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Preface 

Beginning with the first edition of this book. the goal has been to introduce a broad 
array of techniques for the examination and analysis of a wide variety of data that 
may be encountered in diverse areas of biological studies. As such, the book has been 
called upon to fulfill two purposes. First. it has served as an introductory textbook. 
assuming no prior knowledge of statistics. Second, it has functioned as a reference 
work consulted long after formal instruction has ended. 

Colleges and universities have long offered an assortment of introductory statistics 
courses. Some of these courses are without concentration on a particular field in 
which quantitative data might be collected (and often emphasize mathematics and 
statistical theory). and some focus on statistical methods of utility to a specific field 
(such as this book. which has an explicit orientation to the biological sciences). 
Walker (1929: 148-163) reported that. although the teaching of probability has 
a much longer history. the first statistics course at a'V.S. university or college 
probably was at Columbia College (renamed Columbia University in 1896) in 
1880 in the economics department; followed in 1887 by the second-the first in 
psychology-at the University of Pennsylvania; in 1889 by the first in anthropology, 
at Clark University; in 1897 by the first in biology, at Harvard University; in 1898 
by the first in mathematics, at the University of Illinois; and in 1900 by the first in 
education. at Teachers College. Columbia University. In biology. the first courses 
with statistical content were probably taught by Charles B. Davenport at Harvard 
(1887-1899), and his Statistical Methods in Biological Variation. first published in 
1899. may have been the first American book focused on statistics (ibid.: 159). 

The material in this book requires no mathematical competence beyond very 
elementary algebra. although the discussions include many topics that appear seldom. 
if at all. in other general texts. Some statistical procedures are mentioned though not 
recommended. This is done for the benefit of readers who may encounter them in 
research reports or computer software. 

Many literature references and footnotes are given throughout most chapters. 
to provide support for material discussed. to provide historical points. or to direct 
the reader to sources of additional information. More references are given for 
controversial and lesser-known topics. 

The data in the examples and exercises are largely fictional, though generally 
realistic, and are intended to demonstrate statistical procedures. not to present actual 
research conclusions. The exercises at the end of chapters can serve as additional 
examples of statistical methods, and the answers are given at the back of the book. 
The sample sizes of most examples and exercises are small in order to conserve space 
and to enhance the ease of presentation and computation. Although the examples 
and exercises represent a variety of areas within the biological sciences. they are 
intended to be understood by biology students and researchers across a diversity of 
fields. 

There are important statistical procedures that involve computations so demanding 
that they preclude practical execution without appropriate computer software. Basic 
principles and aspects of the underlying calculations are presented to show how results 
may be obtained; for even if laborious calculations will be performed by computer, the 
biologist should be informed enough to interpret properly the computational results. 
Many statistical packages are available. commercially or otherwise, addressing various 
subsets of the procedures in this book: but no single package is promoted herein. 

xi 



xii Preface 

A final contribution toward achieving a book with self-sufficiency for most bio­
statistical needs is the inclusion of a comprehensive set of statistical tables, more 
extensive than those found in similar texts. 

To be useful as a reference, and to allow for differences in content among 
courses for which it might be used, this book contains much more material than 
would be covered during one academic term. Therefore, I am sometimes asked to 
recommend what I consider to be the basic topics for an introduction to the subject. 
I suggest these book sections (though not necessarily in their entirety) as a core 
treatment of biostatistical methods, to be augmented or otherwise amended with 
others of the instructor's preference: 1.1-1.4,2.1-2.4,3.1-3.3,4.1,4.4-4.6,6.1-6.4, 
7.1-7.4,7.6-7.7,8.1-8.5,8.10-8.11,9.1-9.3,10.1-10.4, 11.1-11.4, 12.1-12.4, 14.1, 
15.1,17.1-17.7,18.1-18.3,19.1-19.3,19.9, 20.2-20.4, 22.1-22.3, 22.5, 23.1-23.4: and 
the introductory paragraph(s) to each of these chapters. 

Jerrold H. Zar 
DeKalb, Illinois 
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CHAPTER 1 

Data: Types and Presentation 

1.1 TYPES OF BIOLOGICAL DATA 
1.2 ACCURACY AND SIGNIFICANT FIGURES 
1.3 FREQUENCY DISTRIBUTIONS 
1.4 CUMULATIVE FREQUENCY DISTRIBUTIONS 

Scientific study involves the systematic collection, organization. analysis. and presen­
tation of knowledge. Many investigations in the hiological sciences are quantitative. 
where knowledge is in the form of numerical ohservations called data. (One numerical 
observation is a dawl11.*) In order for the presentation and analysis of data to be 
valid and useful, we must use methods appropriate to the type of data obtained. to 
the design of the data collection. and to the questions asked of the data: and the 
limitations of the data. of the data collection. and of the data analysis should be 
appreciated when formulating conclusions. This chapter. and those that follow. will 
introduce many concepts relevant to this goal. 

The word statistics is derived from the Latin for "state." indicating the historical 
importance of governmental data gathering, which related principally to demographic 
information (including census data and "vital statistics") and often to their use in 
military recruitment and tax collecting. t 

The term statistics is often encountered as a synonym for data: One hears of college 
enrollment statistics (such as the numbers of newly admitted students. numbers of 
senior students, numbers of students from various geographic locations). statistics of 
a basketball game (such as how many points were scored by each player. how many 
fouls were committed). lahor statistics (such as numbers of workers unemployed. 
numbers employed in various occupations). and so on. Hereafter. this usc of the word 
statistics will not appear in this hook. Instead, it will be used in its other common 
manner: to refer to the orderly collection, analysis. and interpretatiol1 (~f data with 
a view to objective evaluatioll of conclusions based Oil the data. (Section 2.4 will 
introduce another fundamentally important use of the term statistic.) 

Statistics applied to biological problems is simply called biostatistics or, sometimes. 
biometry* (the latter term literally meaning "biological measurement"). Although 

*The IeI'm dllfll is sometimes seen as a singular noun meaning "numcrical information." This 
hook rdrains from that usc. 

t Peters (llJ~7: 79) and Walker (llJ29: 32) attrihute the first use of the term Sflllistin to a German 
professor. Gottfried Achenwall (1719-1772). who uscd the German word Swti.wik in I 74lJ. and the 
lirst puhlished use of the English word to John Sinclair (1754-1~35) in 1791. 

*The word biollletry. which literally means "biological measurement." had. since the nineteenth 
century. hcen found in sl.!veral contexts (such as demographics and. later. yuantitative genetics: 
Armitage. 1 9~S: Stigler. 2(K)O). but using it to mean the application of statistical methods to niological 
information apparently was conceived hetween IX92 and 1901 by Karl Pearson. along with the name 
Biollletrika for the still·important English journal he helped found: and it was first publi~hed in the 
inaugural is!\uc of this journ,,1 in IlJO} (Sncdccor. 1954). The Biometrics Section of the Amcric,m 

1 
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their magnitudes relative to each other: or success in learning to run a maze may be 
recorded as A. B. or C. 

It is often true that biological data expressed on the ordinal scale could have been 
expressed on the interval or ratio scale had exact measurements been obtained (or 
obtainable). Sometimes data that were originally on interval or ratio scales will be 
changed to ranks: for example, examination grades of99. 85. 73. and 66% (ratio scale) 
might be recorded as A, B. C, and D (ordinal scale), respectively. 

Ordinal-scale data contain and convey less information than ratio or interval data, 
for only relative magnitudes are known. Consequently. quantitative comparisons are 
impossible (e.g., we cannot speak of a grade of C being half as good as a grade of 
A, or of the difference between cell sizes I and 2 being the same as the difference 
between sizes 3 and 4). However. we will see that many useful statistical procedures 
are, in fact. applicable to ordinal data. 

(d) Data in Nominal Categories. Sometimes the variable being studied is classified 
by some qualitative measure it possesses rather than by a numerical measurement. 
In such cases the variable may be called an attribute, and we are said to be dealing 
with nominal, or categorical. data. Genetic phenotypes are commonly encountered 
biological attributes: The possible manifestations of an animal's eye color might be 
brown or blue: and if human hair color were the attribute of interest, we might 
record black. brown. blond, or red. As other examples of nominal data (nominal 
is from the Latin word for "name"), people might be classified as male or female, 
or right-handed or left-handed. Or, plants might be classified as dead or alive, or 
as with or without fertilizer application. Taxonomic categories also form a nominal 
classification scheme (for example, plants in a study might be classified as pine, spruce. 
or fir). 

Sometimes. data that might have been expressed on an ordinal. interval, or ratio 
scale of measurement may be recorded in nominal categories. For example. heights 
might be recorded as tall or short. or performance on an examination as pass or fail. 
where there is an arbitrary cut-off point on the measurement scale to separate tall 
from short and pass from fail. 

As will be seen. statistical methods useful with ratio. interval. or ordinal data 
generally are not applicable to nominal data. and we must. therefore. be able to 
identify such situations when they occur. 

(e) Continuous and Discrete Data. When we spoke previously of plant heights. we 
were dealing with a variable that could be any conceivable value within any observed 
range; this is referred to as a continuous variable. That is. if we measure a height of 
35 cm and a height of 36 cm, an infinite number of heights is possible in the range 
from 35 to 36 cm: a plant might be 35.07 cm tall or 35.988 cm tall, or 35.3263 cm tall, 
and so on. although, of course, we do not have devices sensitive enough to detect this 
infinity of heights. A continuous variable is one for which there is a possible value 
between any other two values. 

However, when speaking of the number of leaves on a plant, we are dealing 
with a variable that can take on only certain values. It might be possible to observe 
27 leaves. or 28 leaves, but 27.43 leaves and 27.9 leaves are values of the variable 
that are impossible to obtain. Such a variable is termed a discrete or discontinuous 
variable (also known as a meristic variable). The number of white blood cells in 1 mm3 

of blood. the number of giraffes visiting a water hole. and the number of eggs laid 
by a grasshopper are all discrete variables. The possible values of a discrete variable 
generally are consecutive integers. but this is not necessarily so. If the leaves on our 



plants are always formed in pairs, then only even integers are possible values of the 
variable. And the ratio of number of wings to number of legs of insects is a discrete 
variable that may only have the value of 0,0.3333 ...• or 0.6666 ... (i.e., ~, ~, or ~, 
respectively). * 

Ratio-, interval-, and ordinal-scale data may be either continuous or discrete. 
Nominal-scale data by their nature are discrete. 

