
sampled cells. (It may be easier to find the sampled cells with a global positioning
system.) But suppose the maple trees tend to grow in clusters so that once you see
some maple trees in a cell you can well expect there will be maple trees in neighbor-
ing cells as well. Why not visit some neighboring cells while you are out in the field
to get those counts as well? This is an example of adaptive sampling. Instead of the
sample size being selected in advance and being fixed at that value throughout the
course of the study, the sample size is allowed to vary as new information becomes
available. Adaptive sampling is an especially useful technique for estimating the den-
sity of rare plants or animals (birds, for example) because once one is found it sug-
gests that the surrounding area might fruitfully be searched for others.

EXAMPLE 10.8 Back to our forest, maple trees, and the grid pictured in Figure 10.2. Suppose a ran-
dom sample of n 5 of the N 100 cells is selected and the asterisks (*) mark the
five that come up in a simple random sample. The adaptive sampling scheme is added
onto this original sample as follows. If a sampled cell has at least one maple tree in
it, then the eight neighboring cells (East, SE, South, SW, West, NW, North, and NE)
are investigated as well. If any one of those cells contains a maple tree, it is added to
the sample and its neighboring cells are investigated. The process continues until the
cell network is surrounded by cells devoid of maple trees. 

==
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FIGURE 10.2
Adaptive sampling grid
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Counting the cells in Figure 10.2 in order from the upper left-hand corner, the
first sampled cell (cell 7) has no maple trees, so its neighbors are not investigated.
The next sampled cell (cell 13) contains two maple trees, so its neighboring cells are
investigated. The cell to the east has a tree; it is added to the sample and its neighbors
are investigated. The neighbor to the south has four maple trees, and so it is added to
the sample and the investigation of neighboring cells continues. A fourth cell is
added to the network and this network is complete. Action then moves to the third
sampled cell (cell 46) and the counting proceeds. Letting mi denote the number of
cells in a network and yi denote the total count of points of interest (maple trees in the
example) in a network, the data for the adaptive sampling shown in Figure 10.2 are
given in Table 10.1.

It turns out that an unbiased estimator of the mean density per cell in the popula-
tion is given by 

which is the mean of the network means. The estimated variance of this estimator is
just what you might expect from simple random sampling:

where is the sample variance of the network means. For the data from the sample
in Figure 10.2, trees per cell and its standard error (square root of the vari-
ance) is 0.66. These can be multiplied by N 100 to obtain an estimate of the total
number of trees in the forest: 210 with a standard error of 66. The standard error here
is quite large because the sample size is small and there is a lot of variation in the
counts from cell to cell. 

If we had not known about adaptive sampling and had just used the original
five sampled cells in our estimate, we would have a sample mean of 2.20, which is
very close to the adaptive sampling estimator, but a standard error of 0.78, which
is considerably larger than that of the adaptive sampling estimator. This demon-
strates the general notion that the adaptive sampling estimator tends to have
smaller variance than does the simple random sampling estimator. Adaptive sam-
pling will pay its greatest dividends when the within-network variation is large.
(Networks have similar properties to clusters and the same principle of hetero-
geneity applies.) If we had just averaged the counts from the 13 cells that ended
up in the sample, the estimate would be 2.69 tees per cell. This method will in
general give a substantial overestimate.
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TABLE 10.1
Data from the adaptive sample of Figure 10.2

mi 1 4 1 5 2
yi 0 1 1 1 7

     



It is possible for networks to overlap. For example, if cell 25 had been in the orig-
inal random sample, then the four-cell network in the upper left would have been in
the sample twice and would have to be counted twice in the analysis. 

These simple ideas of adaptive sampling can be expanded in many directions. For
example, the definition of neighbor can be quite broad and need not involve geographic
proximity; the original sampling design need not be a simple random sample. For more
details and extensive references on adaptive sampling see Thompson (1992).

10.8
Summary 

The estimation of the size of a population is often very important, especially when
we are studying plant and animal populations. This chapter presents five procedures
for estimating the total population size N.

The first technique is direct sampling. A random sample of t individuals is drawn
from a population and tagged. At a later date, a fixed random sample of size n is
drawn, and the number of tagged individuals is observed. Using these data, we can
estimate N and place a bound on the error of estimation.

The second technique, inverse sampling, is similar to direct sampling, with the
exception that we continue sampling until a fixed number s of tagged individuals is
recaptured in the second sample. The sample data are then used to estimate N and to
place a bound on the error of estimation.

When a choice is available between inverse and direct sampling procedures, the
inverse procedure appears to provide more accurate results. However, in some in-
stances, particularly when little or nothing is known concerning the relative size of N,
the direct sampling procedure is the better choice.

The third and fourth methods both involve sampling quadrats, volumes, or inter-
vals of time and then counting elements of interest within these relatively small units.
This procedure leads to estimates of both the density of elements and the total num-
ber of elements in the population.

The fifth method, adaptive sampling, allows the number of quadrats in the sample
to be adjusted as the sampling proceeds so as to take advantage of high-density areas. 

C A S E  S T U D Y R E V I S I T E D

HOW MANY PEOPLE ATTENDED THE CONCERT?

In the case study that introduces this chapter, the newspaper reporter tells the statis-
tician that t 500 orange hats have been given out. From their seat high in a balcony,
the statistician and the reporter locate n 200 seats in a random fashion. On those
200 seats, they observe s 40 of the orange hats. Now N, the size of the crowd, is
estimated to be

NN =

nt
s

=

200(500)

40
= 2500

=

=

=
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The bound on the error of estimation is given by

We confidently estimate the size of the crowd to be between 2500 707 1793 and
2500 707 3207. This interval is large and could be reduced by increasing n.
(Note that this estimate assumes that the people wearing the orange hats are ran-
domly dispersed through the crowd.)

■

Exercises Some of the exercises are relatively data-intensive; look in the electronic Section 10.0 for links
to those data in Excel files.

10.1 Discuss the differences between direct and inverse sampling.

10.2 Name the restriction implicit in the use of 
a. direct sampling
b. inverse sampling 

How can this restriction be satisfied in each case?

10.3 Assuming the cost of sampling is not significant, how can you improve the bound on the
error of estimation, using either direct or inverse sampling?

10.4 A particular sportsmen’s club is concerned about the number of brook trout in a certain
stream. During a period of several days, t 100 trout are caught, tagged, and then re-
turned to the stream. Note that the sample represents 100 different fish; hence, any fish
caught on these days that had already been tagged is immediately released. Several
weeks later a second sample of n 120 trout is caught and observed. Suppose 27 in the
second sample are tagged (s 27). Estimate N, the total size of the population, and
place a bound on the error of estimation.

10.5 Wildlife biologists wish to estimate the total size of the bobwhite quail population in a
section of southern Florida. A series of 50 traps is used. In the first sample, t 320
quails are caught. After being captured, each bird is removed from the trap and tagged
with a metal band on its left leg. All birds are then released. Several months later, a
second sample of n 515 quail is obtained. Suppose s 91 of these birds have tags.
Estimate N and place a bound on the error of estimation.

10.6 A game commission is interested in estimating the number of large-mouth bass in a
reservoir. A random sample of t 2876 bass is caught. Each bass is marked and re-
leased. One month later, a second sample of n 2562 is caught. Suppose s 678 have
tags in the second sample. Estimate the total population size and place a bound on the
error of estimation.

10.7 A team of conservationists is interested in estimating the size of the pheasant population
in a particular area prior to the hunting season. The team believes that the true population

==

=

==

=

=

=

=

=+

=-

 = 2
C

(500)2(200)(160)

(40)3
= 707
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size is between 2000 and 3000. Assuming N 3000, the sampling fractions of pl and p2

equal to 0.25 should give a bound on the error of estimation approximately equal to
2(189.74) 379.48. The conservationists think that this bound on the error is reasonable
and so decide to choose t 750 and n 750. By using traps, they catch 750 pheasants
for the first sample. Each of these pheasants is tagged and released. Several weeks later the
second sample of n 750 is obtained. Suppose 168 of these pheasants have tags (s
168). Estimate the population size and place a bound on the error of estimation.

10.8 City officials are concerned about the nuisance caused by pigeons around city hall. To
emphasize the problem, they hire a team of investigators to estimate the number of
pigeons occupying the building. With several different traps a sample of t 60 pigeons
is captured, tagged, and released. One month later, the process is repeated, using n
60. Suppose s 18 tagged pigeons are observed in the second sample. Estimate N and
place a bound on the error of estimation.

10.9 Animal resource experts on a particular game preserve are concerned about an apparent
decline in the rabbit population. In a study conducted two years ago, the population size
was estimated to be N = 2500. Assume the population size is still of this magnitude, and
determine the approximate sample sizes (t and n) required to estimate N with a bound
equal to 356.

10.10 A zoologist wishes to estimate the size of the turtle population in a given geographical
area. She believes that the turtle population size is between 500 and 1000; hence, an
initial sample of 100 (10%) appears to be sufficient. The t 100 turtles are caught,
tagged, and released. A second sampling is begun one month later, and she decides to
continue sampling until s 15 tagged turtles are recaptured. She catches 160 turtles
before obtaining 15 tagged turtles (n 160, s 15). Estimate N and place a bound
on the error of estimation.

10.11 Because of a particularly harsh winter, state park officials are concerned about the num-
ber of squirrels inhabiting their parks. An initial sample of t 100 squirrels is trapped,
tagged, and released. As soon as the first sample is completed, the officials begin work-
ing on a second sample of n 75. They trap ten squirrels that were tagged previously.
Estimate N and place a bound on the error of estimation.

10.12 Assume the costs of taking an observation in the first sample and in the second sample
are the same. Determine which is the most desirable: having t � n, t n, or t � n for
a fixed cost of conducting the two samples. 

10.13 A team of wildlife ecologists is interested in the effectiveness of an antifertility drug in
controlling the growth of pigeon populations. To measure effectiveness, they will esti-
mate the size of the population this year and compare it with the estimated size for a pre-
vious year. A large trap is constructed for the experiment. The trap is then baited with a
corn feed containing a fixed amount of the drug. An initial sample of t 120 pigeons
is trapped and allowed to eat the medicated feed. Each bird is then tagged on its leg and
released. At a later date, a second sample of n 100 pigeons is trapped. Suppose 48 of
these birds have tags (s 48). Estimate the size of the pigeon population and place a
bound on the error of estimation.

10.14 Air samples of 100 cubic centimeters each are taken periodically from an industrial
section of a city. The density of a certain type of harmful particle is the parameter of
interest. Suppose 15 samples gave an average particle count of 210 per sample.
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Estimate the particle density, per cubic centimeter, and place a bound on the error of
estimation.

10.15 Suppose in the air sampling in Exercise 10.14 detecting the presence or absence of par-
ticles is easy but counting the particles is difficult. Among 500 such samples, 410
showed the particles to be present. Estimate the particle density and place a bound on
the error of estimation.

10.16 Cars passing through an intersection are counted during randomly selected ten-minute
intervals throughout the working day. Twenty such samples show an average of 40 cars
per interval. Estimate, with a bound on the error, the number of cars that you expect to
go through the intersection in an eight-hour period.

10.17 Would you recommend use of the stocked-quadrat method for counting cars, as in
Exercise 10.16? 

10.18 Discuss the problem of estimating highly mobile animal populations by using quadrat
sampling. 

10.19 The data in the accompanying table show the number of bacteria colonies observed in
240 microscopic fields. Estimate, with a bound on the error of estimation, the density of
colonies per field. What assumptions are necessary for this procedure?

10.20 Outline how you can estimate the number of cars in a city during the working day. Com-
pare four different methods for making this estimate. Which of the four do you think
will work best? Why? 

10.21 Telephone calls coming into a switchboard were monitored for ten different periods of
15 minutes each. The frequency distribution of the sample data is shown in the table.

a. Estimate the average number of calls per hour coming into this switchboard.
b. Show how to calculate the variance of the estimate in part (a).
c. What assumptions are necessary for the answers in parts (a) and (b) to be valid?
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Number of calls Number of time periods

0 1
1 3
2 6

10

Colonies per field Number of fields

0 11
1 37
2 64
3 55
4 37
5 24
6 12

SOURCE: Bliss, C. I. and Fisher, R. A. Fitting the Negative
Binomial Distribution to Biological Data. Biometrics 9(1953):
176–200. With permission from The Biometric Society.

     



10.22 From the grid pictured in Figure 10.2, select a new adaptive sample based on an initial
simple random sample of n 10 cells. Estimate the total number of dots (trees) in the
population and provide a margin of error. Compare your answer to the one obtained in
Section 10.7.

10.23 Here is a simple six-cell grid. Beginning with all possible simple random samples of
size n 2 (there are 15 of them) list the data (network sizes and network counts) for all
possible adaptive samples. Show that the adaptive sampling estimator of the mean count
per cell is unbiased. Remember, networks can overlap and, if that occurs, the overlap-
ping cells must be counted in both networks.

=

=
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Sampling
from Real
Populations

. . .

. . . . . .

10.1 Simulate the tag-recapture technique for animal populations by conducting the following
experiment. Put a known number N of beads in a jar. Mark t of them in some distinguish-
able manner and thoroughly mix the beads. Then sample n beads, record the number of
“tags,” and estimate N by the direct method, placing a bound on the error of estimation.
Does the resulting interval include your known N? Replace the n beads and repeat the
sampling, using the inverse method (sample until you have s tagged beads), and place a
bound on the error. Does this interval include N? You might try various sample sizes and
various degrees of mixing. How should you choose an appropriate sample size? What do
you think will happen if the marked beads are not thoroughly mixed with the others? Does
this question suggest a realistic difficulty with the tag-recapture method?

10.2 The structure of the problems discussed in this chapter require that there be t marked ob-
jects (tags) randomly distributed among the N objects in a population. If t is known, a ran-
dom sample of size n will supply information to estimate N, provided that some marked
objects show up in the sample. The marked objects can be entered into the population
without taking an initial sample. Try the following technique for estimating the size of a
crowd at a sporting event, lecture, movie, or other similar event. Obtain the names and de-
scriptions of t people that you know will be attending the event. Ask them to distribute
themselves somewhat randomly in the crowd. Then sample n people at random, perhaps
as people leave the building. Count the number of original t “tagged” individuals who ap-
pear in your sample and estimate N. (You can use the inverse sample method here also.)

10.3 Estimate the number of three-letter words in this book by first estimating the density of
three-letter words per page. Place a bound on the error of estimation. Try two different
techniques for making this estimate. Which works better in your opinion? What as-
sumptions are necessary for either method to work?

10.4 Figures 10.3 through 10.5 show points distributed in planar regions. The objective is to
estimate the density of points on the page, which is the same for all three figures. The
estimation is to be accomplished through quadrat sampling.
a. Construct a quadrat for sampling by cutting a 2 2-cm square opening in a small

note card. A single quadrat sample of 4 cm2 is then obtained by dropping the note
card onto the planar region. If the opening falls across the boundary of the planar
region, slide it toward the center until the open square is entirely inside the planar
region of the figure.

*
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b. Randomly select six quadrats from Figure 10.3, counting the number of points in
each. Use these data to estimate the density of points in Figure 10.3, with a bound on
the error of estimation. 

c. Repeat the instructions in part (b) for Figures 10.4 and 10.5. Compare the results.
Which figure produces the largest bound on the error for the estimate of point density?

d. Repeat the sampling of six quadrat samples from each figure but use systematic
sampling this time. Estimate the density and approximate the bound on the error in
each case. Discuss how systematic sampling compares with simple random sam-
pling for each of the three figures.

10.5 For Figure 10.3, estimate the density of points in the plane by the stocked-quadrat
method. Begin by constructing a quadrat of 1 cm2. Then, select 20 samples of 1 cm2

each and record simply the presence or absence of points for each sample. Estimate the
density of points on the plane and find an approximate bound on the error of estimation.
How does this estimate compare with the one from 10.4(b)? Could the precision of the
estimate be improved by taking more samples of smaller quadrat size?
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FIGURE 10.3
Planar region I
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FIGURE 10.4
Planar region II
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FIGURE 10.5
Planar region III

     



11

Supplemental Topics

11.0
Tools

Interactive Excel tools for doing calculations in this chapter can be found on the CD
that accompanies this book. In the Chapter Eleven Tools  folder, you will find a Word
file named Section 11.0 (tools). Therein links have been provided to the relevant
computational tools for this chapter. In the text, we use an icon (pictured on the left)
as a reminder for equations for which we have built tools. Also, data for some of the
chapter exercises are available via a link in that section. 

11.1
Introduction

Four sample survey designs—simple and stratified random sampling, cluster sampling,
and systematic sampling—have been discussed in preceding chapters. For each design,
we have assumed that the data were correctly recorded and provided an accurate rep-
resentation of the n elements sampled from the population. Under these assumptions,
we have estimated certain population parameters and placed a bound on the error of
estimation.

In many situations the assumptions underlying these designs are not fulfilled.
First, the recorded measurements are not always accurate representations of the
desired data because of biases of the interviewers or measuring equipment. Second,
the frame is not always adequate, and hence the sample might not have been selected
from the complete population. Third, obtaining accurate sample data might be im-
possible because of the sensitive nature of the questions. Fourth, the sample meas-
urements may have been selected with varying probabilities. Fifth, almost all surveys
suffer from nonresponse in one form or another. This chapter provides some methods
for dealing effectively with these issues and presents a general method for producing
confidence interval estimates. 
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11.2
Interpenetrating Subsamples

An experimenter is interested in obtaining information from a simple random sample
of n people selected from a population of size N. She has k interviewers available to
do the fieldwork, but the interviewers differ in their manner of interviewing and
hence obtain slightly different responses from identical subjects. For example, sup-
pose the interviewer is to rate the health of a respondent on a scale from 0 to 5, with
0 denoting poor health. Obtaining this type of data requires the interviewer to have
skill in interviewing and subjective judgment. One interviewer might not obtain
enough information and might tend to rate the health of an individual too high,
whereas another might obtain detailed information and might tend to rate the health
too low.

A good estimate of the population mean can be obtained by using the following
technique. Randomly divide the n-sample elements into k subsamples of m elements
each and assign one interviewer to each of the k subsamples. Note that and
n can always be chosen so that m is an integer. We consider the first subsample to be
a simple random sample of size m selected from the n elements in the total sample.
The second subsample is then a simple random sample of size m selected from the

remaining elements. This process is continued until the n elements have
been randomly divided into k subsamples. The k subsamples are sometimes called
interpenetrating subsamples.

We expect some interviewers to give measurements that are too small and some
too large, but the average of all sample measurements should be close to the popula-
tion mean. That is, we expect the biases of the investigators to possess an average that
is very near zero. Thus, the sample mean is the best estimator of the population
mean m, even though the measurements are biased.

We use the following notation. Let yij denote the jth observation in the ith sub-
sample, where , 2, . . . , m; , 2, . . . , k. Then is given by

(11.1)

Here is the average of all observations in the ith subsample. The sample mean is
the average of the k subsample means.

yyi

yi =

1

ma
m

j=1
yij

yii = 1j = 1

y

(n - m)

m = n>k
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Estimator of the population mean M: 

(11.2)

Estimated variance of :

(11.3)VN (y) = a1 -

n

N
b  

s2
k

k

y

y =

1

ka
k

i=1
yi

     



The technique of interpenetrating subsamples gives an estimate of the variance of
, given in Eq. (11.3), which accounts for interviewer biases. That is, the estimated

variance given in Eq. (11.3) is usually larger than the standard estimate of the vari-
ance of a sample mean obtained in simple random sampling because of the biases
present in the measurements.

EXAMPLE 11.1 A sociologist wants to estimate the average height of adult males in a community
containing 800 men. He has ten assistants, each with his or her own equipment,
to acquire the measurements. Because the experimenter believes the assistants
will produce slightly biased measurements, he decides to take a simple random
sample of males from the population and randomly divide the sample
into ten subsamples of eight males each. Each assistant is then assigned to one
subsample. The measurements produce the following subsample means (meas-
urements in feet):

Estimate the mean height of adult males in the community and place a bound on the
error of estimation.

SOLUTION The best estimate of the population mean is the sample mean . Thus, from Eq. (11.2),

We must now estimate the variance of by using Eq. (11.3). The term is simply
the sample variance among the values, which turns out to be (0.25/9). Then, from
Eq. (11.3)

VN (y) = a1 -

n

N
b  

a
k

i=1
(yi - y)2

k(k - 1)
= a1 -

80

800
b c 0.25

10(9)
d = 0.0025

yi

s2
ky

y =

1

ka
k

i=1
yi =

1

10
(5.9 + 5.8 +

Á
+ 6.0) = 5.89

y

y10 = 6.0y5 = 6.1

y9 = 5.9y4 = 6.0

y8 = 5.6y3 = 6.1

y7 = 5.8y2 = 5.8

y6 = 5.7y1 = 5.9

n = 80

y
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where

(11.4)s2
k =

a
k

i=1
(yi - y)2

(k - 1)

     



The estimate of the mean height of adult males, with a bound on the error of estima-
tion, is given by

or

or

To summarize, the best estimate of the mean height is 5.89 feet, and we are reason-
ably confident that our error of estimation is less than 0.10 foot. ■

11.3
Estimation of Means and Totals over Subpopulations

Obtaining a frame that is restricted to only those elements in the population is often im-
possible. For example, we may wish to sample households containing children, but the
best frame available may be a list of all households in a city. We may be interested in a
firm’s overdue accounts, but the only frame available may list all the firm’s accounts re-
ceivable. In situations of this type, we wish to estimate parameters of a subpopulation
of the population represented in the frame. Sampling is complicated because we do not
know whether an element belongs to the subpopulation until after it has been sampled.

The problem of estimating a subpopulation mean is solved essentially in the same
manner as in Chapter 4. Let N denote the number of elements in the population and
N1 the number of elements in the subpopulation. A simple random sample of n1 ele-
ments is selected from the population of N elements. Let n1 denote the number of
sampled elements from the subpopulation. Let y1j denote the jth-sampled observation
that falls in the subpopulation. Then the sample mean for elements from the subpop-
ulation, denoted by , is given by

The sample mean is an unbiased estimate of the subpopulation mean m1.y1

y1 =

1

n1
a
n1

j=1
y1j

y1

5.89 ; 0.10

5.89 ; 220.0025y ; 22VN (y)
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Estimator of the subpopulation mean M1:

(11.5)

Estimated variance of :

(11.6)

where

s2
1 =

a
n1

i=1
(y1j - y1)

2

(n1 - 1)

VN (y1) = a1 -

n1

N1
b  

s2
1

n1

y1

y1 =

1

n1
a
n1

j=1
y1j

The quantity can be estimated by if N1 is unknown. 1 - n>N1 - n1>N1

     



EXAMPLE 11.2 An economist wants to estimate the average weekly amount spent on food by fami-
lies with children in a certain county known to be a poverty area. A complete list of
all the 250 families in the county is available, but identifying those families with chil-
dren is impossible. The economist selects a simple random sample of families
and finds that families have at least one child. The 42 families with children
are interviewed and give the following information:

Estimate the average weekly amount spent on food by all families with children and
place a bound on the error of estimation.

SOLUTION The estimator of the population mean is , given by Eq. (11.5). Calculations yield

The quantity must be estimated by because Nl is unknown. The
estimated variance of , given in Eq. (11.6), then becomes

Thus, the estimate of the population average, with a bound on the error of esti-
mation, is given by

or

or

Our best estimate of the average weekly amount spent on food by families with chil-
dren is $40.95. The error of estimation should be less than $1.81 with a probability
of approximately .95. ■

If the number of elements in the subpopulation Nl is known, the subpopulation
total t1 can be estimated by .N1y1

40.95 ; 1.81

40.95 ; 220.818y1 ; 22VN (y1)

 = 0.818

 VN (y1) = a1 -

n

N
b  

s2
1

n1
= a1 -

50

250
b a42.975

42
b

y1

1 - n>N1 - n1/N1

y1 =

1
n1
a
n1

j=1
ylj =

1

42
 (1720) = 40.95

y1

S2
1 = 42.975a

42

j=1
ylj = $1720

n1 = 42
n = 50
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Estimator of the subpopulation total T1:

(11.7)

Estimated variance of :

(11.8)VN (N1y1) = N2
1VN (y1) = N2

1 a1 -

n1

N1
b  

s2
1

n1

N1 y1

N1y1 =

N1

n1
a
n1

j=1
y1j

     



EXAMPLE 11.3 A preliminary study of the county in Example 11.2 reveals N1 = 205 families with
children. Using this information and data given in Example 11.2, estimate the total
weekly amount spent on food by families with children. (Note: N1 will vary over
time. We assume that the value of N1 used in this analysis is correct.)

SOLUTION The best estimator of the total is given in Eq. (11.7), which yields an estimate of

The estimated variance of is then, from Eq. (11.8),

The estimate of the total weekly amount that families with children spend on food,
given with a bound on the error of estimation, is

or

or ■

Frequently, the number of elements in the subpopulation, N1, is unknown. For
example, the exact number of households containing children in a city may be diffi-
cult to determine, whereas the total number of households can perhaps be obtained
from a city directory. An unbiased estimate of t1 can still be obtained even though N1

is unknown.

8394.75 ; 369.82

8394.75 ; 2234,191.19N1y1 ; 22VN (N1y1)

 = (205)2a1 -

42

205
b c42.975

42
d = 34,191.19

 VN (N1y1) = N2
1a1 -

n1

N1
b  

s2
1

n1

N1y1

N1y1 = 205(40.95) = 8394.75

N1y1
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Estimator of the subpopulation total T1 when N1 is unknown:

(11.9)

Estimated variance of :

(11.10)VN (tN1) = N2a1 -

n

N
b  

s2
n

n

TN 1

tN1 =

N

n a
n1

j=1
y1j

Here, is the sample variance calculated from an adjusted sample consisting of re-
placing all the observations not from the subpopulation of interest with zeros. The
sample variance is then calculated from all n “observations.”

s2
n

     



EXAMPLE 11.4 Suppose that the experimenter in Example 11.3 doubts the accuracy of the prelimi-
nary value of Nl. Use the data from Example 11.3 to estimate the total weekly amount
spent on food by families with children, without using the value given for N1.

SOLUTION The estimator of the total that does not depend on N1 is , given by Eq. (11.9). Thus,

The adjustment to the sample variance that comes about by adding 8 zeros to the
42 measurements used above is a bit tricky here because we do not have the data.
You may recall that, in general,

The sample mean of the new sample of 50 can be calculated easily because the sam-
ple total of 1720 does not change. The sum of squares of the measurements does not
change either because adding zeros contributes zero to the result. From the knowl-
edge of the sample variance for the 42 data values, it can be ascertained that the sum
of squares term is approximately 72,200. Then, . Substituting into
Eq. (11.10) gives the estimated variance of : 

Thus, the estimate of the total weekly amount spent on food, with a bound on the
error of estimation, is

or

or

The estimate has a large bound on the error of estimation, which could be reduced by
increasing the sample size n. ■

Note that the variance of , calculated in Example 11.4, is much larger than
the variance of , calculated in Example 11.3. The variance of t1 is larger be-
cause the information provided by N1 is used in but not in . Thus, if Nl is
known or if it can be found with little additional cost, the estimator should
be used.

N1y1

tN1N1y1

N1y1

tN1

8600 ; 1031.44

8600 ; 22265,960tN1 ; 22VN (tN1)

 = 265,960

 = (250)2a1 -

50

250
b a265.96

50
b

 VN (tN1) = N2a1 -

n

N
b  

s2
n

n

tN1

s2
n = 265.96

s2
=

1

n - 1
 Ca y2

i - n(y )2 D

tN1 =

N

n a
n1

j=1
y1j =

250

50
 (1720) = 8600

tN1
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11.4
Random-Response Model

People being interviewed often refuse to answer or give correct answers to sensitive
questions that may embarrass them or be harmful to them in some way. For example,
some people may not respond truthfully to questions about their personal lives such
as “Have you ever used illegal drugs?” This section presents a method, introduced by
S. L. Warner (1965), of estimating the proportion of people who have some charac-
teristic of interest without obtaining direct answers from the people interviewed.

Designate the people in the population who have and do not have the character-
istic of interest as groups A and B, respectively. Thus, each person in the population
is in either group A or group B. Let p be the proportion of people in group A. The ob-
jective is to estimate p without asking each person directly whether he or she belongs
to group A. We can estimate p by using a device called a random-response model. We
start with a stack of cards that are identical except that a fraction, u, are marked A and
the remaining fraction, , are marked B. A simple random sample of n people
is selected from the population. Each person in the sample is asked to randomly draw
a card from the deck and to state “yes” if the letter on the card agrees with the group
to which he or she belongs or “no” if the letter on the card is different than the group
to which he or she belongs. The card is replaced before the next person draws. The
interviewer does not see the card and simply records whether the response is “yes” or
“no.” Let nl be the number of people in the sample who respond with “yes.” An un-
biased estimator of the population proportion p can be found from n1 and n.

To develop an estimator of p, we can think of the procedure just outlined as con-
sisting of two stages:

1. Select a card.

2. Decide whether you belong to the group indicated on the card.

This process can be modeled by the following tree diagram:

A

B

A

B

�

1 � �

1 � p

p

A

B1 � p

p

Select Decide

(yes)

(yes)

pN

(1 - u)
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There are then two ways for the interviewer to obtain a “yes,” as seen by the top and
bottom paths. Thus,

The sample fraction of “yes” responses, n1�n, estimates P(yes), and so an estimator
of p can be found from the following equation:

or

(11.11)

The variance of is easily estimated by methods in Chapter 4 and becomes

(11.12)

for large n and N. Example 11.5 provides an illustration of the use of this technique. 

EXAMPLE 11.5a A study is designed to estimate the proportion of people in a certain district who give
false information on their income tax returns. Because respondents would not admit
to cheating on their tax returns, a random-response technique is used. The experi-
menter constructs a deck of cards in which three-fourth of the cards are marked F,
denoting a falsified return, and one-fourth are marked C, denoting a correct return. A
simple random sample of people is selected from the large population of
taxpayers in the district. In separate interviews, each sampled taxpayer is asked to
draw a card from the deck and to respond “yes” if the letter agrees with the group to
which he or she belongs. The experiment results in “yes” responses. Esti-
mate p, the proportion of taxpayers in the district who have falsified returns, and
place a bound on the error of estimation.

SOLUTION From Eq. (11.11) with ,

 = 2 a 120

400
b -

1>4
1>2 = 0.10

 pN =

1

(2u - 1)
 an1

n
b - a 1 - u

2u - 1
b

u = 3>4

n1 = 120

n = 400

 =

1

(2u - 1)2 
1

n
 an1

n
b a1 -

n1

n
b

 VN (pN ) =

1

(2u - 1)2 VN an1

n
b

pN

u Z

1

2
 pN =

1

(2u - 1)
 an1

n
b - a 1 - u

2u - 1
b

n1

n
= pN (2u - 1) + (1 - u)

pN

 = p(2u - 1) + (1 - u)

 P(yes) = up + (1 - u)(1 - p)
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and from Eq. (11.12),

and

Thus, the estimate of p is 0.10, and we are confident that the estimate lies within 0.09
of the true value of p. ■

Numerous formulations of the random-response model exist. A simple extension
of the idea just presented involves two unrelated questions such as

A: Have you ever falsified your tax return?

B: Is the second to last digit of your home phone number odd?

The respondent may flip a coin, with the rule being that he or she answers question A
if the coin lands heads (H) and answers question B if the coin lands tails (T). The
interviewer does not see the coin, but merely hears the “yes” or “no” response. The
interviewer never knows which question was answered. A tree diagram of this model
follows:

(The last four digits of telephone numbers are essentially random, so the probability
of a “yes” answer to B is .) Then

P(yes) =

p

2
+

1

4

1>2

H

T

Yes

No

1�2

1�2

1�2

1�2

Yes

No

Coin Question

1 � p

p

22VN (pN ) = 0.09

VN (pN ) = 4
(0.3)(0.7)

400
= 0.0021
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and

or

(11.13)

It follows that

(11.14) 

EXAMPLE 11.5b Using the scenario in Example 11.5a, suppose and , as given there,
for an experiment with the same two questions. Then

and

as in Example 11.5a. ■

The two methods give approximately the same results, in most cases, with simi-
lar precision. The decision as to which method to use is often based on which one
might be more successful in eliciting correct responses. The coin flip with two an-
swers is somewhat easier to explain, and the equal likelihood for A and B might
make the respondent more comfortable in responding; but either will work well in
the hands of a trained interviewer.

Random-response techniques are quite popular and are being used in many areas,
including AIDS research (see Discover, July 1987: 12). Eqs. (11.11) through (11.14)
are based on the assumption that the population size is large relative to n, so the finite
population correction can be ignored. The fraction u of cards marked A may be arbi-
trarily chosen by the experimenter but must not equal . A value u = 1 must not be
used because respondents will then realize that they are telling whether they belong
to group A, which is exactly what they do not wish to do. A value of u between 
and 1 (e.g., ) is usually adequate.

This method generally requires a very large sample size in order to obtain a reason-
ably small variance of the estimator because each response provides little informa-
tion on the population proportion p. The random-response technique presented here

3>4 1>2
1>2

VN (pN ) = 4
(0.3)(0.7)
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is the simplest of many such techniques. For further information on these techniques,
see Campbell and Joiner (1973) and Leysieffer and Warner (1976). Random-response
techniques can be used more widely than the simple yes or no type of response situ-
ation employed here might indicate. To see how this technique is developed, refer to
Greenberg, Kuebler, Abernathy, and Horvitz (1971).

11.5
Use of Weights in Sample Surveys

Most sample surveys employ what are referred to as complex sampling designs. A
complex sample design may involve one or more of the following features: (1) strat-
ification, (2) clustering, (3) unequal probabilities of selection, (4) multiple stages of
selection, and (5) systematic selection. As a result of these features, the usual esti-
mation and testing procedures discussed in many standard statistical textbooks are
not appropriate. There are two aspects of complex sample designs that affect the abil-
ity to make valid inferences from the survey data. The first of these is the use of vari-
able probabilities of selection in sampling. If the sampling design gives units in the
population different probabilities of selection, the sampled units must be weighted to
produce unbiased estimates. If all sampled units respond and are included in estima-
tion, the reciprocals of the probabilities of selection always provide a set of unbiased
weights for estimation. The second aspect of sampling that affects inferences is the
level of precision (sampling errors) associated with the sample design. Even if unbi-
ased weights are used to construct the sample-based estimates, inferences will not be
valid unless the corresponding variance estimators appropriately reflect all the com-
plex features of the sample design.

Earlier chapters in this book have introduced the basic ideas of adjusting estima-
tors and calculating variances for stratification, clustering, and systematic selection.
Adjustments for unequal probabilities of selection are introduced in Chapter 3 and
used in the context of cluster sampling in Chapter 8. This section and the following
one will explore this idea a little further. 

Although the initial rationale for survey weights is to produce unbiased esti-
mates, they are also important to correct for deficiencies in the implementation of the
sample survey. Weights are used to correct for observations that are missing due
to nonresponse by inflating the weights of responding units to reflect those that are
lacking. The weighting process is also used to adjust survey estimates for frame defi-
ciencies through the process of benchmarking survey estimates to externally pro-
vided census estimates or estimates known to have very high precision (gold standard
statistics). These topics are taken up in the next section.

Weights may be best appreciated in the context of estimating a total. Say a sam-
ple of 1 in 1000 households is taken, and the household’s income determined. The
simple sum of the sampled incomes does not estimate the total income of all house-
holds in the sampling frame. Multiplying (weighting) each household’s income by
the survey base weight of 1000 (the reciprocal of the selection probability) and
adding up those weighted sample values do yield an unbiased estimate of the entire
population’s income.
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The treatment of weighting in many textbooks often differs somewhat from what
is done in practice. In survey sampling organizations, weighting is part of the data
preparation process. As such, the weight is viewed as an important product to be de-
livered to the client. The set of weights included in the data files permits the analyst
to construct substantially unbiased estimates from the survey data. In textbook dis-
cussions, however, the emphasis is often on the form of the estimator rather than on
the individual weights. 

Following is an illustration of this difference in emphasis. Under simple random
sampling, an unbiased estimator of a population total is given by

where N is the size of the population, n the sample size, and y1, y2, . . . , yn the sam-
ple observations (see Chapter 4). It is usually pointed out that the estimator can also
be written as . In these textbook discussions, the form of the estimator is gener-
ally of interest for theoretical reasons. For example, writing the estimator in a partic-
ular form often leads quite naturally to the derivation of related important results
(e.g., an expression for the sampling variance). The coefficient, N/n, that appears in
the formula may be referred to as a sampling weight only in passing, or not at all, in
these discussions. 

In survey applications, however, the focus is on the practical problem of con-
structing the weight itself. Even in the previous example, where the estimator has a
relatively simple form (and where the weights are all equal), it is not always a trivial
exercise to derive the proper weights for analysis. For example, suppose that some of
the observations are lost due to refusals or other types of nonresponse. What weights
are appropriate in this case? Suppose further that some of the sampled units are actu-
ally “ineligible” or “out of scope” for some reason. How should these cases be han-
dled in weighting? What if the sample appears to be unusual in some way (e.g., has
more male respondents than expected) despite the care taken in sample selection to
avoid disproportionate representation. Can steps be taken to improve the estimates in
this case? Thus, in practical applications, weighting not only requires the specifica-
tion of the basic form of the estimator to be used (and, hence, the base weights), but
may also involve designing weight adjustments to compensate for nonresponse,
frame deficiencies, and other problems. 

One common use of weights will be illustrated here; the use of weights in adjust-
ing for nonresponse is taken up in the next section. Suppose an agriculture specialist
samples fields in a county by randomly selecting points from an electronic geographic
information system and then finding those fields on the ground. He or she then meas-
ures crop yield for the sampled fields, from which he or she can estimate mean yield
per field (and total yield for the county if the number of fields is known). This method
of sampling gives higher probability of selection to the larger fields. An adjustment
for unequal probability of selection must be made to get anything close to an unbi-
ased estimate. 

If the area of a field is denoted by A and the crop yield per field by y, then the
probability of selecting field i is proportional to Ai. The weight for that field, then,
will be proportional to the reciprocal of Ai. In other words, for somewi = k(1>Ai)

Ny

N

n a
n

i=1
yi
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constant of proportionality k. (In this scenario, k is the total area of all the fields in the
county, but this is assumed to be unknown.) From Chapter 3 we know that an unbi-
ased estimator of the population total is given by

Note that this estimator depends on an unknown k. But we also observed that the sum
of the weights estimates the population size, N, and it follows that an estimator of the
population mean is given by the following, which does not depend on k:

This is in the form of a ratio estimator, and the standard variance formula for a ratio
estimator as given in Chapter 6 can be used to estimate the standard error and margin
of error associated with this estimator. (Note from Chapters 3 and 8 that no further
adjustment to the variance estimator is needed because of the unequal probabilities
of selection.) Example 11.6 illustrates the use of this technique.

EXAMPLE 11.6 The goal of this study is to estimate the total number of building permits for housing
units issued in Florida in the year 2000 by collecting the data for a sample of coun-
ties. A sample of ten of Florida’s 67 counties was taken by dropping ten random
points on the map of the state. For each county, the number of building permits for
housing units approved in 2000 was recorded, along with the area of the county in
square miles. (See Table 11.1. Both of these measures can be found from census
data.) For purposes of this example, we assume the total area of all counties is not
known to us. Use these data to find the required estimate and its standard error.

SOLUTION Dropping points on a map leads to a probability of selection that is proportional to the
area of the county; the counties covering large areas have a greater chance of selection
than those covering small areas. Although the number of building permits is not

mN =
awiyi

awi

tN = a
n

i=1
wiyi
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TABLE 11.1
Area and housing permits for sampled Florida counties

County Area, A (square miles) Permits, y

Alachua 874 1,973
Santa Rosa 1,017 1,056
Polk 1,874 4,746
Palm Beach 1,974 10,504
Collier 2,025 7,970
Orange 907 10,239
Suwanee 688 125
Volusia 1,103 3,587
Wakulla 607 394
Hillsborough 1,051 11,656

     



directly tied to the size of the county, as some rural counties may have large areas but
few new housing units, it does seem that there should be some positive correlation
between these two variables. Figure 11.1 bears this out. Selecting a high proportion
of large counties in the sample should lead to an overestimate of the total number of
permits. ■

Ignoring the unequal probability of selection by simply treating the sampled permit
data as a simple random sample (Chapter 4) leads to an estimate of the total number
of permits of 350,075 with a standard error of 87,904. 

The unequal probability sampling adjustment selects weights proportional to the
reciprocals of the areas (the k can be considered as unity since it drops out of the final
calculation) and then estimates the mean number of permits per county as follows:

Using the standard formula for the variance of a ratio estimator from Chapter 6 yields
a standard error of 1416. Multiplying both the estimated mean and the standard error
by yields the estimated total of 286,291 permits with a standard error of
94,872. The adjustment for unequal probabilities of selection lowers the estimate of
the total, as we suspect it should, but the estimated standard error creeps upward a lit-
tle. This is mainly because there is not a strong, positive linear association between
county area and number of permits. 

The standard errors produced in this example are very large because of the great
variability in permits issued from county to county. A larger sample is needed in
order to get a good estimate here. In this case, we actually know the total number of
permits issued in Florida in 2000, which turns out to be 155,264. Thus, even adjust-
ing for unequal probability sampling leads to an estimate that is still quite high, but
well within two standard errors of the true value. 

N = 67

 mN =
awiyi

awi
= 4273

 wi = 1>Ai
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FIGURE 11.1
Housing permits versus area for a sample of Florida counties
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11.6
Adjusting for Nonresponse

As stated in Chapter 2, nonresponse almost always occurs in sample surveys. A
“nonrespondent” is any eligible sample unit for which data are not obtained because
the unit refuses to answer, is “not at home,” has a language problem, or does not
have enough knowledge. Sample units that are ineligible for the survey are not non-
respondents, even though they provide no survey data. Nonrespondents and ineligible
units are treated differently in the weighting process. (Ineligible units can be treated
as a subpopulation, as in Section 11.3.)

The primary objective of adjusting the weights for nonresponse is to reduce bias.
Nonresponse bias results when nonrespondents (1) differ from respondents and
(2) make up a large enough proportion of the population that such differences affect
survey estimates. However, nonresponse adjustments typically introduce variation in
the weights, increasing the sampling error of the estimate. Nonresponse adjusting
weights are a trade-off between bias reduction and increase in variance. Because the
potential for nonresponse bias generally increases as the response rate decreases, low
response rates are of particular concern. Even if the overall survey response rate is
relatively high, response rates may be low for certain subgroups that are of analytic
interest. Although there is no hard-and-fast rule for what constitutes an inadequately
low response rate, survey weights should not be produced if the response rate falls
below a minimum standard (the survey is labeled “unweightable,” suggesting popu-
lation inferences should not be made). If resources permit, a nonresponse bias analy-
sis can be undertaken. (See Section 11.8 on callbacks.) 

An important consideration in deciding whether to adjust weights for nonre-
sponse is the availability of variables that are useful for nonresponse adjustment.
Sometimes this information comes from outside the sample and sometimes from the
sample itself. Sample-based nonresponse adjustments make use of information
available from the sample, and thus do not require any external population counts. In
effect, sample-based nonresponse adjustments distribute the base weights of the non-
responding units to the responding sample units so that the sum of the adjusted
weights over the responding units equals the sum of the base weights for the original
sample. Some examples are given next.

Making good use of principles of stratification is one way to adjust the analysis
for nonresponse. In general, the rates of nonresponse will differ for different seg-
ments of a population. The elderly may respond at a higher rate than the young; the
more educated may respond at a higher rate than the less educated. The key to
building a stratified sampling model that will improve the accuracy and precision
of estimates is to divide the population (and the sampled units) into classes within
which the nonresponse rate is assumed to be constant. If prior evidence suggests,
for example, that the probability of a response from a sampled unit differs for the
young, middle aged, and elderly but that these probabilities may be nearly constant
within each age group, then the three age groups could serve as strata. Because the
degree of nonresponse is not known until after a survey has been conducted, often
these adjustments are made after the data have been collected; hence, the strata are
in actuality poststrata. 
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Once the poststrata are determined, the analysis proceeds much like that of a
stratified random sample, which implies that the stratum sizes, Ni, must come into
play. If these are known, the analysis is referred to as a poststratification adjustment
for nonresponse. If the stratum sizes have to be estimated from sample data, the
analysis is referred to as a weighting-class adjustment. Examples of both follow.

EXAMPLE 11.7a A simple random sample of 200 students (of a population of 1500) taking an intro-
ductory statistics class was used to estimate the number of hours per week a student
devoted to study (outside of regular class time). Of these 200, 135 answered this
question about study hours. Other features of this population are known, among them
the fact that approximately 60% are female and approximately 70% are lower divi-
sion (freshmen or sophomore) students.

Treating the data as a complete simple random sample (i.e., ignoring the nonre-
sponse) with and , the resulting sample mean and its measures of
sampling error (variance and standard deviation) calculated by the methods in Chap-
ter 4 are as follows:

From past experience it seems reasonable to assume that the response rate for
males and females will differ and that a nearly constant probability of response can
be assumed across individuals within these groups. Females tend to respond at a
higher rate, partly because this is a course that caters to social science majors, who
are mostly females, and those students who see the course as important to their careers
take it much more seriously. 

The poststratification adjustment, with gender forming the strata, makes use of
the fact that 60% of the population should be female. It turns out that, among the 135
responders, 104 were female and 31 were male. Thus, the analysis can proceed as if
this were a legitimate stratified random sample with the following summary: 

 2VN (y ) = 0.548

 VN (y) = 0.301

 y = 11.378

N = 1500n = 135

Standard formulas for stratified random sampling produce the following estimator of
mean study hours per week and measures of sampling error:

 2VN (yst) = 0.538

 VN (yst) = 0.290

 yst = 10.638

     



11.6 Adjusting for Nonresponse 353

Female Male

975 525
ni 104 31

12.375 8.0323
si 6.676 5.596
yi

NN i

Note that the estimate of the population mean has moved toward the lower mean for
males because they are the more seriously underrepresented group in the sample. The
standard deviation has been reduced a bit, as will usually happen if the stratification
is done wisely. ■

EXAMPLE 11.7b The weighting-class adjustment is made under the conditions that the population
size in each stratum is not known and, therefore, must be estimated from the sample.
(In the case of the student survey, this implies that we do not trust the assumption that
60% of the population are female and will not use that value in the analysis.) An
estimate of the Ni terms is based on the assumption that, in a simple random sample,
the proportion of sampled units that fall in any one stratum should be a good estimate
of the population proportion of units in that stratum. In the student survey, the origi-
nal simple random sample of students resulted in females and

males. Thus, the best estimates of the population sizes are given by

All other data remain the same, so the basic summary needed for constructing a strat-
ified sampling estimate with an estimate of error is given by

 NN 2 = N an2*

n*
b = 1500 a 70

200
b = 525

 NN 1 = N an1*

n*
b = 1500 a 130

200
b = 975

n2* = 70
n1* = 130n* = 200

The results turn out to be

The mean is similar to that obtained from the poststratification adjustment, and
the standard deviation appears to have gone down somewhat. The latter is mislead-
ing though as there is a serious potential for bias in this estimate because of the esti-
mation of the stratum sizes. It so happens that the bias can be estimated and used,
along with the variance estimate, to construct an estimate of mean squared error
(MSE). The estimator of the bias squared is given by

BN2
= a N

n*
b2aN - n*

n* - 1
ba

L

i=1
ni*(yi - y)2

 2VN (ywc) = 0.527

 VN (ywc) = 0.278

 ywc = 10.855

     



This turns out to be approximately 0.020 for the student study hours data. Then,

This MSE, rather than the estimated variance, should be used in the construction of
margins of error for the weight-class adjustment. As you can see, the MSE for the
weight-class adjustment is a little larger than the variance for the poststratification
adjustment, as it should be because the latter involves one less estimation procedure.
Observe that both have smaller estimated error than does the estimate from simple
random sampling that ignores all nonresponse adjustments. ■

EXAMPLE 11.8 The ideas presented above for nonresponse adjustment can be made in a higher num-
ber of dimensions through a process known as raking. Recall that in addition to
knowing that 60% of the students were female, it was also known that 70% of the stu-
dents were in the lower division. The lower division students, being perhaps less sure
about their futures, may tend to respond at a rate that is greater than that for upper
division students. How can we now make adjustments on two categories simultane-
ously? If the categories are independent of one another, this is easy, because then

, or 42% of the 1500 students would be in the female, lower division
stratum, and similar computations could be made for the other three strata. But there
is no reason to expect that these two categories are independent, so the estimation of
the stratum sizes should be made through the use of the available sample data. In this
instance, data on division for the full 200 sampled students is not known, so we must
begin with the data on the 135 who responded, as shown in the table below.