1.2 ACCURACY AND SIGNIFICANT FIGURES 

Accuracy is the nearness of a measurement to the true value of the variable being 
measured. Precision is not a synonymous term but refers to the closeness to each other 
of repeated measurements of the same quantity. Figure 1.1 illustrates the difference 
between accuracy and precision of measurements . 

• • •• ••• ••• I 

o 2 3 4 

(a) 

• • •• ••• ·r··, I 

o 2 3 4 

(c) 

5 6 kg 0 

5 6 kg 0 

• •••••••• I I I 

234 

(b) 

5 

• ••••••• I I I 

2 3 4 5 

(d) 

6 kg 

6 kg 

FIGURE 1.1: Accuracy and precision of measurements. A 3-kilogram animal is weighed 10 times. The 10 
measurements shown in sample (a) are relatively accurate and precise; those in sample (b) are relatively 
accurate but not precise; those of sample (c) are relatively precise but not accurate; and those of sample 
Cd) are relatively inaccurate and imprecise. 

Human error may exist in the recording of data. For example. a person may 
miscount the number of birds in a tract of land or misread the numbers on a heart­
rate monitor. Or, a person might obtain correct data but record them in such a way 
(perhaps with poor handwriting) that a subsequent data analyst makes an error in 
reading them. We shall assume that such errors have not occurred, but there are other 
aspects of accuracy that should he considered. 

Accuracy of measurement can be expressed in numerical reporting. If we report 
that the hind leg of a frog is 8 cm long, we are stating the number 8 (a value of a 
continuous variable) as an estimate of the frog's true leg length. This estimate was 
made using some sort of a measuring device. Had the device been capable of more 
accuracy, we might have declared that the leg was 8.3 em long, or perhaps 8.32 em 
long. When recording values of continuous variables. it is important to designate the 
accuracy with which the measurements have been made. By convention, the value 
8 denotes a measurement in the range of 7.50000 ... to 8.49999 ... , the value 8.3 
designates a range of 8.25000 ... to 8.34999 ...• and the value 8.32 implies that the 
true value lies within the range of 8.31500 ... to 8.32499 .... That is, the reported 
value is the midpoint of the implied range. and the size of this range is designated 
by the last decimal place in the measurement. The value of 8 cm implies an ability to 

*The ellipsis marks ( ... ) may be read as "and so on." Here. they indicate that ~ and ~ are 
repeating decimal fractions. which could just as well have been written as 0.3333333333333 ... and 
0.6666666666666 .... respectively. 
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determine length within a range of 1 cm. 8.3 cm implies a range of 0.1 cm. and 8.32 cm 
implies a range of 0.01 cm. Thus. to record a value of 8.0 implies greater accuracy 
of measurement than does the recording of a value of 8, for in the first instance the 
true value is said to lie between 7.95000 ... and 8.049999 ... (i.e., within a range of 
0.1 cm). whereas 8 implies a value between 7.50000 ... and 8.49999 ... (i.e .• within a 
range of I cm). To state 8.00 cm implies a measurement that ascertains the frog's limb 
length to be between 7.99500 ... and 8.00499 ... cm (i.e .. within a range of 0.01 cm). 
Those digits in a number that denote the accuracy of the measurement are referred 
to as significant figures. Thus. 8 has one significant figure, 8.0 and 8.3 each have two 
significant figures, and 8.00 and 8.32 each have three. 

In working with exact values of discrete variables. the preceding considerations 
do not apply. That is. it is sufficient to state that our frog has four limbs or that its 
left lung contains thirteen flukes. The use of 4.0 or 13.00 would be inappropriate. for 
as the numbers involved are exactly 4 and 13. there is no question of accuracy or 
significant figures. 

But there are instances where significant figures and implied accuracy come into 
play with discrete data. An entomologist may report that there are 72,000 moths in 
a particular forest area. In doing so. it is probably not being claimed that this is the 
exact number but an estimate of the exact number. perhaps accurate to two significant 
figures. In such a case. 72,000 would imply a range of accuracy of 1000. so that the true 
value might lie anywhere from 71,500 to 72,500. If the entomologist wished to convey 
the fact that this estimate is believed to be accurate to the nearest 100 (i.e .. to three 
significant figures), rather than to the nearest 1000, it would be better to present the 
data in the form of scientific l1otation,* as follows: If the number 7.2 x 104 ( = 72.000) 
is written, a range of accuracy of 0.1 x 104 (= 1000) is implied. and the true value 
is assumed to lie between 71,500 and 72,500. But if 7.20 x 1(}4 were written. a range 
of accuracy of 0.01 x 104 ( = 100) would be implied, and the true value would be 
assumed to be in the range of 71,950 to 72,050. Thus. the accuracy of large values (and 
this applies to continuous as well as discrete variables) can be expressed succinctly 
using scientific notation. 

Calculators and computers typically yield results with more significant figures than 
are justified by the data. However. it is good practice-to avoid rounding error-to 
retain many significant figures until the last step in a sequence of calculations. and on 
attaining the result of the final step to round off to the appropriate number of figures. 
A suggestion for the number of figures to report is given at the end of Section 6.2. 

1.3 FREQUENCY DISTRIBUTIONS 

When collecting and summarizing large amounts of data, it is often helpful to record 
the data in the form of a frequency table. Such a table simply involves a listing of all 
the observed values of the variable being studied and how many times each value is 
observed. Consider the tabulation of the frequency of occurrence of sparrow nests 
in each of several different locations. This is illustrated in Example l.l, where the 
observed kinds of nest sites are listed, and for each kind the number of nests observed 
is recorded. The distribution of the total number of observations among the various 
categories is termed a frequency distribution. Example 1.1 is a frequency table for 
nominal data. and these data may also be presented graphically by means of a bar 
graph (Figure 1.2). where the height of each bar is proportional to the frequency 
in the class represented. The widths of all bars in a bar graph should be equal so 

*The use of scientific notation-by physicists-can be traced back to at least the 18605 (Miller. 
2004b). 



EXAMPLE 1.1 
Nominal Data 

Section 1.3 Frequency Distributions 7 

The Location of Sparrow Nests: A Frequency Table of 

The variable is nest site. and there are four recorded categories of this variable. 
The numbers recorded in these categories constitute the frequency distribution. 

Nest Site Number of Nests Observed 

A. Vines 56 
B. Building eaves 60 
C. Low tree branches 46 
D. Tree and building cavities 49 

60 I- r--

.----
50 I- r--

'" r--
'Iii v 40 I-Z 
'0 ... 
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30 l-s:. e 
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10 -
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A B C D 

Nest Site 

FIGURE 1.2: A bar graph of the sparrow nest data of Example 1.1. An example of a bar graph for 
nominal data. 

that the eye of the reader is not distracted from the differences in bar heights; this 
also makes the area of each bar proportional to the frequency it represents. Also. 
the frequency scale on the vertical axis should begin at zero to avoid the apparent 
differences among bars. If. for example. a bar graph of the data of Example 1.1 were 
constructed with the vertical axis representing frequencies of 45 to 60 rather than 0 to 
60. the results would appear as in Figure 1.3. Huff (1954) illustrates other techniques 
that can mislead the readers of graphs. It is good practice to leave space between 
the bars of a bar graph of nominal data. to emphasize the distinctness among the 
categories represented. 

A frequency tabulation of ordinal data might appear as in Example 1.2. which 
presents the observed numbers of sunfish collected in each of five categories. each 
category being a degree of skin pigmentation. A bar graph (Figure 1.4) can be 
prepared for this frequency distribution just as for nominal data. 
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60 r-

FIGURE 1.3: A bar graph of the sparrow nest data of Example 1.1, drawn with the vertical axis starting 
at 45. Compare this with Figure 1.1, where the axis starts at O. 

EXAMPLE 1.2 Numbers of Sunfish, Tabulated According to Amount of 
Black Pigmentation: A Frequency Table of Ordinal Data 

The variable is amount of pigmentation, which is expressed by numerically 
ordered classes. The numbers recorded for the five pigmentation classes compose 
the frequency distribution. • 

Pigmentation Class Amount of Pigmentation Number of Fish 

o No black pigmentation 13 
1 Faintly speckled 68 
2 Moderately speckled 44 
3 Heavily speckled 21 
4 Solid black pigmentation 8 
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FIGURE 1.4: A bar graph of the sunfish pigmentation data of Example 1.2. An example of a bar graph 
for ordinal data. 
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In preparing frequency tables of interval- and ratio-scale data, we can make a 
procedural distinction between discrete and continuous data. Example 1.3 shows 
discrete data that are frequencies of litter sizes in foxes, and Figure 1.5 presents this 
frequency distribution graphically. 

EXAMPLE 1.3 Frequency of Occurrence of Various Litter Sizes in Foxes: 
A Frequency Table of Discrete, Ratio-Scale Data 

The variable is litter size, and the numbers recorded for the five litter sizes make 
up frequency distribution. 

Utter Size Frequency 

3 10 
4 27 
5 22 
6 4 
7 1 

30 ' .. 

25 -
~ -
~ 20 -
~ 
''0 ... 
0 15 , -.D 
E 
:::l 

Z 
10 - ,--- ., 

5 -

0 
~ 4 6 7 

Li tter Sin: 

FIGURE 1.5: A bar graph of the fox litter data of Example 1.3. An example of a bar graph for discrete, 
ratio-scale data. 

Example 1.4a shows discrete data that are the numbers of aphids found per clover 
plant. These data create quite a lengthy frequency table, and it is not difficult 
to imagine sets of data whose tabulation would result in an even longer list of 
frequencies. Thus, for purposes of preparing bar graphs, we often cast data into a 
frequency table by grouping them. 