Looking first at the row category (gender), the goal is to make the marginal relative
frequencies equal to the (0.6, 0.4) split of the population. This implies that the sample
size on the rows should be 81 and 54 for females and males, respectively. This adjust-
ment is easily made by multiplying the stratum sample sizes in the first row by (81/104)
and those in the second row by (54/31). [86(81/104) = 66.98 and 17(54/31) = 29.61.]
The next table shows the adjusted values after this first round. 

Now the row totals are correct, but the column totals do not reflect the (0.7, 0.3) split
for the two divisions. For this to be realized, the column totals should be 94.5 and 40.5

Lower division Upper division Total

Female 66.98 14.02 81
Male 29.61 24.39 54
Total 96.59 38.41 135

Lower division Upper division Total

Female 86 18 104
Male 17 14 31
Total 103 32 135

(0.6)(0.7) = 0.42

MSE(ywc) = VN (ywc) + BN 2
= 0.298
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for the respective divisions, and this can be accomplished by multiplying the sample
sizes in the first column by (94.5/96.59) and those in the second column by (40.5/38.41).
The results are shown in the following table. 

Now the column totals reflect the correct relative frequencies, but the row totals are
slightly out of kilter. Another iteration of this procedure would improve the situation,
but we will stop here. One interpretation of the adjusted sample sizes is to think of the
results for the 86 students in the female, lower division cell as being adjusted down-
ward to represent only approximately 66 students, whereas results for the 17 students
in the male, lower division cell are adjusted upward to represent approximately
29 students. 

The next step is to use the adjusted sample sizes to estimate the stratum sizes by
using a formula similar to that used in the weighting-class adjustments:

where is the adjusted sample size for the ith stratum. The resulting values for the
estimated stratum sizes are shown in the following table.

The estimation procedure from here on follows the formulas for stratified random
sampling using the initial observed sample sizes and the summary data pertaining to
them, as shown in the next table. (The entries from top to bottom are the sample
mean, the sample standard deviation, and the sample size.)

Lower division Upper division

Female 12.105 13.667
6.503 7.507

86 18
Male 7.706 8.429

6.956 3.524
17 14

Lower division Upper division Total

Female 728.11 164.22 892.33
Male 321.89 285.78 607.67
Total 1050 450 1500

nN i

NN i = N anN i

n
b

Lower division Upper division Total

Female 65.53 14.78 80.31
Male 28.97 25.72 54.69
Total 94.5 40.5 135
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The resulting estimate of mean study hours per student, along with the estimated
measure of sampling error, is

It is not surprising that the results are similar to those found in the other stratified
situations previously investigated, but this result is the best one to use if it is important
to adjust for known population percentages in two categories, gender and division. In
fact, we can now produce sound estimates for each of the four strata individually, as
shown in the following table.

 2VN (yrake) = 0.539

 VN (yrake) = 0.290   

 yrake = 10.630 

Sample Estimated Sample Sample standard Estimated SD of 
Stratum size population size mean deviation the sample mean

Female, lower 86 728 12.105 6.503 0.6585
Male, lower 17 322 7.706 6.956 1.6418
Female, upper 18 164 13.667 7.507 1.6694
Male, upper 14 286 8.429 3.524 0.9184

Because we made adjustments by using the marginal population figures that were
assumed known (60% female and 70% lower division), the procedure presented
above is known as a poststratified raking estimate. The procedure tends to be slightly
biased, but the bias is generally not too serious if the sample sizes are decently large.
If the raking adjustments had been made using estimated marginal stratum sizes based
on a random sample, the result would be called a weighting-class raking estimate. The
latter procedure is more prone to serious bias, as might be expected. 

A rough guideline on sample sizes is to have at least 20 observations and a response
rate of at least 50% in each stratum for both weighting-class and raking adjustments.
This implies that the sample sizes in the student survey are a little small for raking but
should be adequate for the weighting-class adjustments using gender classes.

11.7 
Imputation

Sample surveys, whether conducted on people or on other types of units, almost always
consist of a number of questions (variables) for which information is desired. In this
array of data cells (envision a spreadsheet with variables as columns and cases as rows)
there are invariably some for which the data are missing. Standard analyses require that
all cells have data for the techniques to work properly. Most regression programs, for
example, would eliminate the entire case for which one of the variables in the model
had a missing observation. This is a tremendous waste of data, but the situation can be
improved by imputing (assigning) data values to the cells with missing observations.
There are many ways to do this, from simply making an intelligent guess to fitting

     



sophisticated statistical models. We will discuss and illustrate a few of the basic
techniques. 

“Hot deck” imputation implies that a value is selected from the current sample
itself (the “hot” sample) to be assigned to an empty cell. One way to do this is to simply
make a random choice from the values of the variable in question that are recorded in
the sample. Another is to divide the sample into groups that may contain similar values
of the variable in question and then select a value from the group that contains the miss-
ing value. Bias can be reduced considerably if these classification groups are homo-
geneous. A third method is to replace the missing values by the mean of the values for
that variable within the group containing the missing value. (The replacement by means
is not generally referred to as a “hot deck” technique.)

For the survey of students in an introductory statistics class used in the discussion
of nonresponse, there were actually five missing data values for the variable “study
hours per week” among the 135 returned questionnaires. All five happened to be
from females. The table below shows the results from the data analysis by ignoring
the missing values (Method I), replacing them with random values from the entire
sample (Method II), replacing them with random values selected from the female
group (Method III), and replacing them with the mean of that variable for all females
who responded (Method IV). 

Treating the resulting data as a simple random sample, Method II gives a sample
mean and standard deviation similar to that of Method I, but beats Method I in
the standard error of the estimated population mean because of the small increase in
sample size. For both Methods III and IV, the data are analyzed as a stratified random
sample from females and males. Method III produces a slightly larger sample mean
and smaller standard error than either Method I or II. (Recall that females do tend to
produce the longer study hours.) Method IV produces the smallest standard error of
all, but this may be misleadingly small. Generally, Method IV is not recommended
because it piles up too many observations at the mean, and thereby reduces the standard
deviation of the sample below what it could reasonably be expected to be. (It may be
of interest to note that Method III was used for imputing values for the sample used
in the nonresponse study.) 

It should be noted, however, that standard analyses applied to data sets containing
imputed values will usually produce underestimates of the standard errors because
the error attached to the imputed values is not measured. A rough rule of thumb is that
the variances may be underestimating by 2[(number of imputed values)/n]100%. Thus,
Method III should have its variance adjusted upward by 2[5�135]100% = 7%. The
result would be a variance of the estimated mean of (0.5482)(1.07) = 0.3213 and a
standard error of 0.567. 
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Sample Estimate of Estimated 
Sample Sample standard population standard 

Imputation size mean deviation mean error

I. None 130 11.400 6.790 11.400 0.569
II. Random from entire sample 135 11.526 6.762 11.526 0.555

III. Random from females 135 11.689 6.930 10.880 0.548
IV. Mean of females 135 11.436 6.665 10.683 0.537

     



Other “hot deck” procedures include sequential imputation and nearest-neighbor
imputation. The first simply replaces a missing value by the last value read by the
computer for that variable. This may be good if the data are arranged in some order
(geographic, for example) so that cases close together should have similar values.
But it may be bad if missing values occur in clumps, which could result in the same
data value being used repeatedly as an imputed value. The second makes use of other
variables and imputes a value from a case that looks like it is “near” the one with the
missing value in terms of these variables. For example, we could look for another stu-
dent with the same GPA, gender, and age, and simply take that response for imputa-
tion. Building on this idea, we can use regression methods to construct models using
other variables in the data set to predict the missing data values.

11.8
Selecting the Number of Callbacks

As discussed earlier nonresponse is an important problem to consider in any survey.
If a simple random sample of size n is employed and only n1(n1 6 n) responses are
obtained, then the two groups (response and nonresponse) can be thought of as con-
stituting a stratified random sample with two strata. Note that this situation is not
quite a true stratified random sampling situation because n1 and n2 = n - n1 are ran-
dom variables whose values are determined only after the initial sampling has been
completed. Nevertheless, thinking in terms of stratified sampling allows us to find
an approximately optimal rule for allocating resources to callbacks.

Suppose that out of the n2 nonrespondents, we decide to make intensive callbacks
on r of them, where for some constant . Also, suppose that it costs cl

dollars for a standard response and c2 dollars for a callback response, with
c0 denoting the initial cost of sampling each item. Then the total cost is

If denotes the average of the initial responses and the average of the r callback
responses, then

(11.15)

is an unbiased estimator of the population mean m.
A theoretical variance expression for can be derived, and then we can find the

values of k and n that minimize the expected cost of sampling for a desired fixed value
of —say, V0. The optimal values of k and n are, for large N, approximately

(11.16)

(11.17)  n =

N3s2
+ (k - 1)W2s

2
24

NV0 + s2

 k =

B

c2(s2
- W2s

2
2)

s2
2(c0 + c1W1)

V(y*)

y*

y* =

1

n
 (n1y1 + n2y2)

y2y1

C = nc0 + n1c1 + rc2

(c2 7 c1)
k 7 1r = n2>k
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where W2 is the nonresponse rate for the population, , and s2 and 
are the variances for the entire population and the nonresponse group, respectively.
The variance of can be estimated by

where estimates the variance of the nonresponse group and s2 estimates the overall
population variance.

EXAMPLE 11.9 A mailed questionnaire is to be used to collect data for estimating the average amount
per week that a certain group of 1000 college men spends on entertainment. From
past experience, the response rate is anticipated to be approximately 60%. It is
thought that and . (The nonresponse group tends to be those not
interested in entertainment and hence spend less and have less variation in spending
habits.) Suppose , , and and a simple random sample is to be
used initially. Find n and k so that the variance of the resulting estimator is approxi-
mately five units.

SOLUTION Observe that . Then from Eqs. (11.16) and (11. 17),

Because , we can expect that approximately 21 peo-
ple will respond initially, and

callbacks will have to be made. ■

The importance of making callbacks to correct for nonresponse can be seen eas-
ily, if we think about the population of N elements as being divided into a “response”
stratum (those who would respond if called upon) of N1 elements and a “nonre-
sponse” stratum of N2 elements. Then,

where , and the bias of as an estimator of m is

 = W2(m1 - m2)

 E(y1) - m = m1 - m = m1 - (W1m1 + W2m2)

y1Wi = Ni>N
m = W1m1 + W2m2

r =

n2

k
L

14

2.71
= 5.2 or  6

E(n2) = nW2 = 35(0.4) = 14

 n =

10003120 + 1.71(0.4)(80)4
1000(5) + 120

= 34.1 or 35

 k =

B
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So is biased unless , or the proportion of nonresponse W2 is zero. The
sample provides an estimate of m1 but no information on m2. Thus, callbacks to
provide information on m2 are essential before a meaningful estimator of m can be
determined.

Even without callbacks, the situation is not entirely hopeless in the case of esti-
mating a proportion p, where

Now, p2 must be between 0 and 1, and we can couple this information with an esti-
mate of pl to form an interval estimate of p. Sample data on allow us to construct
an interval estimate of p1 as

ignoring finite population corrections, and we denote this interval by .
Using the fact that 0 is a lower limit for p2, we can construct a lower limit for p as

Similarly, an upper limit for p is

This interval can be quite large if W2 is large, but it is sometimes useful if no call-
backs can be made. To illustrate, suppose , , and . Then,

, ,

We see that the interval for p is over three times as large as the interval for pl, even
with a large sample. The mere size of the interval produced here may help convince
the experimenter that callbacks are indeed necessary.

11.9 
The Bootstrap

Up to this point we have followed a standard approach to producing estimates and
margins of error for those estimates. Each estimator had associated with it a formula
for its estimated variance, the square root of which was the estimated standard error.
The margin of error (or bound on the error of estimation) was approximated by two
standard errors, which results in an approximate 95% confidence interval if the sam-
ple size is decently large. One of the problems with this approach is that some of the
variance estimates are biased and may be rather poor under certain conditions. An-
other (although it is not seen in this book) is that it is nearly impossible to develop a

 pN U = 0.8(535) + 0.2 = 0.628

 pN L = 0.8(465) = 0.372

pN 1,U = 0.535pN 1,L = 0.465
pN 1 = 0.5W2 = 0.2n1 = 1000

pN U = W1pN 1,U + W2(1)

pN L = W1pN 1,L + W2(0) = W1pN 1,L

(pN 1,L, pN 1,U)

apN 1 - 2
B
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pn 1(1 - pn 1)
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closed-form expression for a variance for many estimators from complex surveys—
surveys that might involve both clustering and stratification along with complicated
weighting schemes. Fortunately, in this age of high-speed computing a variety of al-
ternative techniques for approximating confidence interval estimates of parameters
have been developed. One of the most popular of these techniques is the bootstrap.
As you will see, the bootstrap depends on extensive resampling from the original
sample data, but it does not depend on any formula for calculating a variance. 

EXAMPLE 11.10 The bootstrap method will be illustrated by making use of the data in Table 6.1 (Sec-
tion 6.3) on typical monthly cost of housing from a sample of 13 MSAs. If this is re-
ally a random sample from the 47 MSAs in the population of interest, then the sample
data should be a reasonable facsimile of the population data. The sample data are all
that is known about the population, so we assume that the sample does, indeed, fairly
represent the population. The trick is to now simulate the sampling distribution for the
statistic of interest by selecting random samples of size n over and over with replace-
ment from the original sample of size n. (If the resampling were without replacement,
we would get the same sample every time.) This is the simplest form of bootstrapping,
which is adequate when n is sufficiently large, yet is still a quite small proportion of
the population. Sampling with replacement is simply a computer trick to mimic the
act of sampling from an infinite population of values with a distribution that exactly
matches the distribution of our sample. 

For finite populations, Booth et al. (1994) proposed a bootstrap method that
works by filling out the population with exact replicas of the sample, and adding any
“left-over” values by random sampling (without replacement) from the sample. For
example, if N = 100, and n = 25, the population of values to be resampled would be
constituted of four copies of the data. If n = 15, say, six complete copies of the sam-
ple plus ten data values chosen at random from the sample would be used. ■

Figure 11.2 shows the bootstrap means found by taking 1000 samples, using the
method of Booth et al. (1994), of size 13 from the original sample of housing costs
for 2002 and calculating the sample mean of each. Note that there is a light skew to-
ward the larger values here, just as there is in the original sample data. As this is a
simulated distribution of the sample means, one way to produce an approximate 95%
confidence interval estimate of the population mean is to simply find the values that
cut off the lower and the upper 2.5% of the observed sample means. For this boot-
strap simulation, these values turn out to be $823.5 and $990.7 per month. 

For comparison, the simple random sample estimate of the population mean typ-
ical cost per month using the formulas from Chapter 4 turns out to be $810.8 to
$992.3. It is not quite fair to compare this interval to the bootstrap in this case; with
a sample of size 13 only, the bound on the error formula produces an interval that is
quite narrower than would be required for 95% confidence, which in this case is from
802.6 to 1000.5. Because Figure 11.2 suggests the sampling distribution is not nor-
mal, this interval is likely not valid. 

The bootstrap technique can be applied to any sample statistic. An estimate of the
median typical cost for the population of MSAs can be found by repeating the sam-
pling that was done earlier in the text but replacing the sample mean by the sample
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median in each bootstrap sample. The resulting interval estimate of the population
median is $761 to $986 per month. The estimate of the median is shifted downward
from that for the mean, again because of the skewness in the original sample data. 

It was observed in Chapter 6 that the estimated variance of a ratio presented there
is biased and may be a poor estimate under some conditions. That particular form of
an estimated variance can be avoided entirely by going to bootstrap intervals. 

EXAMPLE 11.11 Again selecting 1000 random samples using the method of Booth et al. (1994)  (each
of size 13) from the cost of housing data, and calculating the ratio of sample means
for 2002 compared to 1994 for each, produces the simulated bootstrap distribution of
ratios shown in Figure 11.3. Cutting off the lower and upper 2.5% of the observed
values leaves an approximate 95% confidence interval of (1.246, 1.346). The estimate
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FIGURE 11.3
Bootstrap ratio of means
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given in Example 6.1 using the variance formula is 1.296 ; 0.046 or (1.250, 1.342).
The two methods produce almost exactly the same results in this case, as they should
because the ratio estimator has only a slight bias here. 

Bootstrapping computations are very context specific; we have illustrated here
(and created tools for) bootstrapping for simple random sampling. For more infor-
mation on the bootstrap in general, consult Efron and Tibshirani (1993). For more in-
formation on the bootstrap as applied to complex sampling designs, consult Shao and
Tu (1995). 

11.10
Summary

This chapter presents useful techniques for estimating population parameters when
the assumptions underlying the elementary sample survey designs are not valid. The
effect of interviewer bias can be reduced by using interpenetrating subsamples. The
estimator of the population mean in this case is given by Eq. (11.2), and the estimated
variance of this estimator is given by Eq. (11.3). An inadequate frame generates the
problem of estimating means and totals over subpopulations. The estimator of the
subpopulation mean is given by Eq. (11.5), and estimators of the subpopulation total
are given by Eqs. (11.7) and (11.9). When people being interviewed will not give cor-
rect answers to sensitive questions, a random-response technique can sometimes be
used. The method for estimating a population proportion p by using this procedure is
explained in Section 11.4. 

Sections 11.5 through 11.7 deal with the proper weighting of sample data to reduce
bias and the connection of these techniques to methods of adjusting for nonresponse.
Sometimes, we can treat the nonrespondents as a separate stratum for purposes of
choosing an optimal number of callbacks, as shown in Section 11.8.

Section 11.9 introduces the bootstrap, a general method for producing confidence
intervals through resampling. 

Exercises Some of the exercises are relatively data intensive; refer to the electronic section 11.0 for links
to those data in Excel files.

11.1 A researcher is interested in estimating the average yearly medical expenses per family
in a community of 545 families. The researcher has eight assistants available to do the
fieldwork. Skill is required to obtain accurate information on medical expenses because
some respondents are reluctant to give detailed information on their health. Because the
assistants differ in their interviewing abilities, the researcher decides to use eight inter-
penetrating subsamples of five families each, with one assistant assigned to each sub-
sample. Hence, a simple random sample of 40 families is selected and divided into eight
random subsamples. The interviews are conducted and yield the results shown in the ac-
companying table. Estimate the average medical expenses per family for the past year
and place a bound on the error of estimation.
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Subsample Medical expenses for past year (in dollars)

1 101 95 310 427 680
2 157 192 108 960 312
3 689 432 187 512 649
4 322 48 93 162 495
5 837 649 152 175 210
6 1015 864 325 470 295
7 837 249 1127 493 218
8 327 419 291 114 287

11.2 An experiment is designed to gauge the emotional reaction to a city’s decision on school
desegregation. A simple random sample of 50 people is interviewed, and the emotional
reactions are given a score from 1 to 10. The scale on which scores are assigned runs
from extreme anger to extreme joy. Ten interviewers do the questioning and scoring, with
each interviewer working on a random subsample (interpenetrating subsample) of five
people. Interpenetrating subsamples are used because of the flexible nature of the scor-
ing. The results are given in the accompanying table. Estimate the average score for peo-
ple in the city and place a bound on the error of estimation.

Subsample Scores

1 5 4 6 1 8
2 4 6 5 2 7
3 9 8 9 7 5
4 8 5 4 6 3
5 6 4 5 7 9
6 1 5 6 4 7
7 6 4 3 5 2
8 5 6 7 3 4
9 2 4 4 5 3

10 9 7 8 6 4

11.3 A retail store wants to estimate the average amount of all past-due accounts. The available
list of past-due accounts is outdated because some accounts have since been paid. Be-
cause drawing up a new list would be expensive, the store uses the outdated list. A sim-
ple random sample of 20 accounts is selected from the list, which contains 95 accounts.
Of the 20 sampled accounts, four have been paid. The 16 past-due accounts contain the
following amounts (in dollars): 3.65, 15.98, 40.70, 2.98, 50.00, 60.31, 67.21, 14.98,
10.20, 14.32, 1.87, 32.60, 19.80, 15.98, 12.20, and 15.00. Estimate the average amount
of past-due accounts for the store and place a bound on the error of estimation.

11.4 For Exercise 11.3, estimate the total amount of past-due accounts for the store and place
a bound on the error of estimation.

11.5 An employee of the store in Exercise 11.3 decides to look through the list of past-due
accounts and mark those that have been paid. He finds that only 83 of the 95 accounts are
past due. Estimate the total amount of past-due accounts by using this additional infor-
mation and the data in Exercise 11.3. Place a bound on the error of estimation.

     



11.6 A study is conducted to estimate the average number of miles from home to place of
employment for household heads living in a certain suburban area. A simple random
sample of 30 people is selected from the 493 heads of households in the area. While con-
ducting interviews, the experimenter finds some household heads are not appropriate for
the study because they either are retired or do not go to a place of employment for vari-
ous reasons. Of the 30 sampled household heads, 24 are appropriate for the study, and the
data on miles to place of employment are as follows:

Exercises 365

8.5 10.2 25.1 5.0 6.3 7.9 15.8 2.1
9.2 4.2 8.3 4.2 6.7 10.1 15.6 22.1

10.0 6.1 7.9 1.5 8.0 11.0 20.2 9.3

Estimate the average distance between home and place of employment for household
heads who commute to a place of employment. Place a bound on the error of estimation.

11.7 For the data in Exercise 11.6, estimate the total travel distance between home and place
of employment for all household heads in the suburban area. Place a bound on the error
of estimation.

11.8 Suppose you know that 420 out of the 493 household heads in Exercise 11.6 commute to
a place of employment. Estimate the total travel distance for all household heads in the
suburban area, making use of this additional information. Place a bound on the error of
estimation.

11.9 Scientists studying fish consumption in a specified body of water periodically sent field
workers out to interview everyone fishing in that water in those selected periods. Among
other variables, the field-workers collected data on the amount of fish from that water the
person consumed over the past month and the number of times the person fished in that
water over the survey period (see the accompanying table). One goal of the study is to
estimate the mean amount of fish consumed over the past month per person fishing in
that body of water. Find and justify a reasonable estimate of this mean and provide a
margin of error for the estimate. 

Consumption Consumption Consumption
(grams) Trips (grams) Trips (grams) Trips

0.000 3 48.600 6 4.050 1
16.200 6 8.100 3 12.150 5
0.000 1 0.000 3 81.000 29
8.100 2 30.375 21 10.125 5
0.000 1 8.100 7 0.000 2
0.000 1 0.000 1 2.025 11
0.000 3 0.000 1 0.000 2
0.000 2 0.000 3 0.000 2
0.000 2 24.300 21 0.000 4

12.150 4 0.000 7 12.150 2

11.10Return to the population of 100 rectangles provided at the end of Chapter 4. Sample ten
rectangles by a method that gives probabilities of selection nearly proportional to the
areas of the rectangles. Use the sampled rectangles to estimate the mean area of rectan-
gles on the page and provide a margin of error. 

     



11.11Refer to the scenario in the Case Study for Chapter 6. To summarize, a survey of sta-
tistics departments collected data on enrollments in large lecture sections of introduc-
tory statistics courses, as well as the number of discussion sections, for the 2000 fall
semester. Suppose the survey was not a stratified random sample, but rather that the
data were grouped into the five strata after the selection of a simple random sample
from 70 statistics departments. (Strata 1 through 4 are PhD-granting departments in
universities with size boundaries of 15,000, 25,000, and 35,000 students. Stratum 5
includes all departments that do not grant a PhD degree.) In addition, suppose the sizes
of the five strata are not known. The sample data on enrollments are provided in the
accompanying table.
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Stratum 1 Stratum 2 Stratum 3 Stratum 4 Stratum 5
enrolled enrolled enrolled enrolled enrolled

494 1015 784 1357 1557
36 700 1101 1433 88

153 1391 285 1680 500
277 101 255 934 390
480 1100 755 615
500 731 834

689 506
227
151
375

The actual sample sizes in the five poststrata were 6, 14, 6, 11, and 8, for an overall sam-
ple size of 45. The data show the actual number of responses on this variable in each
poststratum. Using an adjustment for nonresponse, estimate the total number of stu-
dents taking large lecture courses in elementary statistics for fall 2000, and find a mar-
gin of error for your estimate. What assumptions are you making? 

By treating these data as a stratified random sample and using the methodology dis-
cussed in Chapter 5 (with known stratum sizes), it was found that the estimate of the
total number of students enrolled in these large-section courses (in statistics depart-
ments) in fall 2000 is 70(656.774) = 45,974. The margin of error was approximately
9000. Compare your nonresponse-adjusted estimate with this. 

11.12Suppose a suburban area close to a university contains 50% owner-occupied houses,
with the other 50% occupied by renters. The suburb is divided into two regions, with
40% living in Region A. A simple random sample of 100 respondents gives the follow-
ing results on the numbers of respondents in the four categories.

Region A Region B Total

Owner occupied 12 18 30
Renter occupied 40 30 70
Total 52 48 100

     



If there are 600 housing units in the suburb, show how to form a poststratified estimator
of a population total (perhaps total tax assessment, for example) making use of the
known marginal percentages. 

11.13 A public health official wants to estimate the proportion of dog owners in a city who
have had their dogs vaccinated against rabies. She knows that a dog owner often gives
incorrect information about rabies shots out of fear that something might happen to his
dog if it has not had the shots. Thus, the official decides to use a random-response tech-
nique. She has a stack of cards with 0.8 of the cards marked A for the group having the
shots and 0.2 marked B for the group not having the shots. A simple random sample of
200 dog owners is selected. Each sampled owner is interviewed and asked to draw a
card and to respond with “yes” if the letter on the card agrees with the group he is in.
The official obtained 145 “yes” responses. Estimate the proportion of dog owners who
have had their dogs vaccinated and place a bound on the error of estimation. Assume
that the number of dog owners in the city is very large.

11.14 A corporation executive wants to estimate the proportion of corporation employees who
have been convicted of a misdemeanor. Because the employees would not want to an-
swer the question directly, the executive uses a random-response technique. A simple
random sample of 300 people is selected from a large number of corporation employ-
ees. In separate interviews, each employee draws a card from a deck that has 0.7 of the
cards marked “convicted” and 0.3 marked “not convicted.” The employee responds
“yes” if the card agrees with his or her category and “no” otherwise. The executive obtains
105 “yes” responses. Estimate the proportion of employees who have been convicted of
a misdemeanor and place a bound on the error of estimation.

11.15 Return to the data on housing costs and values of Example 6.1, Section 6.3. 
a. Simulate a bootstrap confidence interval for the mean typical value of houses in 2002.
b. Simulate a bootstrap confidence interval for the median typical value of houses in

2002. 
c. Simulate a bootstrap confidence interval for the ratio of mean typical value of houses

in 2002 to that in 1994.

Select a simple random sample from the appropriate population in at least one of the fol-
lowing situations. Estimate the indicated proportion or average and place a bound on the
error by using the appropriate results from Section 11.3 on subpopulations. In each case,
assume that the items in the subpopulation cannot be classified as such until after they have
been observed.

11.1 Estimate the proportion of voters favoring a certain local government proposal from
among those who voted in the most recent election.

11.2 Estimate the proportion of students on your campus favoring the quarter system from
among those who have been college students under the quarter system and at least one
other system. 

11.3 Estimate the average amount spent for utilities in the past month for homeowners in a
certain neighborhood.

11.4 Estimate the average number of words per page among pages that contain no boxed for-
mulas or tables in this book.
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12

Summary

12.1
Summary of the Designs and Methods

Recall that the objective of sample surveys is to make inferences about a population
from information contained in a sample. This book discusses the design of sample
surveys and associated methods of inference for populations containing a finite number
of elements. Practical examples have been selected primarily from the fields of business
and the social sciences where finite populations of human subjects are frequently the
target of surveys. Examples from natural resource management and environmental
studies, where the populations may consist of animals or trees, are also included.

The method of inference employed for most sample surveys is estimation. Thus, we
consider appropriate estimators for population parameters and the associated 2-SD
bound on the error of estimation. In repeated sampling, the error of estimation will be
less than its bound, with probability approximately equal to .95. Equivalently, we
construct confidence intervals that, in repeated sampling, enclose the true population
parameter approximately 95 times out of 100. The quantity of information pertinent
to a given parameter is measured by the bound on the error of estimation (or margin
of error).

The material in this book falls naturally into five segments. The first is a review
of elementary concepts, the second presents useful sample survey designs, the third
considers an estimator that uses information obtained on an auxiliary variable, the
fourth gives methods of estimating the size of populations, and the fifth considers
methods for making inferences when one or more of the basic assumptions with the
standard techniques are not satisfied.

The first segment, presented in Chapters 1–3, reviews the objective of statistics
and points to the peculiarities of problems arising in the social sciences, business, and
natural resource management that make them different from the traditional type of
experiment conducted in the laboratory. These peculiarities primarily involve sampling
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from finite populations along with a number of difficulties that occur in drawing sam-
ples from human populations. The former requires the modification of the formulas
for the bounds on the error of estimation that are encountered in an introductory
course in statistics. The difficulties associated with sampling from human populations
suggest specific sample survey designs that reduce the cost of acquiring a specified
quantity of information.

In Chapters 4, 5, 7, 8, and 9 we consider specific sample survey designs and their
associated methods of estimation. The basic sample survey design, simple random
sampling, is presented first (Chapter 4). For this design, the sample is selected so that
every sample of size n in the population has an equal chance of being chosen. The
design does not make a specific attempt to reduce the cost of the desired quantity of
information. It is the most basic type of sample survey design, and all other designs
are compared with it.

The second type of design, stratified random sampling (Chapter 5), divides the
population into homogeneous groups called strata. This procedure usually produces
an estimator that possesses a smaller variance than can be acquired by simple random
sampling. Thus, the cost of the survey can be reduced by selecting fewer elements to
achieve an equivalent bound on the error of estimation.

The third type of experimental design is systematic sampling (Chapter 7), which
is usually applied to population elements that are available in a list or line, such as
names on a computer listing or people coming out of a factory. A random starting
point is selected, and then every kth element thereafter is sampled. Systematic sam-
pling is frequently conducted when collecting a simple random or a stratified random
sample is extremely costly or impossible. Once again, the reduction in survey cost is
primarily associated with the cost of collecting the sample.

The fourth type of sample survey design is cluster sampling (Chapters 8 and 9).
Cluster sampling may reduce cost because each sampling unit is a collection of ele-
ments usually selected so as to be physically close together. Cluster sampling is most
often used when a frame that lists all population elements is not available or when
travel costs from element to element are considerable. Cluster sampling reduces the
cost of the survey primarily by reducing the cost of collecting the data, but it gener-
ally inflates the variance of the estimate.

A discussion of ratio, regression, and difference estimators, which use informa-
tion on an auxiliary variable, is covered in the third segment of material, Chapter 6.
The ratio estimator illustrates how additional information, frequently acquired at lit-
tle cost, can be used to reduce the variance of the estimator and, consequently, reduce
the overall cost of a survey. It also suggests the possibility of acquiring more sophis-
ticated estimators by using information on more than one auxiliary variable. This
chapter on ratio estimation follows naturally the discussion on simple random sam-
pling in Chapter 4. That is, you can take a measurement of y, the response of interest,
for each element of the simple random sample and use the traditional estimators in
Chapter 4. Or as suggested in Chapter 6, you might take a measurement on both y and
an auxiliary variable x for each element and use the additional information con-
tributed by the auxiliary variable to acquire a better estimator of the parameter. Thus,
although it was not particularly stressed, ratio estimators can be employed with any
of the designs discussed in the text.
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Chapter 10 deals with the specific problems of estimating the size of populations.
The two estimators employed use recapture data, which requires that the sampling be
done in at least two stages. Other methods employ density per unit area as the basis
of estimation.

The fifth and final segment of material is contained in Chapter 11, which deals
with four situations in which some of the basic assumptions of the standard proce-
dures cannot be satisfied. The situations are (1) interviewer biases, which can
sometimes be minimized by using interpenetrating subsamples; (2) an inadequate
frame, which can sometimes be accounted for by using an estimator for subpopu-
lations of the sampled population; (3) information on sensitive questions, which
can be obtained by using a random-response model; and (4) nonresponse, the ef-
fects of which can be reduced by proper planning of the design and deeper analy-
ses of the observed data. 

To summarize, we have presented various elementary sample survey designs along
with their associated methods of inference. Treatment of the topics has been directed
toward practical applications so that you can see how sample survey design can be
employed to make inferences at minimum cost when sampling from finite social,
business, or natural resource populations.

12.2
Comparisons among the Designs and Methods

With an array of sampling designs and methods of analysis available, we now sum-
marize earlier discussions on how we choose an appropriate design for a particular
problem.

Simple random sampling is the basic building block and point of reference for all
other designs discussed in this book. However, few large-scale surveys use only simple
random sampling because other designs often provide greater accuracy, efficiency,
or both.

Stratified random sampling produces estimators with smaller variance than
those from simple random sampling for the same sample size, when the measure-
ments under study are homogeneous within strata but the stratum means vary among
themselves.

The ideal situation for stratified random sampling is to have all measurements
within any one stratum equal but have differences occurring as we move from stra-
tum to stratum.

Systematic sampling is used most often simply as a convenience. It is relatively
easy to carry out. But this form of sampling may actually be better than simple ran-
dom sampling, in terms of bounds on the error of estimation, if the correlation be-
tween pairs of elements within the same systematic sample is negative. This situation
will occur, for example, in periodic data if the systematic sample hits both the high
points and the low points of the periodicities. If, in contrast, the systematic sample
hits only the high points, the results are very poor. Populations that have a linear
trend in the data or that have a periodic structure that is not completely understood
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may be better sampled by using a stratified design. Economic time series, for exam-
ple, can be stratified by the quarter or month, with a random sample selected from
each stratum. The stratified and the systematic sample both force the sampling to be
carried out along the whole set of data, but the stratified design offers more random
selection and often produces a smaller bound on the error of estimation.

Cluster sampling is generally employed because of cost effectiveness or because
no adequate frame for elements is available. However, cluster sampling may be bet-
ter than either simple or stratified random sampling if the measurements within clus-
ters are heterogeneous and the cluster means are nearly equal. The ideal situation for
cluster sampling is, then, to have each cluster contain measurements as different as
possible but to have the cluster means equal. This condition is in contrast to stratified
random sampling in which strata are to be homogeneous but stratum means are to
differ.

Another way to contrast the last three designs is as follows. Suppose a popula-
tion consists of elements, which can be thought of as k systematic samples
each of size n. The nk elements can be thought of as k clusters of size n, and the
systematic sample merely selects one such cluster. In this case, the clusters should
be heterogeneous for optimal systematic sampling. By contrast, the nk elements
can also be thought of as n strata of k elements each, and the systematic sample se-
lects one element from each stratum. In this case, the strata should be as homoge-
neous as possible, but the stratum means should differ as much as possible. This
design is consistent with the cluster formulation of the problem and once again
produces an optimal situation for systematic sampling. So we see that the three
sampling designs are different, and yet they are consistent with one another with
regard to basic principles.

Some final comments are in order on how to make use of an auxiliary variable x
to gain more information on our variable of interest y. Ratio estimation is optimal
if the regression of y on x produces a straight line through the origin and if the vari-
ation in the y values increases with increasing x. Regression estimation is better
than ratio estimation if the regression of y on x does not go through the origin and
if the variation in the y values remains relatively constant as x varies. Difference
estimation is as good as regression estimation if the regression coefficient is nearly
equal to unity.

We now provide some exercises for which you decide the appropriate method of
analysis.

Exercises Some of the exercises are relatively data-intensive; look in the electronic Section 12.0 for links
to those data in Excel files.

12.1 A shipment of 6000 automobile batteries is to contain, according to the manufacturer’s
specifications, batteries weighing approximately 69 pounds each and having positive-
plate thicknesses of 120 thousandths of an inch. Thirty batteries were randomly selected
from this shipment and tested. The data are recorded in the following table. Do you think
either of the manufacturer’s specifications is met for this shipment? (Each battery contains
24 positive plates.)

N = nk
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12.2 The Department of Revenue in a state carefully audits sales tax returns from retail
stores. If the department thinks a firm is understating its taxable sales, it can order an
audit of the firm’s accounts. Just such an audit was ordered for a firm with many retail
outlets across the state. Records on taxable sales were kept by each retail store. Hence,
the auditors decided to randomly sample sales by store-months. That is, sales records
were obtained for randomly selected months at randomly selected stores. The auditors
then recorded total taxable sales for comparison with the taxable sales reported by
the store. The Department of Revenue wants to estimate the proportional increase in
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Battery specifications

Number of Average 
positive plate thickness Standard 

Weight plates (in thousandths deviation of 
Battery (in pounds) sampled of an inch) thicknesses

1 61.5 8 109.6 0.74
2 63.5 16 110.0 1.22
3 63.5 16 107.0 1.83
4 63.8 16 111.6 2.55
5 63.8 17 110.7 1.65
6 64.0 16 108.7 1.40
7 64.0 16 111.4 2.63
8 65.0 13 112.8 2.06
9 64.2 16 107.8 3.35

10 64.5 8 109.9 1.25
11 66.5 16 107.8 3.19
12 63.5 16 110.2 1.22
13 63.8 12 112.0 1.81
14 63.5 12 108.5 1.57
15 64.0 12 110.4 1.68
16 64.0 12 111.8 1.64
17 63.2 12 111.9 1.68
18 66.5 12 112.5 1.00
19 63.0 12 109.2 2.44
20 62.0 12 106.1 2.23
21 63.0 12 112.0 0.95
22 63.5 12 112.8 1.75
23 64.0 12 110.2 2.05
24 63.5 12 108.0 2.37
25 66.5 7 112.4 0.79
26 67.0 12 106.6 2.47
27 66.5 12 110.5 1.62
28 65.5 12 113.3 1.23
29 66.5 12 112.7 1.23
30 66.0 12 110.6 1.68

     



12.3 The U.S. Geological Survey monitors water flow in U.S. rivers. The data set RIVER in
Appendix C and on the data disk shows the mean daily flow rates for a specific Florida
river over a two-year period, 1977–1979.
a. Estimate the average daily flow rate by sampling 40 daily measurements over the

two-year period. Place a bound on the error of estimation. (Before sampling, you
might want to look at the data to see if any trends are apparent.)

b. Estimate the ratio of the average April flow rate to the average September flow rate
and calculate a bound on the error. Is two years enough data to obtain a good estimate
here?

12.4 Foresters estimate the net volume of standing trees by measuring the diameter at breast
height and the tree height and then observing visible defects and other characteristics of
the tree. The actual volume of usable timber can be found only after the tree has been
felled and processed into boards. For a sample of 20 trees, data on both estimated and ac-
tual volume are recorded, along with the species of the tree, in the accompanying table.
The total estimated volume for all 180 trees is 60,000 board feet. Use the data in the table
to solve the following problems.
a. Estimate the total actual board feet for the 180 trees.
b. Estimate the proportion of balsam fir trees in the entire stand. 
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Audited Reported 
Store-month taxable sales taxable sales

1 31.5 23.2
2 31.8 22.9
3 21.1 17.6
4 34.7 29.8
5 21.0 16.8
6 40.8 35.1
7 21.3 23.3
8 31.3 26.1
9 19.9 18.8

10 30.9 25.7
11 32.2 29.6
12 32.4 27.1
13 31.7 29.9
14 28.8 31.5
15 30.7 28.4

audited taxable sales over reported taxable sales. Make this estimate, with a bound on
the error, from the data given in the accompanying table for 15 store-months. (Figures
are in thousands of dollars.)

     



Kidney-stone patients were sampled in the Carolinas and in the Rocky Mountain States.
The patients were divided into “new stones” (the current episode being their first en-
counter with stone disease) and “recurrent stones.” Measurements on three variables of
interest, age of patient, amount of calcium in their home drinking water, and smoking

12.5 The Environmental Protection Agency and the University of Florida cooperated in a
large study of the possible effects of drinking water on kidney-stone disease.
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Estimated Actual 
net volume net volume 

Species* (in board feet) (in board feet)

F 130 141
S 450 474
S 268 301
F 227 215
F 190 210
F 432 400
S 501 487
F 397 368
F 248 262
S 184 195
S 230 280
F 287 243
F 312 255
F 260 282
S 410 375
S 325 280
F 422 490
S 268 325
F 250 210
F 195 236

*S, black spruce; F, balsam fir.

Carolinas Rockies

New stone Recurrent stone New stone Recurrent stone

Sample size 363 467 259 191
Age 42.2 (10.9) 45.1 (10.2) 42.5 (10.8) 46.4 (9.8)
Calcium (in parts per million) 11.0 (15.1) 11.3 (16.6) 42.4 (31.8) 40.1 (28.4)
Proportion now smoking 0.73 0.78 0.57 0.61

c. Estimate the total actual board feet of balsam fir in the stand. 
d. Estimate the total actual board feet of balsam fir if there are 110 balsam fir trees in the

stand. 
Calculate appropriate margins of error in all four cases.
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activity, are recorded in the accompanying table. (Measurements are averages or propor-
tions; standard deviations are given in parentheses.)
a. Estimate the average age of all stone patients in the population, and place a bound on

the error of estimation.
b. Estimate the average calcium concentration in drinking water supplies for stone patients

in the Carolinas. Place a bound on the error of estimation.
c. Estimate the average calcium concentration in drinking water supplies for stone patients

in the Rockies. Place a bound on the error of estimation. Does the answer here differ
considerably from that in part (b)?

d. Estimate the proportion of smokers among new stones and place a bound on the
error. 

12.6 In Exercise 12.5, the data were actually collected by first sampling hospitals from the two
regions and then by sampling kidney-stone patients from within hospitals. Explain how
you would conduct the analysis asked for in Exercise 12.5 with the data supplied by the
hospitals. What additional data would you need?

12.7 Suppose in Exercise 12.6 that the hospitals within regions vary great in size. How could
you use the information on hospital size advantageously in your sampling design if you
were to design a new survey?

12.8 The toxic effects of chemicals on fish are measured in the laboratory by subjecting a
certain species of fish to various concentrations of a chemical added to the water. The
concentration of chemical that is lethal to 50% of the fish, over the test period, is called
the LC 50. Tests in a tank in which water is not renewed during the test process are
called static. If new water is constantly coming into the tank, the test is called flow-
through. Static tests are cheaper and easier to run, but flow-through tests better approx-
imate reality. Thus, experimenters often estimate a static-to-flow-through conversion
factor. From the data given in the accompanying table on 12 static and flow-through
tests (the measurements are in milligrams per liter), estimate a factor by which a static
test result should be multiplied to make it comparable to a flow-through test result.
Place a bound on the error of estimation.

LC 50 LC 50 
Toxicant flow-through static

Malathion 0.5 0.9
DDT 0.8 1.8
Parathion 4.5 2.1
Endrin 5.5 1.3
Azinphosmethyl 1.2 0.2
DDT 3.5 2.3
Parathion 5.0 1.5
Endrin 0.5 3.2
Zectran 83.0 12.0
Chlordane 4.0 10.0
Fenthion 5.8 12.0
Malathion 12.0 90.0

SOURCE: Federal Register, vol. 43, no. 97, May 18, 1978.
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12.9 Refer to Exercise 12.8. Can you suggest some improvements in the sampling so as to
obtain a better estimate of the conversion factor?

12.10 Refer to Exercise 12.2. Can you suggest a better design for sampling the retail stores?
Keep in mind that sales vary from store to store and from month to month.

12.11 Raw sugar is delivered from a grower to a refining mill in bulk form, transported in large
tank trucks. The amount paid by the mill for a truckload of sugar depends on the pure-
sugar content of the load. This pure-sugar content is determined by laboratory analysis
of small test samples, each test sample containing enough raw sugar to fill a test tube.
Discuss possible sampling designs to obtain these test samples. (Only a few test sam-
ples can be run per truckload of raw sugar.)

12.12 Baled wool from Australia is inspected as it comes into the United States, and an
import duty is paid on the basis of pure-wool content. Core samples are taken from
bales and analyzed to determine the proportion of the bale that is pure wool. Discuss
possible sampling designs for the estimation of pure-wool content in a shipload
of bales.

12.13 The Florida Public Service Commission requires companies that sell natural gas to
make sure that the meters attached to houses and commercial buildings are operating
correctly. However, they will allow a sampling inspection plan rather than a detailed
annual examination of every meter. Suppose 20% of the meters owned by a certain
company must be checked each year, and the proportion of the company’s meters op-
erating correctly must be estimated. (If this proportion is low, the company will be
forced to check more meters.) Suggest a sampling plan for this meter inspection pol-
icy, keeping the following points in mind: (1) meters are of varying ages, (2) gas use
varies greatly from user to user, and (3) meters are being connected and disconnected
continuously.

12.14 You need to estimate the proportion of unsafe tires on automobiles and trucks owned by
the University of Florida. Outline how you would collect a sample and estimate this
proportion. Include an appropriate variance computation.

12.15 A certain machine in a factory has a sequence of operation times (when it is in service)
alternating with down times (when it breaks down and is being repaired). Let operation
times be denoted by yi and down times by di. Then the sequence of observations over n
cycles looks like this:

a. Set up an estimator for the proportion of time that the machine is in operation and
show how to calculate an estimate of the variance.

b. If a week’s work contains 40 hours, how would you estimate the total number of
hours that the machine is in operation?