Example l.4b is a table of the data from Example 1.4a arranged by grouping the 
data into size classes. The bar graph for this distribution appears as Figure 1.6. Such 
grouping results in the loss of some information and is generally utilized only to make 
frequency tables and bar graphs easier to read, and not for calculations performed on 
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the data. There have been several "rules of thumb" proposed to aid in deciding into 
how many classes data might reasonably be grouped, for the use of too few groups will 
obscure the general shape of the distribution. But such "rules" or recommendations 
are only rough guides, and the choice is generally left to good judgment, bearing in 
mind that from 10 to 20 groups are useful for most biological work. (See also Doane, 
1976.) In general, groups should be established that are equal in the size interval of 
the variable being measured. (For example, the group size interval in Example].4b 
is four aphids per plant.) 

EXAMPLE 1.4a Number of Aphids Observed per Clover Plant: A Fre-
quency Table of Discrete, Ratio-Scale Data 

Number of Aphids Number of Number of Aphids Number of 
011 a Plant Plants Observed on a Plant Plallts Observed 

0 3 20 17 
1 1 21 18 
2 I 22 23 
3 1 23 17 
4 2 24 19 
5 3 25 18 
6 5 26 19 
7 7 27 21 
8 8 28 18 
9 II 29 13 

IO 10 30 10 
11 11 31 14 
12 13 32 9 
13 12 33 10 
14 16 34 8 
15 13 35 5 
16 14 36 4 
17 ]6 37 1 
18 ]5 38 2 
19 14 39 1 

40 0 
41 I 

Total number of observations = 424 

Because continuous data, contrary to discrete data. can take on an infinity of 
values, one is essentially always dealing with a frequency distribution tabulated by 
groups. If the variable of interest were a weight, measured to the nearest 0.1 mg, 
a frequency table entry of the number of weights measured to be 48.6 mg would 
be interpreted to mean the number of weights grouped between 48.5500 ... and 
48.6499 ... mg (although in a frequency table this class interval is usually written as 
48.55-48.65). Example 1.5 presents a tabulation of 130 determinations of the amount 
of phosphorus, in milligrams per gram, in dried leaves. (Ignore the last two columns 
of this table until Section 1.4.) 
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EXAMPLE 1.4b Number of Aphids Observed per Clover Plant: A Fre-
quency Table Grouping the Discrete, Ratio-Scale Data of Example 1.4a 
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Number of Aphids 
on a Plant 

0-3 
4-7 
8-11 

12-15 
16-19 
20-23 
24-27 
28-31 
32-35 
36-39 
40-43 

Number of 
Plants Observed 

6 
17 
40 
54 
59 
75 
77 
55 
32 
8 
1 

Total number of observations = 424 
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Observed Number of Aphids per Plant 

FIGURE 1.6: A bar graph of the aphid data of Example 1.4b. An example of a bar graph for grouped 
discrete, ratio-scale data. 
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EXAMPLE 1.5 Determinations of the Amount of Phosphorus in Leaves: A 
Frequency Table of Continuous Data 

Frequency 
Cumulative frequency 

Phosphorus (i.e .• number of Starting with Startillg with 
(mglg of leaf) determinations) Low Values High Vailies 

8.15-8.25 2 2 130 
8.25-8.35 6 8 128 
8.35-8.45 8 16 122 
8.45-8.55 11 27 114 
8.55-8.65 17 44 103 
8.65-8.75 17 61 86 
8.75-8.85 24 85 69 
8.85-8.95 18 103 45 
8.95-9.05 13 116 27 
9.05-9.15 10 126 14 
9.15-9.25 4 130 4 

Total frequency = 130 = n 

In presenting this frequency distribution graphically, one can prepare a histogram: 
which is the name given to a bar graph based on continuous data. This is done in 
Figure 1.7: note that rather than indicating the range on the horizontal axis. we 
indicate only the midpoint of the range, a procedure that results in less crowded 
printing on the graph. Note also that adjacent bars in a histogram are often drawn 
touching each other, to emphasize the continuity of the scale of measurement, whereas 
in the other bar graphs discussed they generally are not. 

25 

>. g 20 

" ::s 

! 15 

III 

8.2 8.3 K4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.2 
Phosphorus (mglg or lear) 

FIGURE 1.7: A histogram of the leaf phosphorus data of Example 1.5. An example of a histogram for 
continuous data. 

*The term histogram is from Greek roots (referring to a pole-shaped drawing) and was first 
published by Karl Pearson in 1895 (David \995). 
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FIGURE 1.8: A frequency polygon for the leaf phosphorus data of Example 1.5. 

Often a frequency polygon is drawn instead of a histogram. This is done by plotting 
the frequency of each class as a dot (or other symbol) at the class midpoint and 
then connecting each adjacent pair of dots by a straight line (Figure 1.8). It is. of 
course. the same as if the midpoints of the tops of the histogram bars were connected 
by straight lines. Instead of plotting frequencies on the vertical axis, one can plot 
relative frequencies, or proportions of the total frequency. This enables different 
distributions to be readily compared and even plotted on the same axes. Sometimes, 
as in Figure 1.8, frequency is indicated on one vertical axis and the corresponding 
relative frequency on the other. (Using the data of Example 1.5, the relative frequency 
for 8.2 mglg is 2/130 = 0.015, that for 8.3 mglg is 6/130 = 0.046, that for 9.2 mglg is 
4/130 = 0.030, and so on. The total of all the frequencies is n, and the total of all the 
relative frequencies is 1.) 

Frequency polygons are also commonly used for discrete distributions, but one can 
argue against their use when dealing with ordinal data, as the polygon implies to the 
reader a constant size interval horizontally between points on the polygon. Frequency 
polygons should not be employed for nominal-scale data. 

If we have a frequency distribution of values of a continuous variable that falls 
into a large number of class intervals, the data may be grouped as was demonstrated 
with discrete variables. This results in fewer intervals, but each interval is, of course, 
larger. The midpoints of these intervals may then be used in the preparation of a 
histogram or frequency polygon. The user of frequency polygons is cautioned that 
such a graph is simply an aid to the eye in following trends in frequency distributions, 
and one should not attempt to read frequencies between points on the polygon. Also 
note that the method presented for the construction of histograms and frequency 
polygons requires that the class intervals be equal. Lastly, the vertical axis (e.g., the 
frequency scale) on frequency polygons and bar graphs generally should begin with 
zero, especially if graphs are to be compared with one another. If this is not done, the 
eye may be misled by the appearance of the graph (as shown for nominal-scale data 
in Figures 1.2 and 1.3). 
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1.4 CUMULATIVE FREQUENCY DISTRIBUTIONS 

A frequency distribution informs us how many observations occurred for each value 
(or group of values) of a variable. That is. examination of. the frequency table of 
Example 1.3 (or its corresponding bar graph or frequency polygon) would yield 
information such as. "How many fox litters of four were observed?". the answer 
being 27. But if it is desired to ask questions such as, "How many litters of four or 
more were observed?", or "How many fox litters of five or fewer were observed?", 
we are speaking of cumulative frequencies. To answer the first question, we sum 
all frequencies for litter sizes four and up, and for the second question, we sum all 
frequencies from the smallest litter size up through a size of five. We arrive at answers 
of 54 and 59, respectively. 

In Example 1.5, the phosphorus concentration data are cast into two cumulative 
frequency distributions, one with cumulation commencing at the low end of the 
measurement scale and one with cumulation being performed from the high values 
toward the low values. The choice of the direction of cumulation is immaterial. 
as can be demonstrated. If one desired to calculate the number of phosphorus 
determinations less than 8.55 mg/g, namely 27, a cumulation starting at the low end 
might be used, whereas the kn'owledge of the frequency of determinations greater 
than 8.55 mg/g, namely 103, can be readily obtained from the cumulation commencing 
from the high end of the scale. But one can easily calculate any frequency from a low­
to-high cumulation (e.g .. 27) from its complementary frequency from a high-lo-Iow 
cumulation (e.g., 103), simply by knowing that the sum of these two frequencies is the 
total frequency (i.e., n = 130): therefore, in practice it is not necessary to calculate 
both sets of cumulations. 

Cumulative frequency distributions are useful in determining medians, percentiles. 
and other quantiles, as discussed in Sections 3.2 and 4.2. They are not often presented 
in bar graphs, but cllmulative frequency polygons (sometimes called ogives) are not 
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FIGURE 1.9: Cumulative frequency polygon ofthe leaf phosphorus data of Example 1.5, with cumulation 
commencing from the lowest to the highest values of the variable. 
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FIGURE 1.10: Cumulative frequency polygon of the leaf phosphorus data of Example 1.5, with cumulation 
commencing from the highest to the lowest values of the variable. 

uncommon. (See Figures 1.9 and 1.10.) Relative frequencies (proportions ofthe total 
frequency) can be plotted instead of (or, as in Figures 1.9 and 1.10, in addition to) 
frequencies on the vertical axis of a cumulative frequency polygon. This enables 
different distributions to be readily compared and even plotted on the same axes. 
(Using the data of Example 1.5 for Figure 1.9, the relative cumulative frequency for 
8.2 mglg is 2/130 = 0.015, that for 8.3 mglg is 8/130 = 0.062, and so on. For Figure 
1.10, the relative cumulative frequency for 8.2 mg/g is 130/130 = 1.000, that for 8.3 
mglg is 128/130 = 0.985, and so on.) 



CHAPTER 2 

Populations and Samples 

2.1 POPULAnONS 
2.2 SAMPLES FROM POPULATIONS 
2.3 RANDOM SAMPLING 
2.4 PARAMETERS AND STATISTICS 
2.5 OUTLIERS 

2.1 POPULATIONS 

The primary objective of a statistical analysis is to infer characteristics of a group 
of data by analyzing the characteristics of a small sampling of the group. This 
generalization from the part to the whole requires the consideration of such important 
concepts as population. sample. parameter. statistic. and random sampling. These 
topics are discussed in this chapter. 

Basic to statistical analysis is the desire to draw conclusions about a group of 
measurements of a variable being studied. Biologists often speak of a "population" 
as a defined group of humans or of another species of organisms. Statisticians 
speak of a population (also called a universe) as a group of measurements (not 
organisms) about which one wishes to draw conclusions. It is the latter definition. 
the statistical definition of population. that will be used throughout this book. For 
example. an investigator may desire to draw conclusions about the tail lengths of 
bobcats in Montana. All Montana bobcat tail lengths are. therefore. the population 
under consideration. If a study is concerned with the blood-glucose concentration in 
three-year-old children, then the blood-glucose levels in all children of that age are 
the population of interest. 