12.16 The accompanying table shows the data of sulfate concentrations in a shallow unconfined
aquifer that were measured quarterly for a period of seven years. Similarly, chloride

y1, d1, y2, d2, Á , yn, dn
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Sample no. Concentration Sample no. Concentration

Sulfate (mg/L)

1 111 14 102
2 107 15 145
3 108.7 16 87
4 108.7 17 112
5 109.3 18 111
6 104.7 19 104
7 104.7 20 151
8 108 21 103
9 108 22 113

10 109.3 23 113
11 114.5 24 125
12 113 25 101
13 51.1 26 108

Chloride (mg/L)

1 38 18 —
2 40 19 41
3 35 20 —
4 37 21 35
5 32 22 49
6 37 23 64
7 37 24 73
8 — 25 67
9 32 26 67

10 45 27 —
11 38 28 59
12 33.8 29 73
13 14 30 —
14 — 31 92.5
15 39 32 45.5
16 46 33 40.4
17 48 34 33.9

35 28.1

SOURCE: Harris, Loftis, and Montgomery, “Statistical Methods for Characterizing Ground-Water
Quality,” Ground Water 25, no. 2 (1987): 185–193.

concentrations were measured quarterly for nine years at a different site. Estimate the
average sulfate concentration over this period, with an approximate 95% confidence in-
terval. Do the same for the average chloride concentration.
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More Less Same

Republicans 7 53 39
Democrats 8 69 22
Independents 11 58 30

Boys Girls

Age (years) Height (cm) Weight (kg) Height (cm) Weight (kg)

1 73.6 9.5 73.6 9.1
2 83.8 11.8 83.8 11.3
3 91.4 14.0 91.4 13.6
4 99.0 15.4 99.0 15.0
5 106.6 17.7 104.1 17.2
6 114.2 20.9 111.7 20.4
7 119.3 23.1 119.3 22.2
8 127.0 25.9 127.0 25.4
9 132.0 28.6 132.0 28.1

10 137.1 31.3 137.1 31.3
11 142.2 34.9 142.2 34.9
12 147.3 37.7 147.3 39.0
13 152.4 41.7 152.4 45.5
14 157.5 48.5 157.5 48.5

SOURCE: The World Almanac & Book of Facts, 1988 edition. Copyright © 1987, Newspaper
Enterprise Association, Inc., New York.

a. Estimate the ratio of height to weight for boys under the age of 15 for an approxi-
mate 95% confidence interval.

b. Estimate the ratio of height to weight for girls under the age of 15.
c. Do the ratios appear to differ significantly?

12.18 The Gallup Poll website (www.gallup.com) for January 27, 2004, displayed results for
a survey of approximately 1000 adult residents of the United States on the question:

Would you like to see major corporations have more influence in the nation, less
influence, or keep their influence as it is now?

The response data (percentages) for Republican, Democratic, and Independent voters
are shown in the following table.

Derive approximate answers to the problems below assuming there are approximately
40% Republicans, 45% Democrats, and 15% Independents in the country. Provide an
appropriate margin of error in each case.
a. Estimate the difference between Republican and Democratic percentages on the

“less influence” response.

12.17 The following table gives average height and weight measurements for children. 
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b. Estimate the difference between Republican and Independent percentages on the
“less influence” response. Is there a significant difference here?

c. Estimate the difference between the “less” and “same” response percentages for the
Republicans. Repeat the analysis for the Democrats. 

d. Write an overall summary of what these data show, assuming this was a well-
designed and executed poll with random sampling. (As you have seen, the Gallup
Poll design is much more complicated than simple random sampling, but this
design can be assumed as a rough approximation.)

12.19 On the same Gallup Poll website as in Exercise 12.18, a summary of results from past
surveys on the state of the nation gave the following data, again in percentages. 

a. On each of the issues, compare the earlier result with the one for January 2004 using
appropriate statistical estimates with margins of error. Write a brief synopsis of your
findings that the average newspaper reader might understand. 

b. The earlier of the two dates was not an arbitrary or random selection. It was the date
on which a poll showed the highest rating in the last few years. How would this
additional information change the synopsis you wrote in part (a)?

State of the country satisfaction rating

February 12–13, 1999 January 12–15, 2004

Satisfied 71 46
Dissatisfied 26 53

Economic confidence rating

August 18–19, 2000 January 12–15, 2004

Excellent/good 74 37
Fair/poor 25 63
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TABLE A.1
Normal curve areas

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549
0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
2.9 .4981 .4982 .4982 .4982 .4984 .4984 .4985 .4985 .4986 .4986
3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

Abridged from Table 1 of Statistical Tables and Formulas by A. Hald (New York:  John Wiley & Sons, Inc., 1952).
Reproduced by permission of A. Hald and the publishers, John Wiley & Sons, Inc.
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TABLE A.2
Random numbers

Line/
Col. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

1 10480 15011 01536 02011 81647 91646 69179 14194 62590 36207 20969 99570 91291 90700
2 22368 46573 25595 85393 30995 89198 27982 53402 93965 34095 52666 19174 39615 99505
3 24130 48360 22527 97265 76393 64809 15179 24830 49340 32081 30680 19655 63348 58629
4 42167 93093 06243 61680 07856 16376 39440 53537 71341 57004 00849 74917 97758 16379
5 37570 39975 81837 16656 06121 91782 60468 81305 49684 60672 14110 06927 01263 54613

6 77921 06907 11008 42751 27756 53498 18602 70659 90655 15053 21916 81825 44394 42880
7 99562 72905 56420 69994 98872 31016 71194 18738 44013 48840 63213 21069 10634 12952
8 96301 91977 05463 07972 18876 20922 94595 56869 69014 60045 18425 84903 42508 32307
9 89579 14342 63661 10281 17453 18103 57740 84378 25331 12565 58678 44947 05585 56941

10 85475 36857 53342 53988 53060 59533 38867 62300 08158 17983 16439 11458 18593 64952

11 28918 69578 88231 33276 70997 79936 56865 05859 90106 31595 01547 85590 91610 78188
12 63553 40961 48235 03427 49626 69445 18663 72695 52180 20847 12234 90511 33703 90322
13 09429 93969 52636 92737 88974 33488 36320 17617 30015 08272 84115 27156 30613 74952
14 10365 61129 87529 85689 48237 52267 67689 93394 01511 26358 85104 20285 29975 89868
15 07119 97336 71048 08178 77233 13916 47564 81056 97735 85977 29372 74461 28551 90707

16 51085 12765 51821 51259 77452 16308 60756 92144 49442 53900 70960 63990 75601 40719
17 02368 21382 52404 60268 89368 19885 55322 44819 01188 65255 64835 44919 05944 55157
18 01011 54092 33362 94904 31273 04146 18594 29852 71585 85030 51132 01915 92747 64951
19 52162 53916 46369 58586 23216 14513 83149 98736 23495 64350 94738 17752 35156 35749
20 07056 97628 33787 09998 42698 06691 76988 13602 51851 46104 88916 19509 25625 58104

21 48663 91245 85828 14346 09172 30168 90229 04734 59193 22178 30421 61666 99904 32812
22 54164 58492 22421 74103 47070 25306 76468 26384 58151 06646 21524 15227 96909 44592
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Derivation of Some Main Results
In this section, we present the mathematical derivation of some of the main formulas
used throughout the book. We assume the reader has some knowledge of probability
theory, so that expectations, variances, and covariances can be manipulated with
little explanation.

Let yi denote a random variable with probability distribution p(y). Then we have
the following definitions from elementary probability theory:

where E denotes expected value, V denotes variance, and g(y) is a function of y.
Suppose y1, y2, . . . , yn denotes a sample of size n and a1, a2, . . . , an are con-

stants. If

then

(A.1)

and

(A.2)

where cov denotes covariances. If the yi values are uncorrelated, then

(A.3)

Simple Random Sampling

Suppose y1, y2, . . . , yn denotes a simple random sample from a population of values
{u1, u2, . . . , uN}. Considering yi by itself (a simple random sample of size 1), we
have
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and

By Eq. (A.1),

Also,

Using this fact and Eq. (A.2), we can find the variance of . We have
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We now show that is an unbiased estimator of . We have

Therefore,

which was to be shown.
This derivation results in Eqs. (4.2), (4.3), and (4.4). Now is an unbiased

estimator of by Eq. (A.1), and Eq. (4.6) follows from Eq. (A.3) and results already
shown.

Because is actually a for {0, 1} data, is an unbiased estimator of p, and
Eq. (4.16) follows directly, after observing that

for the {0, 1} data.

Stratified Random Sampling

In stratified random sampling,

yst = a
L

i=1
aNi

N
b yi

s2

n
=

pN (1 - pN )

n - 1

pNypN

t

tN = Ny

 = aN - n

N - 1
b as2

n
b = V(y)

 E c aN - n

N
b a s2

n
b d = aN - n

N
b a 1

n
b a N

N - 1
bs2

 =

s2

n - 1
an -

N - n

N - 1
b =

N

N - 1
s2

 =

1

n - 1
[ns2

- nV(y)] =

1

n - 1
cns2

- naN - n

N - 1
b as2

n
b d

 =

1

n - 1
ca

n

i=1
E(yi - m)2

- nE(y - m)2 d

 = a 1

n - 1
bE ca

n

i=1
(yi - m)2

- n(y - m)2 d

 = a 1

n - 1
bEea

n

i=1
[(yi - m) - (y - m)]2 f

 E(s2) = E c a 1

n - 1
ba

n

i=1
(yi - y )2 d

V(y)[(N - n)/N]/(s2/n)

Derivation of Some Main Results 387

     



is of the same form as U, and the values are independently selected through simple
random sampling. Thus,

by Eq. (A.1), and

by Eq. (A.3), and Eq. (5.2) follows. 
In the sample size and allocation formulas of Chapter 5, we set equal

to 1 for convenience.

Ratio Estimation

The ratio estimator r is approximately an unbiased estimator of if n is
reasonably large. That is, is approximately R. Hence,

because . Because is the sample mean of quantities ,
with , then can be estimated by

If R is replaced by r in the latter expression, Eq. (6.2) follows. Variance expressions
(6.5) and (6.7) follow by using Eq. (A.3). 

Single-Stage Cluster Sampling

The estimator of Eq. (8.1) from cluster sampling is a ratio estimator, and its variance
(8.2) follows from results previously derived. The variance expression (8.5) then
comes about by applying Eq. (A.3). The estimator of given in Eq. (8.7) is simply
based on a sample mean of cluster totals, and Eq. (8.8) follows from basic principles
used earlier.

Two-Stage Cluster Sampling

Because this situation requires careful manipulation of between-cluster variances
and within-cluster variances, we illustrate the derivations only for the case in which
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all clusters are of the same size. That is, we assume

and

In this case,

We find the mean and variance of by first fixing the n clusters in the sample and
then averaging over all possible samples of n clusters. Expectation and variance op-
erations when the n clusters are fixed are denoted by E2 and V2, respectively. Simi-
larly, expectations and variances over all possible samples of n clusters are denoted
by E1 and V1. (When the n clusters are fixed, the cluster sample looks like a stratified
random sample.) 

Now

where is the mean of cluster i. Because the expected value of a sample mean is the
corresponding population mean in simple random sampling,

where is the total for cluster i. Thus, is an unbiased estimator of .
From a basic result in probability theory,

Now

(A.4)

where . This expression follows from basic results explored
earlier.
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Also,

(A.5)

where is the usual variance of a sample mean for a simple random sample of 
elements from elements.

We must now estimate the two parts of . For the first part, we might start
with

We have, as its expected value,
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estimates Eq. (A.4) plus a term

(A.6)

and we need to find an estimate of Eq. (A.5) - (A.6) in order to estimate . But

which can be estimated unbiasedly by

where

The estimator of is, then,

This equation is equivalent to Eq. (9.2) in the case of equal cluster sizes. The case for
unequal cluster sizes is derived analogously.
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B

Macros for SAS

1
Introduction

General Instructions

The SAS sampling macros are included on the data disk in the directory
MACROS.SAS. They can be used to select samples or calculate estimates and stan-
dard errors from sample data sets for the basic sampling designs described in the
book. This section includes a general description of the macros and some examples.
The data sets used in the examples are in the directory DATASETS.SAS.

Calling a Macro

A macro, a subprogram in the SAS macro language, performs a specific task. Each
macro is called from a main SAS program written by the user and is invoked by one
statement of the form:

%NAME( Keyword1=char1, keyword2=char2, . . . , );

where NAME is the name of the macro. The macro name is followed by a sequence
of keyword parameter assignments enclosed in parentheses. The keyword assign-
ments are separated by commas and may appear in any order in the parameter list.
Each keyword is followed by an equals sign and a character string. The character
string following the equals sign may represent the name of a SAS data set or variable,
a constant, or a particular option. A list of keywords available for each macro appears
in the folder GLOSSARY.SAS on the data disk.

Organization of Files and the %include Statement

Each macro is in a file with the same name as the macro. For example, the macro SRS,
which selects a simple random sample, is in the file SRS; the macro EST_SRS, which
computes estimates from such a sample, is in the file EST_SRS. Each macro must be
included in the SAS program with a separate %include statement. For the examples
given here, the macros are assumed to be in the same directory as the program. In gen-
eral, the full path name for the macro must be included within single quotes in the

392
     



%include statement. The following program uses the EST_SRS macro to estimate the
population mean from the simple random sample in Example 4.3 of the book:

%include 'est_srs';

options ls=72 nodate formdlim = '-';

data accounts

input owed @@;

cards;

33.50 32.00 52.00 43.00 40.00 41.00 45.00 42.50 39.00

;

%est_srs (sample=accounts, npop=484, response=owed,

param=mean);

run;

The statement %EST_SRS( ) invokes the macro. The assignment SAMPLE
ACCOUNTS informs the macro that the sample data are stored in the data set
ACCOUNTS. The option NPOP 484 indicates the population size, and PARAM 
MEAN requests the estimate of the mean of the population of values of the response
variable OWED. The output from this program is as follows:

The output includes the estimate, the standard error, and the two-standard-error
bound. The entry s^2 is the sample variance, , for the
values of the response variable “owed.” The sample size shown indicates the number
of nonmissing observations in the sample.

Sample Selection Macros

There are ten sample selection macros. Each macro selects a sample from a finite
population stored in a SAS data set. The sampling design is indicated by the name of
the macro. Each macro has a specific set of keyword parameters, but all the selection
macros have five keyword parameters in common, as described next.

Frame

FRAME is the keyword that indicates the SAS data set containing the frame for
sample selection. The CARS93 data set in Appendix C shows information concerning

s2
= gn

i=1(yi - y)2/(n - 1)

-------------------------------------------

Estimate of the Population Mean

Simple Random Sampling Design

Response Variable=owed

Standard s^2 Sample

Estimate Error Bound (owed) Size

40.8889 1.97232 3.94463 35.6736 9

-------------------------------------------

==

=
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gas mileages for 1993 cars. The data are stored in a file called CARS93.DAT on the
data disk. The following program selects a simple random sample of cars from
this data set:

%include 'srs';

options ls=72 nodate formdlim= '-';

data cars; infile 'cars93.dat';

input make $ model $ type $ mpg_city 45–46 mpg_hwy 48–49;

%srs(frame=cars, npop=57, n=5);

run;

The assignment FRAME CARS indicates that the sample is to be selected from
the data set CARS, which is obtained by reading the data file CARS93.DAT. The out-
put is the following:

Noprint

Each sample selection macro has an option to suppress the printing of the sample.
This option is specified by placing the word NOPRINT in the first position, before
any keyword parameters. The NOPRINT option does not have a trailing equal sign.
If NOPRINT is omitted, then the full sample is printed. For example, the following
statement selects a simple random sample of size 5 from a data set CARS93.DAT,
with 57 observations, and prints the sample data:

%srs(frame=cars, npop=57, n=5);.

The next statement selects the sample, but the printing of the sample data is sup-
pressed;

%srs(noprint, frame=cars, npop=57, n=5);

Seed

The macros use the SAS uniform random number generator RANUNI. The seed
value is set to zero by default, and the clock time is used to generate the starting seed.
If the user wishes to generate the same sample on a second run, then the seed may be

-------------------------------------------------

Simple Random Sample

Output Data Set=sample

OBS MAKE MODEL TYPE MPG_CITY MPG_HWY

1 Audi 100 Mid 19 26

2 Cadillac Seville Mid 16 25

3 Geo Storm Sport 30 36

4 Hyundai Scoupe Sport 26 34

5 Lincoln Continen Mid 17 26

-------------------------------------------------

=

n = 5

394 Appendix B Macros for SAS

     



set to some constant value using the SEED option. For the preceding example, the fol-
lowing statement sets the seed to a particular value, the sample returned for a partic-
ular seed may vary with the installation:

%srs(noprint, frame=cars, npop=57, n=5, seed=137897) ;

Setup

In a simple random sample, the population size and sample size are simple constants.
Their values may be specified as constants in the parameter list of the macro. If these
parameters have more than one value (such as the strata sizes for a stratified random
sample), then these numbers must be stored as observations of SAS variables in a
second data set. In this case, the keyword SETUP indicates the name of the data set;
to specify the names of these variables, assign keyword parameters equal to the vari-
able names. The following program selects a stratified random sample of cars in the
CARS93.DAT data file, in which two strata have been formed: U.S. and foreign man-
ufacturers. The frame has U.S.-manufactured cars and foreign-
manufactured cars:

%include 'strs';

options ls=72 nodate formdlim= '-';

data cars; infile 'cars93.dat';

input make $ model $ mpg_city 45–46 mpg_hwy 48–49 us 73;

data info; input us capn ni;

cards;

0 23 4 

1 34 6 

;

%strs(frame=cars, strata=us, setup=info, npop=capn, n=ni);

run;

Note that SETUP INFO indicates that the population parameters are in the data set
INFO. The keywords NPOP CAPN and N NI indicate the names of the vari-
ables for the strata and sample sizes, respectively. The data set INFO must contain
the strata variable so that the parameters can be paired with their corresponding
strata. The output is the following:

==

=

N2 = 34N1 = 23
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Stratified Random Sample

Output Data Set=sample

OBS MAKE MODEL MPG_CITY MPG_HWY US

1 Audi 90 20 26 0

2 Geo Storm 30 36 0

3 Honda Prelude 24 31 0

     



In two-stage designs, the SETUP option is reserved for second-stage parameters.
First-stage parameters must be entered as constants in the parameter list. The SETUP
option is useful if the parameters are stored as values of variables in a data set that is
the result of previous computations.

Sample

Each of the sample selection macros creates a data set containing the observations
selected from the frame. The default name of this data set is SAMPLE. The name can
be changed using the optional keyword SAMPLE. In the following statement, the
sample data are output to a data set called PILOT:

%strs(frame=cars, strata=us, setup=info, npop=capn,

n=ni, sample=pilot)

Estimation Macros

The directory MACROS.SAS contains macros for the computation of all commonly
used estimators in the book. The sample data must be stored in a SAS data set con-
taining the variable of interest, called the response variable. In each estimation
macro, you must indicate the response variable and the parameter to be estimated.
The next program uses macro EST_SRS to estimate both the mean number of cavi-
ties per child and total cavities, in a population of 1000 children (see Exercise 4.19):

%include 'est_srs';

options 1s=72 nodate formdlim= '-';

data teeth; input cavities @@;

cards;

0 4 2 3 2 0 3 4 1 1

;

%est_srs(sample=teeth, npop=1000, response=cavities,

param=mean total) ;

run;

Examples of more complicated estimators are given in Section 3, “Cluster Designs.”

4 Mazda RX-7 17 25 0

5 Cadillac Seville 16 25 1

6 Chevrole Lumina 21 29 1

7 Dodge Shadow 23 29 1

8 Dodge Dynasty 21 27 1

9 Ford Tempo 22 27 1

10 Lincoln Continen 17 26 1

--------------------------------------------------------
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The ALLOC and STATS Macros

The macro ALLOC can be used to determine sample sizes and allocations under var-
ious allocation schemes for stratified random sample designs. The input data set con-
sists of a set of summary statistics or parameters describing the strata. The macro
STATS computes basic statistics from a data set and can be used to summarize data
sets from a stratified random sample. For example, the output from STATS, based on
a pilot sample, can be used as input for ALLOC. Several examples of the macro
ALLOC appear in Section 3, “Cluster Designs.”

Additional Information

Omission of Keyword Parameters

Some of the required keyword parameter assignments can be omitted from the argu-
ment list of a macro if the names of SAS data sets and variables in the main program
are the same as the keyword parameters. These parameters include FRAME,
STRATA, CLUSTER, SIZE, X, and second-stage parameters in two-stage sampling
designs. The preceding program could have been written more simply as

%include 'strs';

options ls=72 nodate formdlim='-';

data frame; infile 'cars93.dat';

input make $ model $ mpg_city 45–46 mpg_hwy 48–49 strata

73;

data info; input strata $ npop n;

cards;

0 23 4

1 34 6

;

%strs(setup=info);

run;

The parameter SETUP , when required, should not be omitted from the argument
list. If in doubt, always include all required keyword parameters in the argument list
of the macro.

The Autocall Facility

The autocall facility is available in SAS 6.0 and later versions. With this facility, macros
can be stored in a separate directory and invoked as they are needed by specifying this
directory. This relieves you from specifying the name of each macro in the include
statement. With the autocall facility, all macros must be stored in the directory identified
as the autocall library in the main SAS program with the SASAUTOS system=

=
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option. The main SAS program begins with two statements of the following general
form:

filename sasmacs 'directory.nam';

options sasautos=sasmacs mrecall mautosource ls=72

nodate;

where SASMACS is a SAS name chosen by the user and DIRECTORY.NAM
represents the full path name of the directory containing the SAS macros. The use of
this facility varies with the installation, so check with a system administrator for
details.

Notes

■ Omission of the commas separating the keyword parameters can cause unpre-
dictable results.

■ All variables and data set names used in the macro source code have trailing un-
derscores (for example, ybar_, flag_, temp1_). You will not encounter a conflict
in naming variables and data sets in the main program if trailing underscores are
avoided.

2
Examples

In this section, examples illustrate the most commonly used macros. The data are
from examples or exercises in the book. SAS options and run statements will be
omitted in subsequent examples.

Simple Random Samples

Two examples using simple random samples are included in Section 1. This example
indicates how a proportion can be estimated from raw data using the PARAM 
MEAN option of the EST_SRS macro. Exercise 4.42 calls for an estimate of the pro-
portion of a firm’s accounts that fail to comply with stated procedures.  

/*-----------------------------------------------------------

EXERCISE 4.42 Estimating a proportion from raw data

------------------------------------------------------------*/

%include 'est_srs';

data firm; infile 'exer4_41.dat';

input account amount complnc $ @@;

if complnc = 'N' then y=1;

else y = 0;

=
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%est_srs (sample=firm, npop=500, response=y,

param=mean);

run;

In the data step, the variable y is set equal to 1 if COMPLNC ‘N’ and is equal to 0
otherwise. The mean of the variable y is the sample proportion. The value of s^2 is
equal to . The output is as follows:

Stratified Random Samples

In Example 5.2, an advertising firm interviews 40 households and records the TV-
viewing time in hours per week. The data are in file TABLE5.1. The sample is strat-
ified into three areas: A, B, and RURAL. The following program estimates the mean
TV-viewing time for the entire population and for town B only.

/*-----------------------------------------------------------

EXAMPLE 5.2 (a) Estimating the mean from a stratified random 

sample and (b) estimating the mean from one stratum

------------------------------------------------------------*/

%include 'est_strs';

%include 'est_srs';

data tv_time; infile 'table5.1';

input area $ hours @@;

data pop_info; input area $ popsize;

cards;  

A 155

B 62

RURAL 93

;

%est_strs (sample=tv_time, strata=area, setup=pop_info,

param=mean, response=hours, npop=popsize);

data part_b; set tv_time;

-----------------------------------------------------------

Estimate of the Population Mean

Simple Random Sampling Design

Response Variable=comp

Standard s^2 Sample

Estimate Error Bound (comp) Size

0.3 0.10301 0.20601 0.22105 20

-----------------------------------------------------------

npN (1 - pN )/(n - 1)

=
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if area= 'B';

%est_srs (sample=part_b, response=hours, npop=62,

param=mean);

In part (a), the population (strata) sizes are entered as values of a variable (namely,
POPSIZE) in the data set POP_INFO. The data set is indicated by SETUP
POP_INFO, and the variable is defined by NPOP POPSIZE. Note that the strata
sizes are matched to their strata through the values of the class variable AREA.