Populations are often very large. such as the body weights of all grasshoppers in 
Kansas or the eye colors of all female New Zealanders. but occasionally populations 
of interest may be relatively small. such as the ages of men who have traveled to the 
moon or the heights of women who have swum the English Channel. 

2.2 SAMPLES FROM POPULATIONS 

16 

If the population under study is very small. it might be practical to obtain all 
the measurements in the population. If one wishes to draw conclusions about the 
ages of all men who have traveled to the moon. it would not be unreasonable to 
attempt to collect all the ages of the small number of individuals under consider­
ation. Generally. however. populations of interest are so large that obtaining all 
the measurements is unfeasible. For example. we could not reasonably expect to 
determine the body weight of every grasshopper in Kansas. What can be done in such 
cases is to obtain a subset of all the measurements in the population. This subset of 
measurements constitutes a slImple. and from the characteristics of samples we can 
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draw conclusions about the characteristics of the populations from which the samples 
came.* 

Biologists may sample a population that does not physically exist. Suppose an 
experiment is performed in which a food supplement is administered to 40 guinea 
pigs. and the sample data consist of the growth rates of these 40 animals. Then 
the population about which conclusions might be drawn is the growth rates of 
all the guinea pigs that conceivably might have been administered the same food 
supplement under identical conditions. Such a population is said to be "imaginary" 
and is also referred to as "hypothetical" or "potential." 

2.3 RANDOM SAMPLING 

Samples from populations can be obtained in a number of ways; however, for a sample 
to be representative of the population from which it came, and to reach valid con­
clusions about populations by induction from samples, statistical procedures typically 
assume that the samples are obtained in a random fashion. To sample a population 
randomly requires that each member of the population has an equal and independent 
chance of being selected. That is, not only must each measurement in the population 
have an equal chance of being chosen as a member of the sample, but the selection 
of any member of the population must in no way influence the selection of any other 
member. Throughout this book, "sample" will always imply "random sample . .,t 

It is sometimes possible to assign each member of a population a unique number 
and to draw a sample by choosing a set of such numbers at random. This is equivalent 
to having all members of a population in a hat and drawing a sample from them while 
blindfolded. Appendix Table B.41 provides 10,000 random digits for this purpose. In 
this table, each digit from 0 to 9 has an equal and independent chance of appearing 
anywhere in the table. Similarly, each combination of two digits, from 00 to 99, is 
found at random in the table, as is each three-digit combination, from 000 to 999, and 
soon. 

Assume that a random sample of 200 names is desired from a telephone directory 
having 274 pages, three columns of names per page, and 98 names per column. 
Entering Table B.41 at random (i.e., do not always enter the table at the same place), 
one might decide first to arrive at a random combination of three digits. If this 
three-digit number is 001 to 274, it can be taken as a randomly chosen page number (if 
it is 000 or larger than 274, simply skip it and choose another three-digit number, e.g., 
the next one on the table). Then one might examine the next digit in the table: if it is 
a 1,2, or 3, let it denote a page column (if a digit other than 1,2, or 3 is encountered, it 
is ignored, passing to the next digit that is 1,2, or 3). Then one could look at the next 
two-digit number in the table: if it is from 01 to 98, let it represent a randomly selected 
name within that column. This three-step procedure would be performed a total of 
200 times to obtain the desired random sample. One can proceed in any direction in 
the random number table: left to right, right to left, upward, downward, or diagonally; 
but the direction should be decided on before looking at the table. Computers are 
capable of quickly generating random numbers (sometimes called "pseudorandom" 
numbers because the number generation is not perfectly random), and this is how 
Table B.41 was derived. 

*This use of the terms pOPlllatioll and .mmple was established by Karl Pearson (1903). 
tThis concept of random sampling was established by Karl Pearson between 1897 and 1903 

(Miller.2004a). 
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Very often it is not possible to assign a number to each member of a population. 
and random sampling then involves biological. rather than simply mathematical. 
considerations. That is. the techniques for sampling Montana hobcats or Kansas 
grasshoppers require knowledge about the particular organism to ensure that the 
sampling is random. Researchers consult relevant books, periodical articles. or 
reports that address the specific kind of biological measurement to he obtained. 

2.4 PARAMETERS AND STATISTICS 

Several measures help to describe or characterize a population. For example. generally 
a preponderance of measurements occurs somewhere around the middle of the range 
of a population of measurements. Thus. some indication of a popUlation "average" 
would express a u!;eful bit of descriptive information. Such information is called a 
measure of central tendency (also called a measure of location), and several such 
measures (e.g .• the mean and the median) will be discussed in Chapter 3. 

It is also important to describe how dispersed the measurements are around the 
"average." That is. we can ask whether there is a wide spread of values in 
the population or whether the values are rather concentrated around the middle. 
Such a descriptive property is called a measure of variability (or a measure of disper­
sian), and several such measures (e.g., the range and the standard deviation) will be 
discussed in Chapter 4. 

A quantity such as a measure of central tendency or a measure of dispersion 
is called a parameter when it describes or characterizes a popUlation, and we shall 
be very interested in discussing parameters and drawing conclusions about them. 
Section 2.2 pointed out. however. that one seldom has data for entire populations. 
but nearly always has to rely on samples to arrive at conclusions about populations. 
Thus. one rarely is able to calculate parameters. However. by random sampling of 
populations. parameters can be estimated well. as we shall see throughout this book. 
An estimate of a population parameter is called a statistic.* It is statistical convention 
to represent population parameters by Greek letters and sample statistics by Latin 
letters; the following chapters will demonstrate this custom for specific examples. 

The statistics one calculates will vary from sample to sample for samples taken from 
the same population. Because one uses sample statistics as estimates of population 
parameters, it behooves the researcher to arrive at the "best" estimates possible. As 
for what properties to desire in a "good" estimate, consider the following. 

First, it is desirable that if we take an indefinitely large number of samples from a 
population. the long-run average of the statistics obtained will equal the parameter 
being estimated. That is. for some samples a statistic may underestimate the parameter 
of interest. and for others it may overestimate that parameter; but in the long run the 
estimates that are too low and those that are too high will "average out." If such a 
property is exhibited hy a statistic. we say that we have an unbiased statistic or an 
unbiased estimator. 

Second, it is desirable that a statistic obtained from any single sample from a 
population be very close to the value of the parameter being estimated. This property 
of a statistic is referred to as precision.t efficiency, or reliability. As we commonly 
secure only one sample from a population, it is important to arrive at a close estimate 
of a parameter from a single sample. 

*This use of the terms parameter and statistic was defined by R. A. Fisher as early as 1922 
(Miller. 2004a: Savage. 1976). 

tThe precision of a sample statistic. as defined here. should not be confused with the precision 
of a measurement. defined in Section 1.2. 
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Third, consider that one can take larger and larger samples from a population (the 
largest sample being the entire population). As the sample size increases, a consistent 
statistic will become a better estimate of the parameter it is estimating. Indeed, if the 
sample were the size of the population, then the best estimate would be obtained: the 
parameter itself. 

In the chapters that follow, the statistics recommended as estimates of parameters 
are "good" estimates in the sense that they possess a desirable combination of 
unbiasedness, efficiency, and consistency. 

Occasionally, a set of data will have one or more observations that are so different, 
relative to the other data in the sample, that we doubt they should be part of the 
sample. For example. suppose a researcher collected a sample consisting of the body 
weights of nineteen 20-week-old mallard ducks raised in individual laboratory cages. 
for which the following 19 data were recorded: 

1.87,3.75,3.79,3.82,3.85,3.87.3.90.3.94,3.96,3.99, 

3.99,4.00,4.03,4.04,4.05,4.06,4.09,8.97, and 39.8 kilograms. 

Visual inspection of these 19 recorded data casts doubt upon the smallest datum 
(1.87 kg) and the two largest data (8.97 kg and 39.8 kg) because they differ so greatly 
from the rest of the weights in the sample. Data in striking disagreement with nearly 
all the other data in a sample are often called outliers or discordant data, and the 
occurrence of such observations generally calls for closer examination. 

Sometimes it is clear that an outlier is the result of incorrect recording of data. In 
the preceding example, a mallard duck weight of 39.8 kg is highly unlikely (to say the 
least!), for that is about the weight of a 12-year-old boy or girl (and such a duck would 
probably not fit in one of the laboratory cages). In this case, inspection of the data 
records might lead us to conclude that this body weight was recorded with a careless 
placement of the decimal point and should have been 3.98 kg instead of 39.8 kg. And, 
upon interrogation. the research assistant may admit to weighing the eighteenth duck 
with the scale set to pounds instead of kilograms, so the metric weight of that animal 
should have been recorded as 4.07 (not 8.97) kg. 

Also, upon further examination of the data-collection process, we may find that 
the 1.87-kg duck was taken from a wrong cage and was, in fact, only 4 weeks old. 
not 20 weeks old, and therefore did not belong in this sample. Or. perhaps we find 
that it was not a mallard duck, but some other bird species (and, therefore. did not 
belong in this sample). Statisticians say a sample is contaminated if it contains a datum 
that does not conform to the characteristics of the population being sampled. So the 
weight of a 4-week-old duck. or of a bird of a different species, would be a statistical 
contaminant and should be deleted from this sample. 

There are also instances where it is known that a measurement was faulty-for 
example. when a laboratory technician spills coffee onto an electronic measuring 
device or into a blood sample to be analyzed. In such a case, the measurements 
known to be erroneous should be eliminated from the sample. 

However. outlying data can also be correct observations taken from an intended 
population, collected purely by chance. As we shall see in Section 6.1, when drawing 
a random sample from a population, it is relatively likely that a datum in the 
sample will be around the average of the population and very unlikely that a sample 
datum will be dramatically far from the average. But sample data very far from the 
average still may be possible. 
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It should also be noted that in some situations the examination of an outlier may 
reveal the effect of a previously unsuspected factor. For example. the 1.87-kg duck 
might, indeed. have been a 20-week-old mallard but suffering from a genetic muta­
tion or a growth-impeding disease deserving of further consideration in additional 
research. 

In summary, it is not appropriate to discard data simply because they appear (to 
someone) to be unreasonably extreme. However, if there is a very obvious reason 
for correcting or eliminating a datum, such as the situations described previously. the 
incorrect data should be corrected or eliminated. In some other cases questionable 
data can be accommodated in statistical analysis, perhaps by employing statistical 
procedures that give them less weight or analytical techniques that are robust in that 
they are resistant to effects of discrepant data. And in situations when this cannot 
be done, dubious data will have to remain in the sample (perhaps encouraging the 
researcher to repeat the experiment with a new set of data). 

The idea of rejecting erroneous data dates back over 200 years; and recommen­
dations for formal, objective methods for such rejection began to appear about 150 
years ago. Major discussions of outliers, their origin, and treatment (rejection or 
accommodation) are those of Barnett and Lewis (1994), Beckman and Cook (1983), 
and Thode (2002: 123-142). 



CHAPTER 3 

Measures of Central Tendency 

3.1 THE ARITHMETIC MEAN 
3.2 THE MEDIAN 
3.3 THE MODE 
3.4 OTHER MEASURES OF CENTRAL TENDENCY 
3.5 CODING DATA 

In samples. as well as in populations. one generally finds a preponderance of values 
somewhere around the middle of the range of observed values. The description of 
this concentration near the middle is an average. or a measure of central tendency to 
the statistician. It is also termed a meaSllre of location, for it indicates where. along 
the measurement scale. the sample or population is located. Various measures of 
central tendency are useful population parameters. in that they describe an important 
property of populations. This chapter discusses the characteristics of these parameters 
and the sample statistics that are good estimates of them. 

3.1 THE ARITHMETIC MEAN 

The most widely used measure of central tendency is the arithmetic mean.* usually 
referred to simply as the mean.t which is the measure most commonly called an 
"average." 

Each measurement in a popUlation may be referred to as an Xi (read "X sub i") 
value. Thus. one measurement might be denoted as XI, another as X2, another as X.,. 
and so on. The subscript i might be any integer value up through N. the total number 
of X values in the population.* The mean of the popUlation is denoted by the Greek 
letter J.L (lowercase mu) and is calculated as the sum of all the X; values divided by 
the size of the population. 

The calculation of the population mean can be abbreviated concisely by the formula 

J.L= 
;= I 

N 
(3.1 ) 

* As an adjective. arithmetic is pronounced with the accent on the third syllable. In early 
literature on the subject. the adjective arithmetical was employed. 

7The term meall (as applied to the arithmetic mean. as well as to the geometric and harmonic 
means of Section 3.4) dates from ancient Greece (Walker. 1929: IH3). with its current statistical 
meaning in use hy 1755 (Miller. 2004a; Walker, 1929: 170); central tellliellcy appeared by the laIC 
1920s (Miller, 2(Xl4a). 

* Charles Babbagc (1791-1871) (O'Connor and Robertson. 1998) wasem English mathematician 
and inventor who conceived principles used by modern computers-well hefore the advent of 
electronics-and who, in IR32, proposed the modern convention of italicizing Latin (also calleu 
Roman) Icttcrs to denotc quantitics: non italicized letters had already been cmployed for this 
purpose for more than six centuries (Miller. 2(01). 

21 
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The Greek letter ~ (capital sigma) means "summation"* and ~f= I X means "sum­
mation of all Xi values from XI through XN." Thus. for example. ~i= I Xi = 

XI + X2 + X3 + X4 and L~=3 Xi = X3 + X4 + X5. Since, in statistical com­
putations. summations are nearly always performed over the entire set of Xi values, 
this book will assume L Xi to mean "sum Xi'S over all values of i." simply as a 
matter of printing convenience, and p. = L Xii N would therefore designate the same 
calculation as would p. = ~~ I Xii N. 

The most efficient, unbiased, and consistent estimate of the population mean, p.. is 
the sample mean, denoted as X (read as "X bar"). Whereas the size of the population 
(which we generally do not know) is denoted as N, the size of a sample is indicated 
by n, and X is calculated as 

1/ 

~Xi 
X = i=1 

n 
or 

- ~Xi 
X= --, (3.2) 

n 

which is read "the sample mean equals the sum of all measurements in the sample 
divided by the number of measurements in the sample. tot Example 3.1 demonstrates 
the calculation of the sample mean. Note that the mean has the same units of 
measurement as do the individual observations. The question of how many decimal 
places should be reported for the mean will be answered at the end of Section 6.2; 
until then we shall simply record the mean with one more decimal place than the data. 

EXAMPLE 3.1 
Lengths 

A Sample of 24 from a Population of Butterfly Wing 

Xi (in centimeters): 3.3,3.5,3.6,3.6,3.7.3.8,3.8,3.8,3.9,3.9.3.9,4.0, 4.0. 4.0. 4.0. 
4.1,4.1. 4.1, 4.2, 4.2. 4.3, 4.3, 4.4, 4.5. 

~Xi = 95.0cm 
n = 24 

X - ~Xi - 95.0cm - 3% - -- - - . cm 
n 24 

·Mathematician Leonhard Euler (1707-1783; born in Switzerland. worked mostly in Russia). 
in 1755. was the first to use ~ to denote summation (Cajori. 1928/9. Vol. II: (1). 

tThc modern symbols for plus and minus ( .. +" and .. - ") appear to have first appeared 
in a 1456 unpublished manuscript by German mathematician and astronomer Regiomontanus 
(Johannes Muller. 1436-1476). with Bohemia-born Johann (Johannes) Widman (1562-1498) the 
first. in 1489. to use them in print (Cajori. 1928/9. Vol. I: 128.231-232). The modern equal sign 
("=") was invented by Welsh physician and mathematician Robert Recorde (15\0-1558). who 
published it in 1557 (though its use then disappeared in print until 1618). and it was wcll recognized 
starting in 1631 (Cajori. ibid.: 298; Gullberg. 1997: 107). Recorde also was the first to use the plus 
and minus symbols in an English work (Miller, 2004b). Using a horizontal line to express division 
derives from its use. in denoting fractions. by Arabic author AI-f:lalj~ar in the twelfth century. 
though it was not consistently cmployed for several more centuries (Cajori. ibid. I: 269.3(0). The 
slash mark (u/"; also known as a solidus. virgule. or diagonal) was recommended to denote division 
by the English logician and mathematician Augustus De Morgan (1806-1871) in 1845 (ibid. I: 
312-313). and the India-born Swiss author Johann Heinhirch Rahn (1622-1676) proposed. in 1659. 
denoting division by the symbol" +". which previously was often used by authors as a minus sign 
(ibid.: 211.270: Gullberg. 1997: 105). Many other symbols were used for mathematical operations. 
before and after these introductions (e.g .. Cajori. ibid.: 229-245). 
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If, as in Example 3.1, a sample contains multiple identical data for several values 
of the variable, then it may be convenient to record the data in the form of a 
frequency table, as in Example 3.2. Then Xi can be said to denote each of k different 
measurements and f; can denote the frequency with which that Xi occurs in the 
sample. The sample mean may then be calculated, using the sums of the products of 
f; and Xi, as* 

k 

~f;X; 
X = _;=_1 __ (3.3) 

n 

Example 3.2 demonstrates this calculation for the same data as in Example 3.1. 

EXAMPLE 3.2 The Data from Example 3.1 Recorded as a Frequency Table 

Xi (cm) f; f;Xj (cm) 

3.3 1 3.3 k = 13 
3.4 0 0 k 

3.5 1 3.5 ~f; = n = 24 
3.6 2 7.2 ;= 1 

3.7 1 3.7 k 

3.8 3 11.4 ~f;Xi 
95.0cm 

3.9 3 11.7 X = ;=1 = = 3.96 cm 
4.0 4 16.0 n 24 

4.1 3 12.3 median = 3.95 em + (1) (0.1 em) 
4.2 2 8.4 
4.3 2 8.6 :::; 3.95 em + 0.025 em 

4.4 ] 4.4 = 3.975 cm 
4.5 ] 4.5 

'Lf; = 24 'Lf;Xj = 95.0 cm 

A similar procedure is computing what is called a weighted mean, an expression 
of the average of several means. For example, we may wish to combine the mean of 
3.96 em from the sample of 24 measurements in Example 3.1 with a mean of 3.78 em 
from a sample of 30 measurements and a mean of 4.02 em from a sample of 15. These 
three means would be from a total of 24 + 30 + 15 = 69 data; and if we had all 
69 of the data we could sum them and divide the sum by 69 to obtain the overall 
mean length. However, that overall mean can be obtained without knowing the 69 

*Denoting the multiplication of two quantities (e.g., a and b) by their adjacent placement (Le., 
ab) derives from practices in Hindu manuscripts of the seventh century (Cajori, 1928/9. Vol. I: 77, 
250). Modern multiplication symbols include a raised dot (as in a • b), which was suggested in a 
1631 posthumous publication of Thomas Harriot (1560? -1621) and prominently adopted in 1698 by 
the outstanding mathematician Gottfried Wilhelm Lcibniz (1646-1716. in what is now Germany); 
the St. Andrew's cross (as in a X b). which was used in 1631 by English mathematician William 
Oughtrcd (1574-1660) though it was not in general use until more than 200 years later; and the 
letter X, which was used, perhaps by Oughtred. as early as 1618 (Cajori. ibid.: 251; Gullberg, 1997: 
104; Miller 2004b). Johann Rahn's 1659 usc of an asterisk-like symbol (as in (/ * b) (Cajori. ibid: 
212-213) did not persist but resurfaced in electronic computer languages of the latter half of the 
twentieth century. 
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3.2 THE MEDIAN 

individual measurements, by employing Equation 3.3 with f1 = 24, XI = 3.96 em. 
h = 30. X2 = 3.78 em. h = 15, X3 = 4.02 em, and n = 69. This would yield a 
weighted mean of X = [(24)(3.96cm) + (30)(3.78em) + (15)(4.02em)]/69 = 
(268.74 em)/69 = 3.89 em. 
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FIGURE 3.1: A histogram of the data in Example 3.2. The mean (3.96 em) is the center of gravity of the 
histogram. and the median (3.975 em) divides the histogram into two equal areas. 