In part (b), the subsetting IF statement creates a data set called PART_B with the
information only from town B. The macro SRS can then be used on PART_B to
estimate the mean for town B. The population size may be entered from the parameter
list because it has a single value. The output is as follows:

=

=
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--------------------------------------------------------------

Actual Sample Sizes

(Excludes Missing Data, if Any)

AREA n(i)

A 20

B 8

RURAL 12

-------------------------------------------------------------- 

Estimate of the Population Mean

Stratified Random Sampling Design

Response Variable = hours

Standard

Estimate Error Bound

27.675 1.40340 2.80679

-------------------------------------------------------------- 

Estimate of the Population Mean

Simple Random Sampling Design

Response Variable = hours

Standard s^2 Sample

Estimate Error Bound (hours) Size

25.125 5.03019 10.0604 232.411 8

-------------------------------------------------------------- 

Sample Size and Allocation

The macro ALLOC determines the overall sample size and allocation for various
allocation schemes in a stratified sampling design. The following program is from
Example 5.7, in which the sample sizes in each strata are determined under optimal
allocation.

     



/*------------------------------------------------------------

EXAMPLE. 5.7 Determining sample size and optimal

allocation to obtain an error bound of 2 in estimation of

the population mean

------------------------------------------------------------*/

%include 'alloc';

data summary;

input area $ popsize s2 c;

cards;

A 155 25 9

B 62 225 9

RURAL 93 100 16

;

%alloc (type=optimal, setup=summary, bound=2,

param=mean, strata=area, npop=popsize, var=s2,

cost=c);

There are three types of allocation, specified by TYPE PROP, NEYMAN, or
OPTIMAL. The strata information is stored in the data set SUMMARY. Note that
both the desired bound and the parameter to be estimated must be specified.

--------------------------------------------------------------

Stratum Weights and Sample Sizes for an Optimal Allocation

to Obtain an Error Bound of 2 on the Population Mean

Output Data Set=outalloc

Sampling Stratum Stratum Exact Nearest

AREA Costs Sizes Weights Allocation Integer

A 9 155 0.32258 18.7097 19

B 9 62 0.38710 22.4516 22

RURAL 16 93 0.29032 16.8387 17

======= ======= ======= =======

310 1.00000 58.000 58

-------------------------------------------------------------- 

In Example 5.6, the sampling weights are required to be the same in each strata.
Thus, the TYPE option is omitted, and the OPT FIXEDW is specified to set equal
weights in each of the strata. The keyword parameter WI, which specifies the vari-
able containing the fixed weights, must be used with this option. A variation of
Neyman allocation, with a fixed-weights restriction, is used to determine the alloca-
tion with the OPT FIXEDW option.

/*-----------------------------------------------------------

EXAMPLE 5.6 Determining sample size and allocation to 

obtain a bound of 400 in estimation of the total, with

equal sampling weights

=

==

=
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------------------------------------------------------------*/

%include 'alloc';

data one;

input area $ npop s2 wts;

cards;

A 155 25 1

B 62 225 1

RURAL 93 100 1

;

%al1oc(opt=fixedw, setup=one, wi=wts, bound=400,

param=total, strata=area, npop=npop, var=s2);

--------------------------------------------------------------

Stratum Weights and Sample Sizes for a Fixed Weights Al1ocation

to Obtain an Error Bound of 400 on the Population Total 

Output Data Set=weights

Stratum Stratum Exact Nearest

TOWN Sizes Weights Allocation Integer

A 155 0.33333 34.718 35

B 62 0.33333 34.718 35

RURAL 93 0.33333 34.718 35

======= ======= ======= =======

310 1.00000 104.153 105

--------------------------------------------------------------

In Example 5.11, optimal allocation is required with the total cost of sampling
fixed at $500. This is accomplished by specifying both TYPE OPTIMAL and
OPT FIXEDC (for fixed cost), with MAXCOST 500.

/*------------------------------------------------------------ 

EXAMPLE 5.11 Determining sample size and allocation to 

minimize variance with fixed sampling costs of $500.

------------------------------------------------------------ */

%include 'alloc';

data info;

input strata $ npop s2 c;

cards:

A 155 25 9

B 62 225 9

RURAL 93 100 16

;

%alloc(type=optimal, opt=fixedc, maxcost=500, cost=c,

var=s2, setup=info);

==

=
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--------------------------------------------------------------

Stratum Weights and Sample Sizes for an Optimal Allocation 

to Minimize Variance with Cost Fixed at $500 

Output Data Set=weights

Sampling Stratum Stratum Exact Nearest

TOWN Costs Sizes Weights Allocation Integer

A 9 155 0.32258 14.5161 15

B 9 62 0.38710 17.4194 17

RURAL 16 93 0.29032 13.0645 13

======= ======= ======= =======

310 1.00000 45.0000 45

-------------------------------------------------------------- 

Auxiliary Variables in Estimation

The macro RATIO computes the ratio estimate of the population mean or total using
an auxiliary variable x. The data for Example 6.4 are in the file EXPL6_4.DAT. The
following program estimates the mean hours lost:

/*-----------------------------------------------------------

EXAMPLE 6.4 Finding the ratio estimate of a population mean

------------------------------------------------------------*/

%include 'ratio';

data hrs_lost; infile 'expl6_4.dat';

input employee previous current @@;

%ratio(sample=hrs_lost, x=previous, response=current, 

mu_x=16.3, param=ratio, npop=1000);

The auxiliary variable is specified by X PREVIOUS. The population mean or
total , for the auxiliary variable X, is included in the parameter list:

------------------------------------------------------------

Ratio Estimate of Population R

Simple Random Sample Design

Response Variable=current

(Auxiliary Variable=previous)

Standard Sample

Estimate Error Bound s(r)^2 Size

1.05056 0.035995 0.071989 3.47707 10

------------------------------------------------------------

In Example 6.7, the combined and separate ratio estimates are obtained from a
stratified random sample of two companies, A and B. The data are in the file
EXPL6_7.DAT. The following program computes both combined and separate ratio
estimates. The output follows the program.

(tx)
(mx)=
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/*-----------------------------------------------------------

EXAMPLE 6.7 Finding the combined and separate ratio

estimates of a population mean

------------------------------------------------------------*/

%include 'c_ratio';

%include 's_ratio';

data hrs_lost; infile 'expl6_7.dat';

input company $ employee previous current @@;

data one; input company $ totalx str_size;

cards;

A 16300 1000

B 12800 1500

;

%s_ratio (sample=hrs_lost, setup=one, strata=company,

param=mean, x=previous, response=current,

tau_x=totalx, npop=str_size);

%c_ratio (sample=hrs_lost, setup=one, strata=company,

param=mean, x=previous, response=current,

tau_x=totalx, npop=str_size);

-------------------------------------------------------------

Ratio Estimates by Strata

Response Variable=current

(Auxiliary Variable=previous)

Sample

Strata Size r(i)

A 10 1.05056

B 10 0.58974

------------------------------------------------------------- 

Separate Ratio Estimate of Mean

Stratified Random Sampling Design

Response Variable=current

(Auxiliary Variable=previous)

Standard 

Estimate Error Bound

9.86915 0.63475 1.26951

------------------------------------------------------------- 

Actual Sample Sizes

(Excludes Missing Data, if Any)

COMPANY n(i)

A 10

B 10

------------------------------------------------------------- 
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Combined Ratio Estimate of Population Mean

Stratified Random Sampling Design

Response Variab1e=current

(Auxiliary Variable=previous)

Standard

Estimate Error Bound r(c)

10.1012 0.81459 1.62918 0.86780

------------------------------------------------------------- 

Systematic Samples

The macro SYS selects a systematic 1-in-k random sample, and EST_SYS computes
the successive difference estimator. The mean-per-unit estimate can be obtained from
EST_SRS. To illustrate SYS, the student responses to a class survey in file CLASS-
SUR.DAT are treated as a population of elements. The following program
uses the macros SYS and EST_SYS to select a systematic 1-in-5 sample from the file.
The NOPRINT option is included in the call to SYS. The successive difference
estimator is used to estimate the mean study hours in a typical week. The true mean
for the population is hours:

/*-----------------------------------------------------------

EXAMPLE Selecting a systematic l-in-5 sample and

estimation of the population mean

-----------------------------------------------------------*/

%include 'sys';

%include 'est_sys';

data survey; infile 'classsur.dat';

input gender age gpa class ht wt stdhrs;

%sys(noprint, frame=survey, k=5, npop=57,

sample=outsys );

%est_sys (sample=outsys, npop=57, param=mean,

response=stdhrs) ;

-------------------------------------------------------------

Estimate of the Population Mean

Systematic Sampling Design

(Successive Difference Estimator)

Response Variable=stdhrs

Standard Actual

Estimate Error Bound s(d)^2 Differences

12.5455 2.23767 4.47534 136.5 10

-------------------------------------------------------------

m = 12.91

N = 57
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3
Cluster Designs

Single-Stage Cluster Samples

There are three sets of single-stage cluster design macros. In this section, we include
estimation examples for two types of cluster samples: (1) clusters selected with equal
probability and (2) clusters selected with probability proportional to cluster size. The
macro CL1STRS selects clusters within strata, and the options are described in the
file named GLOSSARY.DOC on the data disk.

Clusters Selected with Equal Probability

The macro CL1 selects a single-stage cluster sample from raw data. Macro EST_CL1
computes either the ratio estimate of the population mean or total or the unbiased es-
timate of the population total. The choice of estimator is specified by PARAM
MEAN, TOTAL, or UNBIASED, and the data must be in the form of totals per clus-
ter. The following program gives the solutions for Examples 8.2–8.4 with two calls
to EST_CL1. In the first call, the mean cluster size is assumed to be unknown. In the
second call, the total number of elements in the population is specified by the assign-
ment . The data are recorded (in thousands of dollars) in file TABLE8.1.
The SAS statement after the input line transforms income to dollars.

/*-----------------------------------------------------------

EXAMPLES 8.2–8.4 Selecting a single-stage cluster sample

and estimating the population mean and total

------------------------------------------------------------*/

%include 'est_cl1';

data sample; infile 'table8.1';

input cluster resids income @@;

income=1000*income;

%est_cl1( param=mean unbiased, mi=resids, npop=415,

response=income );

%est_cl1( param=total, mi=resids, npop=415,

response=income, m=2500 );

--------------------------------------------------------------

Single-Stage Cluster Design

Response Variable=income

Standard

Estimate Error Bound s(c)^2

8801.32 808.570 1617.14 634501213.4

-------------------------------------------------------------- 

M = 2500

=
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Unbiased Estimate of the Population Total

(Does Not Depend on M)

Single-Stage Cluster Design

Response Variable=income

Standard

Estimate Error Bound s(t)^2

22061400 1752792.02 3505584.04 474556666.67

-------------------------------------------------------------- 

Ratio Estimate of Population Total

Single-Stage Cluster Design

Response Variable=income

Standard

Estimate Error Bound s(c)^2

22003311.26 2026761.17 4053522.35 634501213.4

-------------------------------------------------------------- 

Probability Proportional to Size

The macro CL1PPS selects a single-stage cluster sample in which clusters are se-
lected with probability proportional to cluster size. For CL1PPS, every element in
each cluster is assumed to appear as an observation in the data set FRAME. The
macro PPS selects a probability proportional to the sample size of the individual
observations from a data set and can be used to select a single-stage cluster sample
from a frame consisting of cluster totals.

The next program selects a single-stage cluster sample of states from the
USPOP.DAT data set, with probability proportional to each state’s 1990 population.
The projected year 2000 population is estimated from this sample, using EST_CL1P.
The response variable in this case is the projected 2000 population. Although this is
not the typical application of cluster size for a single-stage cluster design, the 1990
population and the 2000 projected population are positively correlated. Note that the
2-standard-error bound easily encloses the total projected year 2000 U.S. population
(namely, 282,055).

/*-----------------------------------------------------------

EXAMPLE Selecting a single-stage cluster sample with a 

probability proportional to the size of the cluster

------------------------------------------------------------*/

%include 'est_cl1p';

%include 'pps';

data census; infile 'uspop.dat';

input state $ 8–20 pop1990 34–38 pop2000 40–44;

%pps(frame=census, n=5, mi=pop1990 );

%est_cl1p(totals=pop2000, param=total, mi=pop1990,

m=226503);
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The output from PPS (and CL1PPS) contains a new variable REP, which is used to
distinguish between multiple occurrences of a cluster in the sample. The macro
EST_CL1P uses the variable REP for calculations. The variable REP can be renamed
in the macros CL1PPS and EST_CL1P with the option REP . The output is as
follows:

-------------------------------------------------------------

Probability Proportional to Size Sample

Output Data Set=sample

(Total Size=226503)

OBS STATE POP1990 POP2000 MI REP

1 Connecticut 3108 3515 3108 1

2 Ohio 10797 11183 10797 1

3 Nebraska 1570 1563 1570 1

4 California 23669 38112 23669 1

5 California 23669 38112 23669 2

------------------------------------------------------------- 

Estimate of the Population Total

Single-Stage PPS Cluster Design

Response Variable (Totals)=pop2000

Standard

Estimate Error Bound s^2

289138.30 31254.27 62508.54 0.095201

------------------------------------------------------------- 

Two-Stage Cluster Samples

There are two estimation macros for a two-stage cluster sample: EST_RAT computes
ratio estimates of population parameters, and EST_UNB computes unbiased esti-
mates. Sample data may be input as means, proportions, or counts. The cluster size
and sample size for each cluster selected must be included in the data set. The data
set containing this second-stage information is specified by the SETUP option. First-
stage parameters are included as constants in the parameter list. The following
program uses the data from Example 9.4 to compute the ratio estimator of the popu-
lation proportion. In this example, the summary data are read ‘instream’ with the
CARDS statement.

/*-----------------------------------------------------------

EXAMPLE 9.4 Finding the ratio estimate of a proportion in a

two-stage cluster sample

-----------------------------------------------------------*/

%include 'est_rat';

=
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data samp; input plant capmi smallmi p @@;

cards;

1 50 10 .40 2 65 13 .38

3 45 9 .22 4 48 10 .30

5 52 10 .50 6 58 12 .25

7 42 8 .38 8 66 13 .31

9 40 8 .25 10 56 11 .36

;

%est_rat(setup=samp, cluster=plant, mpopi=capmi,

mi=smallmi, npop=90, phat=p, param=prop) ;

-------------------------------------------------------------- 

Ratio Estimate of Population Proportion

Two-Stage Cluster Design

Standard

Estimate Error Bound

0.33732 0.028431 0.056861

-------------------------------------------------------------- 

4
Summary Statistics

For EST_RAT and EST_UNB, the data must be in the form of summary statistics. For
EST_SRS and EST_STRS, the data can also be entered as summary statistics, using the
TYPE SUMMARY option. If you are familiar with the MEANS procedure in SAS,
raw data can be easily summarized in the main program.An output data set from PROC
MEANS can then be used with the TYPE SUMMARY option in these two macros.
The data in Example 5.2 are reported both as raw data and as summary statistics. The
next two programs use the TYPE SUMMARY option of EST_STRS to compute the
estimate of the mean. The first program uses the summarized data directly.

/*-----------------------------------------------------------

EXAMPLE 5.2 Estimating from summary data

-----------------------------------------------------------*/

%include 'est_strs';

data one;

input region $ capn; 

cards;   

A 155  

B 62  

RURAL 93  

;

data two;  

=

=

=
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input region $ ymean yvar smalln;

cards:   

A 33.900 35.358 20

B 25.125 232.411 8

RURAL 19.000 87.636 12

%est_strs (setup=one, sample=two, ybar=ymean, var=yvar,

strata=region, n=smalln, npop=capn, param=mean,

type=summary);

The second program forms the summary statistics using PROC MEANS with an
output statement. The output from both programs is the same and appears below the
program.

/*-----------------------------------------------------------

EXAMPLE 5.2 Creating summary data with Proc Means

-----------------------------------------------------------*/

%include 'est_strs';

data tv_time; infile 'table5.1' ;

input region $ hours @@;

data one;

input region $ capn smalln;

cards;

A 155

B 62

RURAL 93

;

proc sort data=tv_time; by region;

proc sort data=one; by region;

proc means data=tv_time noprint;

by region; var hours;

output out=new mean=ymean var=yvar n=ni;

%est_strs(setup=one, sample=new, ybar=ymean,

var=yvar, strata=region, n=ni, npop=capn,

param=mean, type=summary);

--------------------------------------------------------------

Estimate of the Population Mean

Stratified Random Sampling Design

Response Variable=ymean (Mean)

Standard

Estimate Error Bound

27.675 1.40340 2.80679

--------------------------------------------------------------
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5
Using Several Macros in One Program

In the last section, one example combines several macros in one program. You
should be careful to distinguish between the names of the different variables and data
sets in the keyword parameter lists.

Example

The objective in this example is to estimate the mean precipitation at 88 U.S. weather
stations for the period January through May, with a bound of 0.25 on the error of
estimation. The frame is in file TEMPS.DAT. A stratified random sample will be se-
lected using the months as strata. In TEMPS.DAT, the data for the months are entered
in five columns.Aseries of output statements is used to combine these into one variable,
PRECIP, and to create the indicator variable MONTH to distinguish between the strata.

First, a pilot sample of size 40 is selected with proportional allocation. The macro
STATS is used with the pilot sample to determine the sample variances, which are in
turn used as approximations to the strata variances for a Neyman allocation. ALLOC
is then called to determine the final sample size and allocation. The option SETUP
OUTALLOC directs the macro STRS to use the output from ALLOC to select the
final stratified sample. The last call to EST_STRS determines the final estimate and
the error bound. The output follows the program.

/*-----------------------------------------------------------

EXAMPLE Using several macros in one program

-----------------------------------------------------------*/

%include 'strs';

%include 'stats';

%include 'est_strs';

%include 'alloc';

data weather; infile 'temps.dat';

input station $ 2–22 jan 27–29 feb 36–38 mar 44–46

apr 52–54 may 60–62;

data weather (keep=station precip month); set weather;

precip=jan; month='Jan'; output;

precip=feb; month='Feb'; output;

precip=mar; month='Mar'; output;

precip=apr; month='Apr'; output;

precip=may; month='May'; output;

data info; input month $ capn smalln;

cards;

Jan 88 8

Feb 88 8

=
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Mar 88 8

Apr 88 8

May 88 8

*SELECT PROPORTIONAL SAMPLE FOR PILOT STUDY;

%strs(noprint, frame=weather, setup=info, npop=capn,

n=smalln, strata=month, sample=pilot);

*OBTAIN PRELIMINARY ESTIMATES FROM PILOT SAMPLE;

%est_strs(sample=pilot, strata=month, setup=info,

response=precip, npop=capn, param=mean) ;

*COMPUTE BASIC STATISTICS FROM PILOT SAMPLE;

%stats (sample=pilot, byvar=month, response=precip,

setup=info);

*USE PILOT SAMPLE TO DETERMINE NEYMAN ALLOCATION;

%alloc(type=neyman, setup=outstats, bound=.25,

param=mean, strata=month, npop=capn, var=var) ;

*SELECT FINAL SAMPLE USING NEYMAN ALLOCATION;

%strs(noprint, frame=weather, setup=outalloc,

npop=capn, n=ni, strata=month) ;

*ESTIMATE MEAN PRECIPITATION FROM FINAL SAMPLE;

%est_strs(strata=month, setup=info, response=precip,

param=mean, npop=capn);

-------------------------------------------------------------

Actual Sample Sizes

(Excludes Missing Data, if Any)

MONTH n(i)

Apr 8

Feb 8

Jan 8

Mar 8

May 8

Estimate of the Population Mean

Stratified Random Sampling Design

Response Variable=precip

Standard

Estimate Error Bound

2.74 0.19298 0.38596

--------------------------------------------------------------

Statistics for precip by Month

Input Data Set=pilot

Output Data Set=outstats
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--------------------------------------------------------------

Stratum Weights and Sample Sizes for the Neyman Allocation

to Obtain an Error Bound of 0.25 on the population mean

Output Data Set=outalloc

Nearest

Stratum Stratum Exact Integer

MONTH Sizes Weights Allocation (ni)

Apr 88 0.11866 9.4929 9

Feb 88 0.22146 17.7166 18

Jan 88 0.20616 16.4928 16

Mar 88 0.27864 22.2908 22

May 88 0.17509 14.0069 14

======= ======= ========== =======

440 1.00000 80.0000 79

--------------------------------------------------------------

Actual Sample Sizes

(Excludes Missing Data, if Any)

MONTH n(i)

Apr 9

Feb 18

Jan 16

Mar 22

May 14

Estimate of the Population Mean

Stratified Random Sampling Design

Response Variable=precip

Standard

Estimate Error Bound

2.73742 0.12845 0.25691

-------------------------------------------------------------

The final recommended sample size is 79. The error bound in the example does not
quite fall within the required 0.25 inches. Incidentally, the actual mean precipitation
is inches. A preliminary run was required to determine a reasonable value
for the bound.
m = 2.67

Standard

MONTH CAPN SMALLN Mean Deviation Variance n

Apr 88 8 3.2250 0.73436 0.53929 8

Feb 88 8 1.9875 1.37054 1.87839 8

Jan 88 8 2.7250 1.27588 1.62786 8

Mar 88 8 3.1250 1.72440 2.97357 8

May 88 8 2.6375 1.08356 1.17411 8
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Data Sets

This appendix provides brief explanations of variables and shows some of the data
for each of the seven large data sets used in the book. These data sets appear on the
accompanying data disk.

CLASSSUR A survey of introductory statistics students at the University of Florida

CARS93 A summary of information on the popular cars for 1993

USPOP A summary of the U.S. population, from the 2000 census

RECYCLE A recycling practices survey carried out in Florida

SCHOOLS A summary of students, teachers, and expenditures for the 2000–2001
school year

TEMPS A listing of monthly normal temperatures and precipitation for U.S.
weather stations

RIVER A listing of daily flow rates for a Florida river

CLASSSUR: A Survey of Introductory Statistics Students
The following is the survey answered by introductory statistics students. The circled
numbers indicate the numerical response for these categories.