If data are plotted as a histogram (Figure 3.1). the mean is the center of gravity 
of the histogram. * That is, if the histogram were made of a solid material, it would 
balance horizontally with the fulcrum at X. The mean is applicable to both ratio­
and interval-scale data; it should not be used for ordinal data and cannot be used for 
nominal data. 

The median is typically defined as the middle measurement in an ordered set of 
data. t That is, there are just as many observations larger than the median as there 
are smaller. The sample median is the best estimate of the population median. In a 
symmetrical distribution (such as Figures 3.2a and 3.2b) the sample median is also an 
unbiased and consistent estimate of p.. but it is not as efficient a statistic as X and 
should not be used as a substitute for X. If the frequency distribution is asymmetrical, 
the median is a poor estimate of the mean. 

The median of a sample of data may be found by first arranging the measurements in 
order of magnitude. The order may be either ascending or descending, but ascending 
order is most commonly used as is done with the samples in Examples 3.1. 3.2. and 
3.3. Then, we define the sample median as 

sample median = X(tl+ I )/2' (3.4) 

*Thc concept of the mean as the center of gravity was used by L. A. J. Quetelet in 1846 (Walker. 
1929: 73). 

tThe concept of the median was conceived as early as 1816, by K. F. Gauss; enunciated and 
reinforced by olhers, including F. Galton in 1869 and 1874; and independently discovered and 
promoled by G. T. Fechner beginning in 1874 (Walker. 1929: 83-88,184). It received its name. in 
English. from F. Galton in 1882 (David. 1995) and. in French. from A. A. Cournot in 1843 (David. 
1998a). 
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FIGURE 3.2: Frequency distributions showing measures of central tendency. Values of the variable 
are along the abscissa (horizontal axis), and the frequencies are along the ordinate (vertical axis). 
Distributions (a) and (b) are symmetrical, (c) is asymmetrical and said to be positively skewed, and 
(d) is asymmetrical and said to be negatively skewed. Distributions (a), (c), and (d) are unimodal, and 
distribution b is bimodal. In a unimodal asymmetric distribution, the median lies about one-third the 
distance between the mean and the mode.· 

EXAMPLE 3.3 Ufe Span for Two Species of Birds in Captivity 

The data for each species are arranged in order of magnitude 

Species A 
Xi (mo) 

16 
32 
37 
39 
40 
41 
42 
50 
82 

n=9 
median = X(n+ 1 )/2 = X(9+ 1 )/2 

= Xs = 40mo 
X = 42.11 mo 

Species B 
Xi (mo) 

34 
36 
38 
45 
50 
54 
56 
59 
69 
91 

n = 10 
median = X(n+ I )/2 = X(lO+ 1 )/2 

= XS.5 = 52mo 
X = 53.20mo 

• An interesting relationship among the mean, median, and standard deviation is shown in 
Equation 4.21. 
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If the sample size (n) is odd, then the subscript in Equation 3.4 will be an integer 
and will indicate which datum is the middle measurement in the ordered sample. For 
the data of species A in Example 3.3. n = 9 and the sample median is X(II+ 1)/2 = 
X(9+ I )/2 = Xs = 40 mo. If n is even. then the subscript in Equation 3.4 will be a 
number midway between two integers. This indicates that there is not a middle value 
in the ordered list of data: instead. there are two middle values. and the median is 
defined as the midpoint between them. For the species B data in Example 3.3, n = 10 
and X( Il + 1 )/2 = X(1o+ I )/2 = Xs.s, which signifies that the median is midway 
between Xs and X6. namely a median of (50 mo + 54 mo )/2 = 52 mo. 

Note that the median has the same units as each individual measurement. If data are 
plotted as a frequency histogram (e.g .. Figure 3.1), the median is the value of X that 
divides the area of the histogram into two equal parts. In general, the sample median 
is a more efficient estimate of the population median when the sample size is large. 

If we find the middle value(s) in an ordered set of data to be among identical 
observations (referred to as tied values), as in Example 3.1 or 3.2, a difficulty arises. 
If we apply Equation 3.4 to these 24 data. then we conclude the median to be 
X12.5 = 4.0 cm. But four data are tied at 4.0 cm, and eleven measurements are less 
than 4.0 cm and nine are greater. Thus, 4.0 cm does not fit the definition above or the 
median as that value for which there is the same number of data larger and smaller. 
Therefore, a better definition of the median of a set of data is that value for which no 
more than half the data are smaller and no more than half are larger. 

When the sample median falls among tied observations. we may interpolate to 
better estimate the population median. Using the data of Example 3.2, we desire to 
estimate a value below which 50% of the observations in the population lie. Fifty 
percent of the observations in the sample would be 12 observations. As the first 
7 classes in the frequency table include 11 observations and 4 observations are in class 
4.0 cm, we know that lhedesiredsample median lies within the rangeor3.95 to 4.05 cm. 
Assuming that the four observations in class 4.0 cm are distributed evenly within the 
O.l-cm range of 3.95 to 4.05 cm. then the median will be G) (0.1 cm) = 0.025 cm into 
this class. Thus, the median = 3.95 cm + 0.025 cm = 3.975 cm. In general, for the 
sample median within a class interval containing tied observations. 

d· ( lower limit) ( 0.5n - cum. freq. ) ( interval) (3 5) me Ian = f . I + . ,. 
o mterva no. of observations in interval sIze 

where "cum. freq." refers to the cumulative frequency of the previous classes! By 
using this procedure, the calculated median will be the value of X that divides the 
area of the histogram of the sample into two equal parts. As another example, refer 
back to Example 1.5. where, by Equation 3.5, median = 8.75 mg/g + ([ (0.5)( 130) -
61]/24}{0.1O mg/g} = 8.75 mg/g + 0.02 mg/g = 8.77 mg/g. 

The median expresses less information than does the mean. for it does not take 
into account the actual value of each measurement, but only considers the rank 
of each measurement. Still, it offers advantages in some situations. For example. 
extremely high or extremely low measurements ("outliers"; Section 2.5) do not affect 
the median as much as they affect the mean (causing the sample median to be called 
a "resistant" statistic). Distributions that are not symmetrical around the mean (such 
as in Figures 3.2c and 3.2d) are said to be skewed.t When we deal with skewed 

*This procedure was enunciated in 1878 by the German psychologist Gustav Theodor Fechner 
(Uml-1887) (Walker. 1929: 86). 

tThis term. applied to a distribution and to a curve, was used as early as 1895 by Karl Pearson 
(Miller.2004a). 
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populations and do not want the strong influence of outliers, we may prefer the 
median to the mean to express central tendency. 

Note that in Example 3.3 the researcher would have to wait 82 months to compute 
a mean life expectancy for species A and 91 months for species B, whereas the 
median for species A could be dctcrmined in only 40 months and in only 52 months 
for species B. Also, to calculate a median one does not need to have accurate 
data for all members of the sample. If, for example, we did not have the first 
three data for species A accurately recorded, but could state them as "less than 
39 months," then the median could have been determined just as readily as if we 
had all 9 data fully recorded. while calculation of the mean would not have been 
possible. 

The expression "LD fifty" (LD50), used in some areas of biological research, is 
simply the median lethal dose (and is so named because the median is the 50th 
percentile. as we shall see in Section 4.2). 

The median can be determined not only for interval-scale and ratio-scale data, but 
also for data on an ordinal scale, data for which the use of the mean usually would 
not be considered appropriate. But neither the median nor the mean is applicable to 
nominal data. 

The mode is commonly defined as the most frequently occurring measurement in a 
set of data.* In Example 3.2, the mode is 4.0 cm. But it is perhaps better to define 
a mode as a measurement of relatively great concentration. for some frequency 
distributions may have more than one such point of concentration. even though these 
concentrations might not contain precisely the same frequencies. Thus. a sample 
consisting of the data 6. 7. 7, 8, 8, 8. 8. R. 8. 9, 9, 10, 11, 12. 12. 12. 12. 12. 13, 13, and 
14 mm would be said to have two modes: at 8 mm and 12 mm. (Some authors would 
refer to 8 mm as the "major mode" and cal112 mm the "minor mode. ") A distribution 
in which each different measurement occurs with equal frequency is said to have no 
mode. If two consecutive values of X have frequencies great enough to declare the X 
values modes. the mode of the distribution may be said to be the midpoint of these 
two X's: for example. the mode of 3.5, 7, 7. 7. 8,8, 8. and 10 liters is 7.5 liters. A 
distribution with two modes is said to be bimodal (e.g., Figure 3.2b) and may indicate 
a combination of two distributions with different modes (e.g., heights of men and 
women). Modes are often discerned from histograms or frequency polygons; but we 
should be aware that the shape of such graphs (such as Figures 1.6. 1.7. and 1.8), and 
therefore the appearance of modes. may be influenced by the measurement intervals 
on the horizontal axis. 

The sample mode is the best estimate of the population mode. When we sample a 
symmetrical unimodal popUlation, the mode is an unbiased and consistent estimate 
of the mean and median (Figure 3.2a), but it is relatively inefficient and should not 
be so used. As a measure of central tendency, the mode is affected by skewness less 
than is the mean or the median. but it is more affected by sampling and grouping 
than these other two measures. The mode, but neither the median nor the mean, 
may be used for data on the nominal, as well as the ordinal. interval, and ratio scales 
of measurement. In a unimodal asymmetric distribution (Figures 3.2c and 3.2d). the 
median lies about one-third the distance between the mean and the mode. 

The mode is not often used in biological research, although it is often interesting 
to report the number of modes detected in a population, if there are more than one. 

*Thc term mode was introduced by Karl Pearson in IH95 (David. 1995). 
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3.4 OTHER MEASURES OF CENTRAL TENDENCY 

(a) The Geometric Mean. The geometric mean is the nth root* of the product of the 
n data: 

- 1!G' XG = ~X1X2X3 ",XII = n TI Xi. 
i= 1 

(3.6) 

Capital Greek pi, n. means "take the product"t in an analogous fashion as L indicates 
"take the sum." The geometric mean may also be calculated as the antilogarithm of 
the arithmetic mean of the logarithms of the data (where the logarithms may be in 
any base); this is often more feasible computationally: 

n 
~ logX; 

X '1 (IOg X l + 10gX, + ... + 10gXn ) '1 i=1 
G = antI og - = antI og :.......:---

n n 
(3.7) 

The geometric mean is appropriate to use only for ratio-scale data and only when 
al1 of the data are positive (that is, greater than zero). If the data are all equal, 
then the geometric mean, X G, is equal to the arithmetic mean, X (and also 
equal to the harmonic mean described below); if the data are not an equal. thent 
XG < X. 