1. Male ____1_____ Female ____2_____

2. Age (in years) ________

3. Cumulative University of Florida GPA ________

Check here if you have completed no classes at UF ________

4. Check your current class standing:

Freshman ____1_____

Sophomore ____2_____

Junior ____3_____

Senior ____4_____

Other____5_____
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5. Height (in inches) ________

Weight (in pounds) ________

6. How many hours do you study during a typical week? ________

7. On the average, how many hours do you sleep per night during a typical
week? ________

8. Do you have a job, outside of being a student? Yes ____1_____ No____2_____

9. How much did you pay for textbooks for the current term? ________

10. Is your permanent residence (check one):

In Florida more than 150 miles from Gainesville? ____1_____

In Florida less than 150 miles from Gainesville? ____2_____

Outside Florida? ____3_____

GENDER AGE GPA CLASS HEIGHT WEIGHT STUDY HRS SLEEP HRS JOB TEXTPAY RESIDE

2 19 2.50 2 70.50 147 12.0 7.0 2 200.00 2
2 20 2.30 3 71.00 158 11.8 7.0 2 170.00 1
2 17 * 1 65.00 140 6.0 6.4 1 200.00 2
1 23 2.80 4 72.00 160 9.0 7.0 2 111.00 2
2 33 3.45 4 65.00 155 10.0 7.0 1 150.00 2
2 20 2.50 3 60.00 138 10.0 8.0 1 250.00 1
2 32 3.67 4 66.00 125 14.0 6.0 2 150.00 2
2 21 2.50 3 65.00 116 20.0 8.0 2 260.00 1
2 20 * 3 68.60 138 13.0 6.0 1 90.00 1
2 17 3.50 1 64.00 110 15.0 7.0 2 130.00 2
2 20 3.10 3 67.00 120 7.0 7.0 1 180.00 3
2 21 * 3 68.00 127 * 8.0 2 200.00 1
2 19 * 2 61.00 115 11.0 6.8 1 51.47 1
2 21 2.56 3 64.00 133 7.0 7.5 1 100.00 2
2 20 2.60 3 62.00 105 12.0 6.0 1 200.00 1
1 25 3.00 4 66.00 160 40.0 6.0 1 90.00 2
1 26 3.20 4 70.00 160 8.0 6.0 2 245.00 3
1 20 3.04 2 70.00 178 7.0 7.0 1 200.00 3
2 17 * 1 64.00 * 9.0 5.5 2 220.00 1
1 19 2.80 3 71.00 170 10.0 8.0 1 200.00 2
2 18 3.20 2 64.00 106 13.0 6.0 2 200.00 2
2 42 3.75 4 63.00 140 10.0 7.0 1 150.00 2
1 22 2.75 4 67.00 147 30.0 6.0 2 320.00 1
2 21 2.84 4 67.00 135 14.0 7.0 2 200.00 1
2 18 * 1 67.00 130 10.0 8.0 2 145.00 1
2 20 2.80 3 66.00 150 14.0 6.0 2 * 1
2 20 3.29 3 66.00 118 14.0 8.0 2 216.00 1
1 19 2.70 3 73.00 167 10.0 7.0 1 200.00 2
1 20 2.80 3 71.00 175 5.0 8.0 2 150.00 2
2 20 2.90 3 63.00 123 7.0 6.0 1 185.00 1
1 20 2.93 3 67.00 147 10.0 5.0 1 220.00 1

(continued)

     



CARS93: A Survey of Popular Cars for 1993
The following are the variables for which data are listed:

MANUFAC: manufacturer

MODEL: model

TYPE: Small 1

Compact 2

Midsize 3

Large 4

Sporty 5

Van 6

MINPRICE: minimum price (in thousands of dollars)—price for basic version 
of this model

MIDPRICE: midrange price (in thousands of dollars)—average of minimum 
and maximum price

=

=

=

=

=

=

416 Appendix C Data Sets

GENDER AGE GPA CLASS HEIGHT WEIGHT STUDY HRS SLEEP HRS JOB TEXTPAY RESIDE

2 22 3.24 4 62.00 * 7.0 8.0 2 120.00 1
2 18 * 1 66.50 * 15.0 7.0 2 198.00 3
2 18 * 1 * 108 12.0 4.9 2 160.00 2
1 21 3.20 4 68.00 145 26.0 7.0 2 400.00 2
2 20 2.96 3 65.00 118 25.0 6.0 2 150.00 2
1 22 3.10 4 76.00 220 16.0 4.5 1 250.00 1
2 21 3.00 3 65.00 112 13.5 7.0 1 210.00 1
2 20 2.50 3 61.00 105 10.0 8.0 2 175.00 1
1 20 3.25 3 75.00 160 9.0 9.0 1 200.00 2
1 22 3.55 5 65.00 140 10.0 8.5 1 240.00 1
1 34 3.91 5 73.00 175 30.0 7.0 1 120.00 2
1 20 2.76 2 71.00 175 7.0 8.0 2 200.00 1
1 18 3.47 3 67.00 153 15.0 9.0 2 90.00 2
2 20 3.00 3 * * 14.0 4.0 2 260.00 2
2 23 2.80 4 64.00 128 5.0 6.0 1 49.00 2
1 22 3.34 4 75.00 225 6.0 7.0 2 95.00 2
2 19 3.40 3 60.75 110 5.0 7.0 2 300.00 3
1 21 2.60 2 71.00 183 5.0 5.0 1 225.00 1
1 19 2.65 3 68.00 130 3.0 9.0 1 200.00 3
1 19 3.20 2 67.00 156 15.0 7.0 2 180.00 2
2 20 2.40 3 63.00 128 35.0 5.0 2 250.00 1
2 17 * 1 68.00 175 13.0 5.5 2 280.00 1
1 21 2.98 4 74.00 240 18.0 6.0 1 240.00 1
2 20 3.40 3 68.00 122 12.5 6.0 1 250.00 2
1 21 2.70 4 69.00 195 10.0 7.0 2 230.00 2
1 18 3.40 1 58.00 155 16.0 6.0 1 200.00 2

(continued)
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MAXPRICE: maximum price (in thousands of dollars)—price for a premium 
version

MPGCITY: miles per gallon by EPA rating for city driving

MPGHIGH: miles per gallon for highway driving

AlRBAGS: standard air bags (0 None, 1 Driver only, 2 Driver and passenger)

DRIVETR: drive-train type (0 Rear-wheel drive, 1 Front-wheel drive, 
2 All-wheel drive)

CYLINDR: number of cylinders

LITERS: engine size (in liters)

HPOWER: horsepower (maximum)

RPMMAX: revolutions per minute at maximum horsepower

US?: manufactured by a U.S. company (1 Yes, 0 No)

The printout that follows shows only the first 57 cars on the list.

==

=

==

===

(continued)

ROW MANUFAC MODEL TYPE MINPRICE MIDPRICE MAXPRICE

1 Acura Integra Small 12.9 15.9 18.8
2 Acura Legend Midsize 29.2 33.9 38.7
3 Audi 90 Compact 25.9 29.1 32.3
4 Audi 100 Midsize 30.8 37.7 44.6
5 BMW 535i Midsize 23.7 30.0 36.2
6 Buick Century Midsize 14.2 15.7 17.3
7 Buick LeSabre Large 19.9 20.8 21.7
8 Buick Roadmaster Large 22.6 23.7 24.9
9 Buick Riviera Midsize 26.3 26.3 26.3

10 Cadillac DeVille Large 33.0 34.7 36.3
11 Cadillac Seville Midsize 37.5 40.1 42.7
12 Chevrolet Cavalier Compact 8.5 13.4 18.3
13 Chevrolet Corsica Compact 11.4 11.4 11.4
14 Chevrolet Camaro Sporty 13.4 15.1 16.8
15 Chevrolet Lumina Midsize 13.4 15.9 18.4
16 Chevrolet Lumina APV Van 14.7 16.3 18.0
17 Chevrolet Astro Van 14.7 16.6 18.6
18 Chevrolet Caprice Large 18.0 18.8 19.6
19 Chevrolet Corvette Sporty 34.6 38.0 41.5
20 Chrysler Concorde Large 18.4 18.4 18.4
21 Chrysler LeBaron Compact 14.5 15.8 17.1
22 Chrysler Imperial Large 29.5 29.5 29.5
23 Dodge Colt Small 7.9 9.2 10.6
24 Dodge Shadow Small 8.4 11.3 14.2
25 Dodge Spirit Compact 11.9 13.3 14.7
26 Dodge Caravan Van 13.6 19.0 24.4
27 Dodge Dynasty Midsize 14.8 15.6 16.4
28 Dodge Stealth Sporty 18.5 25.8 33.1
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(continued)

(continued)

ROW MANUFAC MODEL TYPE MINPRICE MIDPRICE MAXPRICE

29 Eagle Vision Large 17.5 19.3 21.2
30 Ford Festiva Small 6.9 7.4 7.9
31 Ford Escort Small 8.4 10.1 11.9
32 Ford Tempo Compact 10.4 11.3 12.2
33 Ford Mustang Sporty 10.8 15.9 21.0
34 Ford Probe Sporty 12.8 14.0 15.2
35 Ford Aerostar Van 14.5 19.9 25.3
36 Ford Taurus Midsize 15.6 20.2 24.8
37 Ford Crown Victoria Large 20.1 20.9 21.7
38 Geo Metro Small 6.7 8.4 10.0
39 Geo Storm Sporty 11.5 12.5 13.5
40 Honda Prelude Sporty 17.0 19.8 22.7
41 Honda Civic Small 8.4 12.1 15.8
42 Honda Accord Compact 13.8 17.5 21.2
43 Hyundai Excel Small 6.8 8.0 9.2
44 Hyundai Elantra Small 9.0 10.0 11.0
45 Hyundai Scoupe Sporty 9.1 10.0 11.0
46 Hyundai Sonata Midsize 12.4 13.9 15.3
47 Infiniti Q45 Midsize 45.4 47.9 50.4
48 Lexus ES300 Midsize 27.5 28.0 28.4
49 Lexus SC300 Midsize 34.7 35.2 35.6
50 Lincoln Continental Midsize 33.3 34.3 35.3
51 Lincoln Town Car Large 34.4 36.1 37.8
52 Mazda 323 Small 7.4 8.3 9.1
53 Mazda Protege Small 10.9 11.6 12.3
54 Mazda 626 Compact 14.3 16.5 18.7
55 Mazda MPV Van 16.6 19.1 21.7
56 Mazda RX-7 Sporty 32.5 32.5 32.5
57 Mercedes-Benz 190E Compact 29.0 31.9 34.9

MPGCITY MPGHIGH AIRBAGS DRIVETR CYLINDR LITERS HPOWER RPMMAX US? TYPECODE

25 31 0 1 4 1.8 140 6300 0 1
18 25 2 1 6 3.2 200 5500 0 3
20 26 1 1 6 2.8 172 5500 0 2
19 26 2 1 6 2.8 172 5500 0 3
22 30 1 0 4 3.5 208 5700 0 3
22 31 1 1 4 2.2 110 5200 1 3
19 28 1 1 6 3.8 170 4800 1 4
16 25 1 0 6 5.7 180 4000 1 4
19 27 1 1 6 3.8 170 4800 1 3
16 25 1 1 8 4.9 200 4100 1 4
16 25 2 1 8 4.6 295 6000 1 3
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(continued)

MPGCITY MPGHIGH AIRBAGS DRIVETR CYLINDR LITERS HPOWER RPMMAX US? TYPECODE

25 36 0 1 4 2.2 110 5200 1 2
25 34 1 1 4 2.2 110 5200 1 2
19 28 2 0 6 3.4 160 4600 1 5
21 29 0 1 4 2.2 110 5200 1 3
18 23 0 1 6 3.8 170 4800 1 6
15 20 0 2 6 4.3 165 4000 1 6
17 26 1 0 8 5.0 170 4200 1 4
17 25 1 0 8 5.7 300 5000 1 5
20 28 2 1 6 3.3 153 5300 1 4
23 28 2 1 4 3.0 141 5000 1 2
20 26 1 1 6 3.3 147 4800 1 4
29 33 0 1 4 1.5 92 6000 1 1
23 29 1 1 4 2.2 93 4800 1 1
22 27 1 1 4 2.5 100 4800 1 2
17 21 1 2 6 3.0 142 5000 1 6
21 27 1 1 4 2.5 100 4800 1 3
18 24 1 2 6 3.0 300 6000 1 5
20 28 2 1 6 3.5 214 5800 1 4
31 33 0 1 4 1.3 63 5000 1 1
23 30 0 1 4 1.8 127 6500 1 1
22 27 0 1 4 2.3 96 4200 1 2
22 29 1 0 4 2.3 105 4600 1 5
24 30 1 1 4 2.0 115 5500 1 5
15 20 1 2 6 3.0 145 4800 1 6
21 30 1 1 6 3.0 140 4800 1 3
18 26 1 0 8 4.6 190 4200 1 4
46 50 0 1 3 1.0 55 5700 0 1
30 36 1 1 4 1.6 90 5400 0 5
24 31 2 1 4 2.3 160 5800 0 5
42 46 1 1 4 1.5 102 5900 0 1
24 31 2 1 4 2.2 140 5600 0 2
29 33 0 1 4 1.5 81 5500 0 1
22 29 0 1 4 1.8 124 6000 0 1
26 34 0 1 4 1.5 92 5550 0 5
20 27 0 1 4 2.0 128 6000 0 3
17 22 1 0 8 4.5 278 6000 0 3
18 24 1 1 6 3.0 185 5200 0 3
18 23 2 0 6 3.0 225 6000 0 3
17 26 2 1 6 3.8 160 4400 1 3
18 26 2 0 8 4.6 210 4600 1 4
29 37 0 1 4 1.6 82 5000 0 1
28 36 0 1 4 1.8 103 5500 0 1
26 34 1 1 4 2.5 164 5600 0 2
18 24 0 2 6 3.0 155 5000 0 6
17 25 1 0 * 1.3 255 6500 0 5
20 29 1 0 4 2.3 130 5100 0 2
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Percent in
State Total Section 18–24 18 and over 15–44 65 and over 85 and over Poverty

United States 288,368,698 28,341,732 215,474,215 125,434,691 35,601,911 4,593,063 11.9
Alabama 4,486,508 3 452,196 3,379,400 1,912,183 588,542 71,436 15.2
Alaska 643,786 4 58,738 451,358 282,205 39,200 3,073 8.7
Arizona 5,456,453 4 540,015 3,979,597 2,337,512 701,243 77,568 14.1
Arkansas 2,710,079 3 272,391 2,032,557 1,133,360 376,387 48,960 18.8
California 35,116,033 4 3,551,492 25,663,642 15,961,970 3,716,836 470,826 12.8
Colorado 4,506,542 4 447,869 3,355,424 2,051,306 434,472 53,101 9.2
Connecticut 3,460,503 1 287,412 2,587,650 1,423,965 472,314 70,079 7.8
Delaware 807,385 3 81,501 617,687 353,804 105,488 11,821 7.9
Florida 16,713,149 3 1,403,624 12,830,878 6,664,700 2,854,838 360,332 12.6
Georgia 8,560,310 3 868,937 6,291,833 3,956,561 813,652 95,660 12.1
Hawaii 1,244,898 4 123,045 949,384 529,157 166,910 20,353 11.4
Idaho 1,341,131 4 149,036 970,692 580,140 151,141 19,701 11.4
Illinois 12,600,620 2 1,228,541 9,346,097 5,529,191 1,499,249 206,861 11.5
Indiana 6,159,068 2 628,691 4,564,211 2,651,181 757,451 98,317 8.8
Iowa 2,936,760 2 314,972 2,238,715 1,235,599 432,785 68,523 8.3
Kansas 2,715,884 2 291,509 2,019,365 1,170,482 355,094 53,908 10.1

USPOP: A Summary of the United States Population from the 2000 Census
The variables are the following:

Total: total resident population

Section: section of the country (1 Northeast, 2 Midwest, 3 South, 4 West)

18–24: resident population between the ages of 18 and 24

18 and over: resident population ages 18 and older

15–44: resident population between the ages of 15 and 44

65 and over: resident population ages 65 and older

85 and over: resident population ages 85 and older

Percent in Poverty: percentage of the population estimated to live with income under the poverty line

====
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Percent in
State Total Section 18–24 18 and over 15–44 65 and over 85 and over Poverty

Kentucky 4,092,891 3 419,536 3,161,303 1,801,729 509,476 61,272 13.4
Louisiana 4,482,646 3 495,811 3,296,972 1,959,857 520,446 61,368 16.9
Maine 1,294,464 1 118,126 1,015,406 539,991 186,383 25,025 11.9
Maryland 5,458,137 3 488,911 4,078,212 2,380,371 616,699 73,543 7.3
Massachusetts 6,427,801 1 597,865 4,964,461 2,819,170 863,695 125,214 9.5
Michigan 10,050,446 2 970,466 7,480,182 4,303,040 1,231,920 155,891 10.5
Minnesota 5,019,720 2 507,071 3,767,595 2,223,693 601,741 91,625 6.9
Mississippi 2,871,782 3 322,625 2,111,035 1,250,438 346,251 44,530 18.9
Missouri 5,672,579 2 567,574 4,275,118 2,427,133 757,197 102,956 9.8
Montana 909,453 4 92,915 693,133 371,835 122,806 16,568 13.4
Nebraska 1,729,180 2 184,586 1,289,787 742,932 232,134 35,528 10
Nevada 2,173,491 4 187,297 1,600,901 939,593 240,255 20,508 8
New Hampshire 1,275,056 1 114,725 966,685 549,632 152,577 19,966 6.1
New Jersey 8,590,300 1 693,034 6,462,909 3,622,519 1,121,197 148,920 8
New Mexico 1,855,059 4 191,698 1,354,553 787,591 221,454 25,820 17.9
New York 19,157,532 1 1,815,216 14,544,281 8,360,627 2,473,510 337,060 14.1
North Carolina 8,320,146 3 815,438 6,251,306 3,653,026 998,391 115,539 13.4
North Dakota 634,110 2 76,034 487,298 272,657 94,076 15,544 12.7
Ohio 11,421,267 2 1,098,431 8,541,340 4,811,220 1,513,372 190,926 10.1
Oklahoma 3,493,714 3 377,256 2,620,154 1,491,234 460,459 58,325 14.6
Oregon 3,521,515 4 338,287 2,666,408 1,491,506 443,968 63,297 11.3
Pennsylvania 12,335,091 1 1,153,224 9,471,639 5,060,108 1,908,962 258,789 9.5
Rhode Island 1,069,725 1 114,090 830,477 466,946 152,286 22,707 10.3
South Carolina 4,107,183 3 429,425 3,128,020 1,794,151 503,256 55,259 14.7
South Dakota 761,063 2 82,635 565,438 319,741 108,322 17,021 10
Tennessee 5,797,289 3 553,941 4,392,628 2,498,445 719,177 86,838 14.5
Texas 21,779,893 3 2,287,194 15,677,577 9,857,869 2,152,896 255,611 15.3
Utah 2,316,256 4 321,169 1,603,244 1,102,207 199,041 24,078 10.2
Vermont 616,592 1 62,147 476,930 261,245 79,241 10,768 9.8
Virginia 7,293,542 3 720,847 5,514,134 3,250,670 817,441 95,835 8.9
Washington 6,068,996 4 593,628 4,555,636 2,678,937 677,532 93,072 10.8
West Virginia 1,801,873 3 173,743 1,412,702 727,866 275,974 33,292 16.6
Wisconsin 5,441,196 2 556,567 4,103,132 2,357,595 706,418 103,150 8.2
Wyoming 498,703 4 54,248 376,359 210,398 59,222 7,273 8.8
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ROW D Code Intervie County City Q1 Q2 (a) Q2 (b) Q2 (c) Q2 (d)

1 1 4 17 27 3 3 3 3 3
2 2 32 17 27 1 2 2 1 1
3 3 7 17 28 2 1 2 1 1
4 4 22 17 28 2 3 3 1 1
5 5 36 17 27 3 3 3 1 1
6 6 10 17 28 1 2 2 2 2
7 7 4 17 27 2 1 1 3 3
8 8 35 17 28 3 3 2 1 1
9 9 36 13 21 1 1 2 1 1

10 10 32 17 28 2 1 3 1 1
11 11 22 17 28 5 3 3 3 3
12 12 10 13 21 1 1 1 1 1
13 13 36 13 21 4 1 2 1 1
14 14 7 13 21 2 1 1 1 1
15 15 7 13 21 1 1 2 1 1
16 16 7 13 21 1 3 3 1 1
17 17 4 13 21 5 1 1 1 1
18 18 27 13 21 5 1 3 3 3
19 19 37 15 25 1 2 2 2 2
20 20 36 15 25 2 1 3 1 1
21 21 32 15 25 2 1 3 1 1
22 22 22 15 25 3 1 2 1 1
23 23 36 15 25 2 1 3 1 1
24 24 10 15 25 1 1 1 1 2
25 25 37 15 25 1 1 1 1 1
26 26 35 15 25 2 1 3 1 1
27 27 37 15 25 2 1 1 1 1
28 28 32 17 27 2 3 2 1 1
29 29 22 17 28 3 2 2 3 3
30 30 35 15 25 1 1 3 1 1
31 31 7 13 21 1 1 2 1 1
32 32 37 15 25 2 1 1 1 1
33 33 10 13 21 1 1 1 1 1
34 34 22 13 25 2 1 2 1 1
35 35 32 15 25 4 1 1 1 1
36 36 35 15 25 4 1 2 1 2
37 37 32 15 25 3 1 2 1 1
38 38 22 12 20 3 3 2 1 3
39 39 37 12 20 1 1 2 1 1
40 40 35 15 25 2 1 2 1 1

RECYCLE: A Survey on Recycling Practices
The survey is discussed in Chapter 5, and the questionnaire for this survey is printed
at the end of that chapter.* The following printout shows the recorded data through
Question 2(d) for the first 40 respondents.

*From Florida Survey Research Center, University of Florida.
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Expenditure
State Total Students Total Teachers per Pupil Population

Alabama 737,294 46,796 5,885 4,486,508
Alaska 134,358 8,026 9,216 643,786
Arizona 922,180 46,015 5,278 5,456,453
Arkansas 449,805 33,079 5,568 2,710,079
California 6,248,610 304,296 6,987 35,116,033
Colorado 742,145 44,182 6,567 4,506,542
Connecticut 570,228 41,773 10,127 3,460,503
Delaware 115,555 7,571 8,958 807,385
Florida 2,500,478 134,684 6,170 16,713,149
Georgia 1,470,634 92,732 6,929 8,560,310
Hawaii 184,546 11,007 6,596 1,244,898
Idaho 246,521 13,854 5,725 1,341,131
Illinois 2,071,391 129,600 7,643 12,600,620
Indiana 996,133 59,658 7,630 6,159,068
Iowa 485,932 34,906 6,930 2,936,760
Kansas 470,205 33,084 6,925 2,715,884
Kentucky 654,363 40,375 6,079 4,092,891
Louisiana 731,328 49,980 6,037 4,482,646
Maine 205,586 16,741 8,232 1,294,464
Maryland 860,640 53,774 8,256 5,458,137
Massachusetts 973,140 68,942 9,509 6,427,801
Michigan 1,730,668 98,849 8,278 10,050,446
Minnesota 851,384 53,081 7,645 5,019,720
Mississippi 493,507 31,213 5,175 2,871,782
Missouri 909,792 65,240 6,657 5,672,579
Montana 151,947 10,408 6,726 909,453
Nebraska 285,095 21,083 7,223 1,729,180
Nevada 356,814 19,276 5,807 2,173,491
New Hampshire 206,847 14,677 7,286 1,275,056
New Jersey 1,341,656 103,611 11,248 8,590,300
New Mexico 320,260 21,823 6,313 1,855,059
New York 2,872,132 209,128 10,716 19,157,532
North Carolina 1,315,363 85,684 6,346 8,320,146
North Dakota 106,047 8,035 6,125 634,110

(continued)

SCHOOLS: A Summary of Students, Teachers, and
Expenditures for the 2000–2001 School Year, by State

The variables are the following:

Total Students: total number of students registered in public schools of the year

Total Teachers: total number of teachers, based on full-time equivalents, for the year

Expenditure per Pupil: total dollars spent per pupil for the year

Population: resident population of the state according to 2000 Census figures
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Expenditure
State Total Students Total Teachers per Pupil Population

Ohio 1,830,985 122,115 7,571 11,421,267
Oklahoma 622,139 41,632 6,019 3,493,714
Oregon 551,480 28,402 7,528 3,521,515
Pennsylvania 1,821,627 118,470 8,210 12,335,091
Rhode Island 158,046 11,103 9,315 1,069,725
South Carolina 691,078 46,616 6,631 4,107,183
South Dakota 127,542 9,370 6,191 761,063
Tennessee 925,030 58,357 5,687 5,797,289
Texas 4,163,447 282,846 6,539 21,779,893
Utah 484,677 22,211 4,674 2,316,256
Vermont 101,179 8,554 9,153 616,592
Virginia 1,163,091 89,314 7,281 7,293,542
Washington 1,009,200 52,534 6,750 6,068,996
West Virginia 282,885 20,139 7,534 1,801,873
Wisconsin 879,361 60,918 8,243 5,441,196
Wyoming 88,128 7,026 7,835 498,703

SOURCE: National Center for Education Statistics.

Jan. Feb. Mar. Apr. May

Station T P T P T P T P T P

Albany, N.Y. 22 2.2 24 2.1 33 2.6 47 2.7 58 3.3
Albuquerque, N.M. 35 0.3 40 0.4 46 0.5 56 0.5 65 0.5
Anchorage, Alaska 12 0.8 18 0.8 24 0.6 35 0.6 46 0.6
Asheville, N.C. 38 3.4 39 3.6 46 4.7 56 3.5 64 3.3
Atlanta, Ga. 42 4.3 45 4.4 51 5.8 61 4.6 69 3.7
Baltimore, Md. 33 2.9 35 2.8 43 3.7 54 3.1 64 3.6
Barrow, Alaska -15 0.2 -19 0.2 -15 0.2 -1 0.2 19 0.2
Birmingham, Ala. 44 4.8 47 5.3 53 6.2 63 4.6 71 3.6
Bismarck, N.D. 8 0.5 14 0.4 25 0.7 43 1.4 54 2.2
Boise, Idaho 29 1.5 36 1.2 41 1.0 49 1.1 57 1.3
Boston, Mass. 29 3.7 30 3.5 38 4.0 49 3.5 59 3.5
Buffalo, N.Y. 24 2.9 24 2.6 32 2.9 45 3.2 55 3.0
Burlington, Vt. 17 1.7 19 1.7 29 1.9 43 2.6 55 3.0
Caribou, Maine 11 2.0 13 2.1 24 2.2 37 2.4 50 3.0
Charleston, S.C. 49 2.9 51 3.3 56 4.8 65 3.0 72 3.8
Chicago, Ill. 24 1.9 27 1.6 37 2.7 50 3.8 60 3.4
Cincinnati, Ohio 32 3.4 34 3.0 43 4.1 55 3.9 64 4.0

(continued)

TEMPS: Monthly Normal Temperatures (T)
and Precipitation (P) for U.S. Weather Stations*

(continued)
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Jan. Feb. Mar. Apr. May

Station T P T P T P T P T P

Cleveland, Ohio 27 2.6 28 2.2 36 3.1 48 3.5 58 3.5
Columbus, Ohio 28 2.9 30 2.3 39 3.4 51 3.7 61 4.1
Dallas–Ft. Worth, Tex. 45 1.8 49 2.4 55 2.5 65 4.3 73 4.5
Denver, Col. 30 0.6 33 0.7 37 1.2 48 1.9 57 2.6
Des Moines, Iowa 19 1.1 24 1.1 34 2.3 50 2.9 61 4.2
Detroit, Mich. 26 1.9 27 1.8 35 2.3 48 3.1 58 3.4
Dodge City, Kans. 31 0.5 35 0.6 41 1.1 54 1.7 64 3.1
Duluth, Minn. 9 1.2 12 0.9 24 1.8 39 2.6 49 3.4
Eureka, Calif. 47 7.4 48 5.2 48 4.8 50 3.0 53 2.1
Fairbanks, Alaska -12 0.6 -3 0.5 10 0.5 29 0.3 47 0.7
Fresno, Calif. 45 1.8 50 1.7 54 1.6 60 1.2 67 0.3
Galveston, Tex. 54 3.0 56 2.7 61 2.6 69 2.6 76 3.2
Grand Junction, Colo. 27 0.6 34 0.6 41 0.8 52 0.8 62 0.6
Grand Rapids, Mich. 23 1.9 25 1.5 33 2.5 47 3.4 57 3.2
Hartford, Conn. 25 3.3 27 3.2 36 3.8 48 3.8 58 3.5
Helena, Mont. 18 0.6 25 0.4 31 0.7 43 0.9 52 1.8
Honolulu, Hawaii 72 4.4 72 2.5 73 3.2 75 1.4 77 1.0
Houston, Tex. 52 3.6 55 3.5 61 2.7 69 3.5 76 5.1
Huron, S.D. 13 0.4 18 0.8 29 1.1 46 2.0 57 2.8
Indianapolis, Ind. 28 2.9 31 2.4 40 3.8 52 3.9 62 4.1
Jackson, Miss. 47 4.5 50 4.6 56 5.6 66 4.7 73 4.4
Jacksonville, Fla. 55 2.8 56 3.6 61 3.6 68 3.1 74 3.2
Juneau, Alaska 24 3.9 28 3.4 32 3.6 39 3.0 47 3.3
Kansas City, Mo. 27 1.3 32 1.3 41 2.6 54 3.5 64 4.3
Knoxville,Tenn. 41 4.7 43 4.7 50 4.9 60 3.6 68 3.3
Lander,Wyo. 20 0.5 26 0.7 31 1.2 43 2.4 53 2.6
Little Rock, Ark. 40 4.2 43 4.4 50 4.9 62 5.3 70 5.3
Los Angeles, Calif. 57 3.0 58 2.8 59 2.2 62 1.3 65 0.1
Louisville, Ky. 33 3.5 36 3.5 44 5.1 56 4.1 65 4.2
Marquette, Mich. 18 1.5 20 1.5 27 1.9 40 2.6 50 2.9
Memphis, Tenn. 41 4.9 44 4.7 51 5.1 63 5.4 71 4.4
Miami, Fla. 67 2.2 68 2.0 71 2.1 75 3.6 78 6.1
Milwaukee, Wis. 19 1.6 23 1.1 31 2.2 45 2.8 54 2.9
Minneapolis, Minn. 12 0.7 17 0.8 28 1.7 45 2.0 57 3.4
Mobile, Ala. 51 4.7 54 4.8 59 7.1 68 5.6 75 4.5
Moline, Ill. 22 1.7 26 1.3 36 2.6 51 3.8 61 3.9
Nashville, Tenn. 38 4.8 41 4.4 49 5.0 60 4.1 69 4.1
Newark, N.J. 31 2.9 33 3.0 41 3.9 52 3.4 62 3.6
New Orleans, La. 53 4.5 56 4.8 61 5.5 69 4.2 75 4.2
New York, N.Y. 32 2.7 33 2.9 41 3.7 52 3.3 62 3.5
Nome, Alaska 6 0.9 5 0.8 7 0.8 19 0.7 35 0.7
Norfolk, Va. 41 3.4 41 3.3 48 3.4 58 2.7 67 3.3
Okla. City, Okla. 37 1.1 41 1.3 48 2.1 60 3.5 68 5.2
Omaha, Nebr. 23 0.8 28 1.0 37 1.6 52 3.0 63 4.1
Parkersburg, W. Va. 33 3.1 35 2.8 43 3.8 55 3.5 64 3.6
Philadelphia, Pa. 32 2.8 34 2.6 42 3.7 53 3.3 63 3.4

(continued)
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Jan. Feb. Mar. Apr. May

Station T P T P T P T P T P

Phoenix, Ariz. 51 0.7 55 0.6 60 0.8 68 0.3 76 0.1
Pittsburgh, Pa. 28 2.8 29 2.4 38 3.6 50 3.4 60 3.6
Portland, Maine 22 3.4 23 3.5 32 3.6 43 3.3 53 3.3
Portland, Oreg. 38 5.9 43 4.1 46 3.6 51 2.2 57 2.1
Providence, R.I. 28 3.5 29 3.5 37 4.0 47 3.7 57 3.5
Raleigh, N.C. 41 3.2 42 3.3 49 3.4 60 3.1 67 3.3
Rapid City, S.D. 22 0.5 26 0.6 31 1.0 45 2.1 55 2.8
Reno, Nev. 32 1.2 37 0.9 40 0.7 47 0.5 55 0.7
Richmond, Va. 38 2.9 39 3.0 47 3.4 58 2.8 67 3.4
St. Louis, Mo. 31 1.9 35 2.1 43 3.0 57 3.9 66 3.9
Salt Lake City, Utah 28 1.3 33 1.2 40 1.6 49 2.1 58 1.5
San Antonio, Tex. 51 1.7 55 2.1 61 1.5 70 2.5 76 3.1
San Diego, Calif. 55 1.9 57 1.5 58 1.6 61 0.8 63 0.2
San Francisco, Calif. 48 4.4 51 3.0 53 2.5 55 1.6 58 0.4
San Juan, P.R. 75 3.7 75 2.5 76 2.0 78 3.4 79 6.5
Sault Ste. Marie, Mich. 14 1.9 15 1.5 24 1.7 38 2.2 49 3.0
Savannah, Ga. 50 2.9 52 2.9 58 4.4 66 2.9 73 4.2
Seattle, Wash. 38 5.8 42 4.2 44 3.6 49 2.5 55 1.7
Spokane, Wash. 25 2.5 32 1.7 38 1.5 46 1.1 55 1.5
Springfield, Mo. 33 1.7 37 2.2 44 3.0 57 4.3 65 4.9
Syracuse, N.Y. 24 2.7 25 2.8 33 3.0 47 3.1 57 3.0
Tampa, Fla. 60 2.3 62 2.9 66 3.9 72 2.1 77 2.4
Trenton, N.J. 32 2.8 33 2.7 41 3.8 52 3.2 62 3.4
Washington, D.C. 36 2.6 37 2.5 45 3.3 56 2.9 66 3.7
Wilmington, Del. 32 2.9 34 2.8 42 3.7 52 3.2 62 3.4

SOURCE: The World Almanac & Book of Facts, 1984. Copyright © 1983 Newspaper Enterprise Association, Inc.,
New York.
*T is in degrees Fahrenheit, and P is in inches.

RIVER: Flow Rates for Crystal River, Florida
Discharge water (cubic feet per second), October 1977–September 1979 (mean values)

1977–1978

Day Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept.

1 51 11 3.6 6.1 13 37 9.8 16 3.6 9.3 26 127
2 45 11 3.6 6.1 14 26 8.6 18 4.1 3.4 47 122
3 42 11 4.0 5.7 17 26 8.4 18 3.6 2.5 48 126
4 38 11 3.3 4.8 16 54 8.0 25 9.1 1.6 40 132
5 35 9.5 2.9 4.4 14 55 8.7 27 12 1.3 34 136

(continued)

(continued)
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(continued)

1977–1978

Day Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept.

6 32 7.4 3.5 5.3 13 45 8.4 19 12 1.9 33 139
7 29 5.4 2.6 5.9 12 37 9.2 50 12 2.6 36 143
8 28 5.5 2.6 6.6 12 34 9.5 49 9.9 2.2 38 133
9 28 5.5 2.8 9.0 31 111 9.9 28 9.1 4.1 46 126

10 27 6.3 3.1 8.8 47 216 10 22 8.4 5.3 63 123

11 26 6.0 3.1 7.4 44 134 11 20 6.8 6.6 78 120
12 27 4.8 2.8 6.1 35 91 11 18 6.8 11 85 116
13 26 4.7 2.6 11 28 77 12 18 6.8 5.8 88 114
14 24 5.0 2.6 15 25 68 13 17 6.1 6.8 89 114
15 23 5.5 2.8 12 24 64 13 15 6.1 17 91 98

16 23 5.5 5.4 9.3 35 62 12 14 6.8 3.8 96 86
17 23 6.0 6.2 11 112 50 13 13 6.8 7.7 98 81
18 22 6.0 5.6 17 234 42 13 14 5.4 19 103 77
19 21 5.7 4.7 18 243 36 14 20 4.7 48 108 78
20 21 4.8 4.0 29 138 30 17 14 4.7 65 127 75

21 20 5.4 4.1 29 125 27 17 13 4.1 35 119 60
22 19 5.6 4.2 29 113 21 16 12 3.3 20 104 49
23 16 7.5 4.9 26 98 16 14 9.6 4.1 17 96 40
24 17 4.8 5.1 24 82 14 14 7.7 4.1 14 93 31
25 17 4.8 5.0 23 69 13 14 7.1 3.7 13 91 24

26 16 4.4 6.1 23 58 12 16 6.9 3.0 22 90 24
27 15 4.3 5.9 23 49 12 17 11 2.3 29 91 19
28 14 3.6 5.0 19 41 11 17 12 2.7 24 98 13
29 13 3.8 5.2 18 — 11 17 9.5 2.8 22 95 9.6
30 13 3.8 5.4 16 — 9.5 16 4.6 7.9 19 100 8.5
31 12 — 6.8 14 — 9.6 — 2.6 — 20 114 —

Total 763 185.6 129.5 442.3 1742 1451.1 377.5 531.2 182.8 459.9 2465 2544.1
Mean 24.6 6.19 4.18 14.3 62.2 46.8 12.6 17.1 6.09 14.8 79.5 84.8
Max. 51 11 6.8 29 243 216 17 50 12 65 127 143
Min. 12 3.6 2.6 4.4 12 9.5 8.0 2.6 2.3 1.3 26 8.5

1978–1979

Day Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept.

1 10 1.2 2.6 7.3 23 29 11 3.5 38 6.1 13 521
2 8.4 .77 1.8 9.5 21 23 11 2.3 36 4.3 13 508
3 9.1 .63 2.6 11 19 21 9.2 1.5 34 3.3 14 401
4 8.1 .60 2.5 8.3 18 19 6.7 1.4 39 4.0 16 345
5 7.1 .50 4.1 6.5 19 18 6.8 1.4 40 8.2 26 284

6 9.4 .65 4.1 4.7 19 40 8.0 2.1 32 11 27 237
7 8.7 .56 3.7 6.0 19 101 7.6 2.6 26 6.8 58 205
8 6.1 .64 3.3 7.6 20 85 7.9 504 22 17 84 183
9 6.1 .57 3.0 8.5 19 65 8.7 1300 19 14 133 165

10 5.4 .56 3.0 8.0 17 50 9.0 489 16 8.5 114 155

(continued)
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1978–1979

Day Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept.

11 4.6 .70 3.0 7.5 16 44 9.4 275 14 6.2 150 150
12 5.6 .76 3.4 27 16 37 9.4 220 12 6.8 490 145
13 6.8 .74 3.1 59 15 33 9.9 185 11 11 379 226
14 9.3 .80 4.3 49 15 31 8.5 185 9.6 14 296 314
15 5.7 .87 3.5 30 15 27 8.5 160 8.6 18 296 287

16 5.0 .96 3.1 22 15 25 7.8 140 7.8 12 264 333
17 4.7 1.0 3.0 19 15 21 6.4 126 7.3 14 281 324
18 4.5 1.1 2.6 17 14 21 6.1 116 6.4 11 261 290
19 4.4 1.1 3.1 14 14 19 6.3 95 6.4 10 228 276
20 5.8 1.1 4.7 13 13 16 6.1 78 5.9 10 337 254

21 6.6 1.1 5.6 17 12 16 6.8 76 5.8 16 331 235
22 7.9 1.3 7.7 19 12 15 5.9 74 5.6 14 281 472
23 9.6 1.6 8.6 17 12 17 4.8 62 5.2 14 288 472
24 6.6 1.8 10 33 13 20 5.0 74 5.1 19 321 897
25 5.6 2.2 11 40 56 18 5.9 82 4.7 25 305 764

26 5.2 2.0 12 33 106 16 4.8 70 3.7 17 296 878
27 5.8 2.0 15 26 62 13 4.7 60 3.9 12 328 786
28 7.6 2.1 28 24 36 12 4.5 54 7.2 11 305 680
29 3.8 2.6 19 23 — 12 3.7 49 14 10 287 580
30 2.7 .93 12 23 — 11 3.6 45 9.1 11 465 500
31 1.4 — 8.8 24 — 12 — 41 — 12 492 —

Total 197.6 33.44 202.2 613.9 651 887 214.0 4574.8 455.3 357.2 7189 11867
Mean 6.37 1.11 6.52 19.8 23.3 28.6 7.13 148 15.2 11.5 232 396
Max. 10 2.6 28 59 106 101 11 1300 40 25 492 897
Min. 1.4 .50 1.8 4.7 12 11 3.6 1.4 3.7 3.3 13 145

SOURCE: U.S. Department of Interior, Geological Survey.

(continued)

     



Selected Answers

Chapter 4 Exercises

4.1 a.

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.32 , no

4.33 , Yes, there is a
significant difference.

4.34 a.

b. , Yes, there is a
significant difference.

4.35 a.

b.

c. mN 1 - mN 2 = 9.4, B = 0.916

mN 1 - mN 2 = 921.0, B = 230.4

mN 1 - mN 2 = 10,337, B = 3354

mN 1 - mN 2 = 0.64, B = 0.486

mN = 97.88, B = 0.35

pN 1 - pN 2 = 0.132, B = 0.015

pN = 0.46, B = 0.03

n = 400

tN = 37,800, B = 3379.94

n = 87

pN = 0.183, B = 0.096

n = 4

mN = 2.1, B = 0.17

NpN = 100, B = 31.30

n = 2392

pN = 0.430, B = 0.0312

mN = 2.0, B = 0.938

mN 2 = 4.52, B2 = 0.086

mN 1 = 2.30, B1 = 0.070

tN = 125,000, B = 70,412.50

mN = 12.5, B = 7.04

n = 128

pN = 0.83, B = 0.131

s2
= 2, V(y ) = 0.75

4.40

4.41

4.42

4.43 , There is no
significant difference.

4.44 , no

4.47 a.

b.

c.

d.

Chapter 5 Exercises

5.1
5.2
5.3
5.5

5.6 a. ;

c.
5.7
5.8
5.9

5.10

5.11

5.12
5.13

5.14 pN st = 0.701, B = 0.0503

n3 = 69, n4 = 33
n = 158, n1 = 39, n2 = 17,
n = 29

n = 60

tN = 50,505.60, B = 8663.12
n = 32
n = 33
n1 = 11, n2 = 20, n3 = 18
mN 1 - mN 2 = 14.96, B = 6.79

mN = 59.99, B = 3.03
n3 = 3
n = 26, n1 = 16, n2 = 7,
tN = 1903.9, B = 676.8
n1 = 18, n2 = 10, n3 = 2
pN st = 0.30, B = 0.117

pN = 0.90, B = 0.0880

pN = 0.10, B = 0.0880

pN = 0.63, B = 0.1041

pN = 0.22, B = 0.0893

(pN 1 - pN 2) = -0.05, B = 0.06

mN 1 - mN 2 = 0.081, B = 0.296

pN = 0.3, B = 0.206

tN = $98,550.00, B = $19,905.83

tN = $17,333.33, B = $4,479.23
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5.15

5.16 a.

b.

5.17 Dividing points = 40, 70, 90

5.18 Stratum –

Stratum –350

5.19

5.21 a.

b.

5.27 a.

b.

5.28

5.29

5.31 a.

b. yes

c. yes

Chapter 6 Exercises

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.16

6.17

6.21 a.

b.

6.25 ,

VN (tNyRc) = 557,095.07

tNyRc = 48,209.84

r = 0.870, B = 0.176

r = 1.043, B = 0.0733

r = 0.835, B = 0.012

tNyL = 5515.50, B = 448.61

tNyL = 1186.55, B = 61.33

n = 14

tNy = 231,611.86, B = 3073.83

mN y = 997.92, B = 53.65

r = 1.038, B = 0.004

tNy = 5492.31, B = 428.44

r = 1.44, B = 0.08

mN y = 4.16, B = 0.085

mN y = 17.59, B = 0.271

mN y = 1186.53, B = 59.79

tNy = 145,943.78, B = 7353.67

r = 0.147, B = 0.0102

tNy = 2958.33, B = 730.12

tNy = 1589.55, B = 186.32

pN 1 - pN 3 = -0.095, B = 0.036,

pN 1 - pN 2 = -0.137, B = 0.064,

pN st = 0.738, B = 0.017

pN st = 0.68, VN (pN st) = 0.00204

mN = 189.93, VN (yst) = 1378.82

n = 41, n1 = 12, n2 = 29

n1 = 0.29n, n2 = 0.71n

pN st = 0.159, B = 0.081

pN = 0.160, B = 0.074

mN = 63.88, B = 0.628

2 = $201

2001 = $0

mN = 250.05, VN (yst) = 181.22

mN = 251.07, VN (yst) = 141.88

n3 = 27, n4 = 12

n = 61, n1 = 15, n2 = 7, 6.26 a.

b.

c.

6.27 a.

b.

c.

6.28 For Exercise 6.9

a.

b.

c.

For Exercise 6.11

a.

b.

c.

6.30

6.33

6.34

Chapter 7 Exercises

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.14

7.16

7.17

7.18

7.20 a.

b.

Chapter 8 Exercises

8.2

8.3

8.4 tN = 14,008.85, B = 1110.78

tN = 12,312, B = 3175.07

mN = 19.73, B = 1.78

mN sy = 19.29, B = 2.36

tN sy = 155,586, B = 8223

tN sy = 4400, B = 784.08

pN sy = 0.738, B = 0.104

mN sy = 7038.10, B = 108.74

mN sy = 225.47, B = 6.75

n = 259

tN sy = 127.500, B = 30,137.06

n = 1432

pN sy = 0.81, B = 0.036

mN sy = 2007.11, B = 74.505

n = 28

mN sy = 11.94, B = 0.026

n = 1636

pN sy = 0.66, B = 0.0637

mN yL = 0.396, B = 0.023

mN yL = 196.97

r = 0.0056, B = 0.022

RE(mN y>mN yD) = 0.61

RE(mN yL>mN YD) = 1.20

RE(mN yL>mN y) = 1.95

RE(tNy>tNYD) = 1.708

RE(tNyL>tNYD) = 1.56

RE(tNyL>tNy) = 0.912

RE(mN y>mN yD) = 0.908

RE(mN yL>mN yD) = 1.086

RE(mN yL>mN y) = 1.195

RE(tNyL>tNy) = 1.04

RE(tNyL>tN) = 16.03

RE(tNy>tN) = 15.36

     



Selected Answers 431

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

8.17

8.18

8.19

8.20 a.

b.

8.21

8.22

8.23

8.31

8.32

8.36 a.

b.

Chapter 9 Exercises

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9 mN = 7.933, B = 0.0923

tN = 1276.25, B = 333.44

pN = 0.120, B = 0.067

tN = 3980.7, B = 274.73

pN = 0.351, B = 0.177

pN = 0.287, B = 0.112

mN = 9.559, B = 1.367

mN r = 9.379, B = 1.455

VN (pN ) = 0.0527

pN = 0.391

mN = 0.25, B = 0.128

tN = 600, B = 308.22

pN = 0.0918, B = 0.0390

tN = 80, B = 40.44

pN = 0.133, B = 0.075

mN = 1.90, B = 0.232

mN = 3.153, B = 0.460

mN = 2.685, VN (y*) = 0.056

tN = 3532.8, B = 539.50

pN = 0.40, B = 0.116

mN = 5.91, B = 0.322

n = 21

pN = 0.5701, B = 0.0307

mN = 16.005, B = 0.0215

n = 30

tN = 157,020, B = 6927.88

mN = 40.17, B = 0.640

n = 7

pN = 0.709, B = 0.048

n = 13

mN = 51.56, B = 1.344

n = 14 9.11

9.12

9.14

9.15

9.16

Chapter 10 Exercises

10.4

10.5

10.6

10.7

10.8

10.9

10.10

10.11

10.13

10.14

10.15

10.16

10.19

10.21 a.

b.

Chapter 11 Exercises

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.13

11.14 pN = 0.125, B = 0.1377

pN = 0.875, B = 0.105

tN = 4117.75, B = 999.81

tN = 3866.763, B = 1163.892

y = 9.804, B = 2.376

tN = 1959.73, B = 763.51

tN = 1794.455, B = 778.15

y = 23.61, B = 9.097

y = 5.26, B = 0.789

y = 407.125, B = 93.70

VN (lN ) = 2.4

lN = 6.0

lN = 2.792, B = 0.216

MN = 1920, B = 135.76

lN = 0.0171, B = 0.00191

lN = 2.1, B = 0.0748

NN = 250, B = 52.04

NN = 750, B = 441.59

NN = 1067, B = 507.72

n = 625

NN = 200, B = 78.88

NN = 3349, B = 455.11

NN = 10,868, B = 715.82

NN = 1811, B = 344.51

NN = 445, B = 150.60

mN = 13.0, B = 4.264

mN r = 0.9811, B = 0.225

tN = 3900, B = 1279.2

tN = 57,608, B = 6465.37

mN r = 97.97, B = 10.996
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