X G is sometimes used as a measure of location when the data are highly skewed to 
the right (i.e., when there are many more data larger than the arithmetic mean than 
there are data smaller than the arithmetic mean). 

X G is also useful when dealing with data that represent ratios of change. As 
an illustration of this. Example 3.4 considers changes in the size of a popu­
lation of organisms over four decades. Each of the original data (population 
size at the end of a decade) is expressed as a ratio, Xi, of the population size 
to the popUlation size of the previous decade. The geometric mean of those 
ratios is computed and may be thought of as representing the average rate of 
growth per decade (which is the same as a constant rate of compound inter­
est), This example demonstrates that the arithmetic mean of those ratios is X = 
1.1650 (i.e., 16.50% growth) per decade. But over the four decades of pop­
ulation change, this mean would have us calculate a final population size of 
(10,000)(1.1650)(1.1650)(1.1650)(1.1650) = 18,421, which is 1101 the population size 
recorded at the end of the fourth decade. However, using the geometric mean. X G. to 
indicate the average rate of growth, the final population size would be computed to be 
(10,000)(1.608)(1.608)(1.608)(1.608) = 18,156, which is the fourth-decade population 
size that was observed. 

*The second footnote in Section 4.5 outlines the origin of the square-root symbol. J; indicating 
the cube root as ~ was suggcsted by Albert Girard (1595-1632. French-born but studied and 
worked in the Netherlands) as early as 1629, but this symbol was not generaly used until well 
into the eighteenth century (Cajori. 1928/9. Vol. J: 371-372). The cube-root symbol eventually was 
expanded to 'V to denote the nth root. 

t Use of this symbol to indicate taking the product was introduced by Rene Descartes (Gull berg. 
1997: 105). 

*The symbols "<" and "Y' (meaning "less than" and "greater than") were inserted by 
someone else into a 1631 posthumous publication by the English mathematician and astronomer 
Thomas Harriot (1560?-1621). (Cajori. 1928/9. Vol. I: 199; Gullberg. 1997: 109: Miller. 2004b). The 
symbols for "less than or equal to" (:::) and "greater than or equal to" (2:) were written as ii and?; 
when introduced by the French scientist Pierre Bouguere (1698-) 758) in 1734. (Gullberg. 1997: 109). 
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EXAMPLE 3.4 The Geometric Mean of Ratios of Change 

Population Ratio of Change 
Decade Size Xi 

0 10,000 

1 10,500 10,500 = 1.05 
10,000 

2 11,550 11,550 = 1.10 
10,500 

3 13,860 13,860 = 1.20 
11,550 

4 18,156 18,156 = 1.31 
13,860 

X = 1.05 + 1.10 + 1.20 + 1.31 = 4.66 = 1.1650 
4 4 

and (l0,(00)(0.1650)(1.650)(1.650)(1.650) = 18,421 

But, 
XG = ~(1.05)(1.1O)(1.20)(1.31) = ~11.8157 = 1.1608 

or 

X '1 [IOg( 1.05) + log( 1.10) + log( 1.20) + log( 1.31 )] 
G = antI og --=-'------'--~----'------4-=-'---=-----=--'----'-

= antilog(0.0212 + 0.0414 + 0.0792 + 0.1173) = antilog(0.2591) 
4 4 

= antilog 0.0648 = 1.1608 

and (10,000)( 1.1608) ( 1.1608)( 1.1608)( 1.1608) = 18,156 

(b) The Harmonic Mean. The harmonic mean is the reciprocal of the arithmetic 
mean of the reciprocals of the data: 

- 1 _ n 
XII = ! L.l - ~ 1 . 

n Xi Xi 

(3.8) 

It may be used for ratio-scale data when no datum is zero. If all of the data are 
identical, then the harmonic mean, Xu, is equal to the arithmetic mean, X (and 
equal to the geometric mean, X G)' If the data are all positive and not identical, then 
Xu < XG < X . 

. Xu finds use when desiring an average of rates, as described by Croxton, Cowden, 
and Klein (1967: 182-188). For example, consider that a flock of birds flies from a 
roosting area to a feeding area 20 km away, flying at a speed of 40 kmlhr (which 
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takes 0.5 hr). The Hock returns to the roosting area along the same route (20 km). 
Hying at 20 kmlhr (requiring 1 hr of Hying time). To ask what the average flying 
speed was. we might employ Equation 3.2 and calculate the arithmetic mean as 
X = (40 kmlhr + 20 km/hr )/2 = 30 km/hr. However, this answer may not be 
satisfying, because a total of 40 km was traveled in 1.5 hr, indicating a speed of 
(40 km )/( 1.5 hr) = 26.7 kmlhr. Example 3.5 shows that the harmonic mean (X (I) is 
26.7 km/hr. 

EXAMPLE 3.5 The Harmonic Mean of Rates 

XI = 40 kmlhr. X2 = 20 kmlhr 

X = 40 kmlhr + 20 kmlhr = 60 km/hr = 30 kmlhr 
2 2 

But 

XH = 
2 2 

= 

+ 0.0250 hr/km + 0.0500 hr/km 
40kmlhr 20 km/hr 

2 
= 26.67 km/hr = 

0.075 hr/km 

(c) The Range Midpoint. The range midpoint. or midrange. is a measure of location 
defined as the point halfway between the minimum and the maximum values in the 
set of data. It may be used with data measured on the ratio, interval. or ordinal 
scale: but it is not generally a good estimate of location. for it utilizes relatively 
little information from the data. (However. the so-called mean daily temperature is 
often reported as the mean of the minimum and maximum and is. therefore. a range 
midpoint.) 

The midpoint of any two symmetrically located percentiles (see Section 4.2). such 
as the point midway between the first and third quartiles (i.e., the 25th and 75th 
percentiles). may be used as a location measure in the same fashion as the range 
midpoint is used (see Dixon and Massey. 1969: 133-134). Such measures are not as 
adversely affected by aberrantly extreme values as is the range midpoint. and they 
may be applied to ratio or interval data. If used with ordinal data, they (and the range 
midpoint) would be the same as the median. 

3.5 CODING DATA 

Often in the manipulation of data, considerable time and effort can be saved 
if coding is employed. Coding is the conversion of the original measurements 
into easier-to-work-with values by simple arithmetic operations. Generally coding 
employs a linear transformation of the data. such as multiplying (or dividing) or 
adding (or subtracting) a constant. The addition or subtraction of a constant is 
sometimes termed a translation of the data (i.e .. changing the origin). whereas the 
multiplication or division by a constant causes an expansion or contraction of the 
scale of measurement. 
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EXAMPLE 3.6 Coding Data to Facilitate Calculations 

Sample 1 (Coding by Subtraction: 
A = -840 g) 

Xi (g) coded Xi = Xi - 840 g 

842 
844 
846 
846 
847 
848 
849 

2 
4 
6 
6 
7 
8 
9 

~Xi = 5922g 

X = 5922g 
7 

coded ~ Xi = 42 g 

- 42g 
coded X =-

= 846g 

X = coded X - A 

= 6 g - (-840 g) 

= 846g 

7 
= 6g 

Sample 2 (Coding by Division: 
M = O.OOlliterslml) 

X;{ml) coded Xi = (Xi )(0.001 Iiters/ml) 
= Xi liters 

8,000 
9,000 
9,500 

11,000 
12,500 
13,000 

~ Xi = 63,000 ml 

X = 10,500 ml 

- x X = coded-
M 

8.000 
9.000 
9.500 

11.000 
12.500 
13.000 

coded ~Xi 

= 63.000 liters 

coded X 
= 10.500 liters 

10.500 liters 
= 

0.001 liters/ml 
= 10,500 ml 

The first set of data in Example 3.6 are coded by subtracting a constant value of 
840 g. Not only is each coded value equal to Xi - 840 g, but the mean of the coded 
values is equal to X - 840 g. Thus, the easier-to-work-with coded values may be 
used to calculate a mean that then is readily converted to the mean of the original 
data, simply by adding back the coding constant. 

In Sample 2 of Example 3.6, the observed data are coded by dividing each 
observation by 1000 (i.e., by multiplying by 0.001).* The resultant mean only needs 
to be multiplied by the coding factor of 1000 (Le., divided by 0.001) to arrive at the 
mean of the original data. As the other measures of central tendency have the same 
units as the mean, they are affected by coding in exactly the same fashion. 

Coding affects the median and mode in the same way as the mean is affected. 
The widespread use of computers has greatly diminished the need for researchers to 

*In 1593, mathematician Christopher Clavi us (1538-1612. born in what is now Germany but 
spent most of his life in what is now Italy; also credited with proposing the currently used Gregorian 
calendar rules regarding leap years: O'Connor and Robertson. 1996) became the first to use a 
decimal point to separate units from tenths; in 1617, the Scottish mathematician John Napier 
(1550-1617) used both points and commas for this purpose (Cajori. 1928/9. Vol. 1: 322-323), and 
the comma is still so used in some parts of the world. In some countries a raised dot has been 
used-a symbol Americans sometimes employ to denote multiplication. 



32 Chapter 3 Measures of Central Tendency 

utilize coding (although computer software may use it). Appendix C presents coding 
for a variety of statistics. 

EXERCISES 

3.1. If XI = 3.1 kg. X2 = 3.4 kg. X3 = 3.6 kg. 
X4 = 3.7 kg. and Xs = 4.0 kg, calculate the 
value of 

4 

(a) ~ X;. 
;-1 

4 

(b) ~ X;. 
;-2 

5 
(c) ~ X;. 

;-1 

(d) ~X;. 

3.2. (a) Calculate the mean of the five weights in Exer­
cise 3.1. 

(b) Calculate the median of those weights. 

3.3. The ages. in years. of the faculty members of a 
university biology department are 32.2, 37.5, 41.7. 
53.8. 50.2. 48.2. 46.3. 65.0. and 44.8. 
(a) Calculate the mean age of these nine faculty 

members. 

(b) Calculate the median of the ages. 

(c) If the person 65.0 years of age retires and 
is replaced on the faculty with a person 46.5 
years old. what is the new mean age? 

(d) What is the new median age? 

3.4. Consider the following frequency tabulation of leaf 
weights (in grams): 

Xi f; 

1.85-1.95 2 
1.95-2.05 1 
2.05-2.15 2 
2.15-2.25 3 
2.25-2.35 5 
2.35-2.45 6 
2.45-2.55 4 
2.55-2.65 3 
2.65-2.75 I 

Using the midpoints of the indicated ranges of Xi. 
(a) Calculate the mean leaf weight using Equation 

3.2. and 
(b) Calculate the mean leaf weight using Equation 

3.3. 
(c) Calculate the median leaf weight using Equa­

tion 3.4. and 
(d) Calculate the median using Equation 3.5. 
(e) Determine the mode of the frequency distri­

bution. 
3.5. A fruit was collected from each of eight lemon 

trees. with the intent of measuring the calcium 
concentration in the rind (grams of calcium per 
100 grams of dry rind). The analytical method used 
could only detect a concentration of at least 0.80 
gllOO g of dry weight. Six of the eight concentra­
tions were measured to be 1.02. 0.98. 0.91. 0.84. 
0.87. 1.04 gllOO g of dry weight. and two of the 
concentrations were known to be less than 0.80 
gll00 g of dry weight. What is the median of this 
sample of eight data? 
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Measures of Variability and Dispersion 
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4.1 THE RANGE 

In addition to a description of the central tendency of a set of data. it is generally 
desirahle to have a description of the variability, or of the dispersion.* of the data. A 
measure of variability (or measure of dispersion. as it is often called) is an indication 
of the spread of measurements around the center of the distribution. Measurements 
that are concentrated around the center of a distribution of data have low variability 
(low dispersion). whereas data that are very spread out along the measurement scale 
have high variability (high dispersion). Measures of variability of a population are 
population parameters. and sample measures of variabili ty are statistics that estimate 
those parameters. 

The difference hetween the highest and lowest measurements in a group of data 
is termed the range. t If sample measurements are arranged in increasing order of 
magnitude. as if the median were about to be determined. then 

sample range = X" - XI. (4.1 ) 

which is 
sample range = largest X - smallest X. 

Sample I in Example 4.1 is a hypothetical set of ordered data in which XI = 1.2 g and 
X" = 2.4 g. Thus. the range may be expressed as 1.2 to 2.4 g. or as 2.4 g - 1.2 g = 1.2 g. 
Note that the range has the same units as the individual measurements. Sample 2 in 
Example 4.1 has the same range as Sample I. 

~'The statistical use of this term tirst ,Ippeared in an Unfl publication by Francis Galton (David. 
IYl)Xa ). 

';'This statistical term d<ltes from ,10 IX4X paper by H. Lloyd (David. 1995). It was already used 
by the Greek <Istronomer Hipparchus <IS a me,lsure of dispersion in the secoml century R.CE. (Davit!' 
IYYXb ). 

33 



34 Chapter 4 Measures of Variability and Dispersion 

EXAMPLE 4.1 Calculation of Measures of Dispersion for Two Hypotheti-
cal Samples of 7 Insect Body Weights 

Xi (g) 

1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 

LXi 
= 12.6 g 

Sample 1 

Xi - X (g) IXi - XI (g) 

-0.6 0.6 
-0.4 0.4 
-0.2 0.2 

0.0 0.0 
0.2 0.2 
0.4 0.4 
0.6 0.6 

L(Xi - X) LIXi - XI 
= O.Og = 2.4 g 

(Xi - X)2 (g2) 

0.36 
0.16 
0.04 
0.00 
0.04 
0.16 
0.36 

L(Xi - X)2 
= 1.12 g2 

= sum of squared deviations 
from the mean 

= "sum of squares" 

LXi = 12.6g = 1.8g 
n 7 

n = 7: X 

range 

interquartile range 

X7 - XI = 2.4 g - 1.2 g = 1.2 g 

= Q3 - QI = 2.2g - l.4g = 0.8g 

= L IXi - XI = 2.4 g = 0.34 g 
n 7 

mean deviation 

variance = s2 
~(K - X)2 112 2 
£.J I = . g = 0.1867 g2 

n - 1 6 

standard deviation = s == ~0.1867 g2 = 0.43 g 

Sample 2 

Xi (g) Xi - X (g) IXi - XI (g) 

1.2 -0.6 0.6 
1.6 -0.2 0.2 
1.7 -0.1 0.1 
1.8 0.0 0.0 
1.9 0.1 0.1 
2.0 0.2 0.2 
2.4 0.6 0.6 

LX; L(Xi - X) LIXi - XI 
= 12.6 g = 0.0 g = 1.8 g 

n = 7; X = ~ = 12.6 g = 1.8 g 
1/ 7 

(Xi - X)2 (g2) 

0.36 
0.04 
0.01 
0.00 
0.01 
0.04 
0.36 

~ -2 £.J(Xi - X) 
= 0.82 g2 

= sum of squared deviations 
from the mean 

= "sum of squares" 

range = X7 - XI = 2.4g - 1.2g = 1.2g 



Section 4.2 Dispersion Measured with Quantiles 35 

interquartile range 

mean deviation 

variance = ... 2 

standard deviation = s 

Q3 - QI = 2.0 g - 1.6 g = 0.4 g 

= ~ IX; - XI = 1.8 g = 0.26 g 
n 7 

~ - 2 2 
= ~(Xi - X) = 0.82 g = 0.1367 g2 

n - 1 6 

= ~0.1367 g2 = 0.37 g 

The range is a relatively crude measure of dispersion, inasmuch as it does not 
take into account any measurements except the highest and the lowest. Furthermore, 
it is unlikely that a sample will contain both the highest and lowest values in 
the population, so the sample range usually underestimates the population range; 
therefore, it is a biased and inefficient estimator. Nonetheless, it is considered useful 
by some to present the samplc range as an estimate (although a poor onc) of the 
population range. For example, taxonomists are often concerned with having an 
estimate of what the highest and lowest values in a population are expected to be. 
Whenever the range is specified in reporting data, however, it is usually a good 
practice to report another measure of dispersion as well. The range is applicable to 
ordinal-, interval-. and ratio-scale data. 

4.2 DISPERSION MEASURED WITH QUANTILES 

Because the sample range is a biased and inefficient estimate of the population range, 
being sensitive to extremely large and small measurements, alternative measures of 
dispersion may be desired. Just as the median (Section 3.2) is the value above and 
below which lies half the set of data, one can define measures. called quantiles, above 
or below which lie other fractional portions of the data. 

For example. if the data are divided into four equal parts, we speak of quartiles. 
One-fourth of all the ranked observations are smaller than the first quartile. one­
fourth lie between the first and second quartiles. one-fourth lie between the second 
and third quartiles, and one-fourth are larger than the third quartile. The second 
quartile is identical to the median. As with the median, the first and third quartiles 
might be one of the data or the midpoint between two of the data. The first quartile, 
QJ, is 

( 4.2) 

if the subscript, (n + 1)/4, is not an integer or half-integer, then it is rounded up 
to the nearest integer or half-integer. The second quartile is the median. and the 
subscript on X for the third quartile, Q3, is 

n + 1 - (subscript on X for Q\, after any rounding). (4.3) 

Examining the data in Example 3.3: For species A, n = 9, (n + ] )/4 = 2.5, 
and QJ = X2.5 = 34.5 mo; and Q3 = XIO-2.5 = X7.5 = 46 mo. For species 
B, n = to, (n + ] )/4 = 2.75 (which we round up to 3), and QI = X3 = 38 mo, and 
Q3 = X.I-3 = Xl! = 59 mo. 

The distance between QJ and Q3, the first and third quartiles (i.e., the 25th and 
75th percentiles), is known as the interquartile range (or semiquartile range): 

interquartile range = Q3 - Q •. (4.4 ) 
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One may also encounter the semi-imerquartile rallge: 

semi-interquartile range = Q3 QI 
2 

(4.5 ) 

also known as the quartile deviation. * 
If the distribution of data is symmetrical, then 50% of the measurements lie within 

one quartile deviation above and below the median. For Sample 1 in Example 4.1. 
QI = 1.4 g, Q3 = 2.2 g, and the interquartile range is 2.2 g - 1.4 g = 0.8 g. And for 
Sample 2. QI = 1.6 g, Q3 = 2.0 g. and the interquartile range is 2.0 g - 1.6 g = 0.4 g. 

Similarly. values that partition the ordered data set into eight equal parts (or as 
equal as n will allow) are called octiles. The first octile. 0 1• is 

(4.6 ) 

and if the subscript, (n + 1 )/8, is not an integer or half-integer, then it is rounded 
up to the nearest integer or half-integer. The second. fourth. and sixth octiles are the 
same as quartiles; that is. (h = QI' 04 = Q2 = median and 06 = Q3. The subscript 
on X for the third octile. 03, is 

2(subscript on X for QI) - subscript on X for 0 1: 

the subscript on X for the fifth octile, (;,. is 

II + 1 - subscript on X for 03: 

and the subscript on X for the seventh octile. (h. is 

( 4.7) 

( 4.8) 

n + 1 - subscript on X for 01. (4.9) 

Thus. for the data of Example 3.3: For species A. n = 9. (11 + 1 )/8 1.5 and 
C1 = X\.5 = 35mo:2(2.5) -1.5=3.5.s003=X3.5=38mo:n + 1 - 3.5=6.5. 
so 05 = X6.5 = 41.5 mo; and n + 1 - 1.5 = 8.5, so (17 = 61. For spccies 
B. n = 10, (11 + 1 )/8 = 1.25 (which we round up to 1.5) and 01 = X\., = 35 mo; 
2(3) - 1.5 = 4.5, so (i3 = X 4.5 = 39.5 mo: n + 1 - 4.5 = 6.5. so (5, = X6.5 = 
41.5 mo; and n + 1 - 1.5 = 9.5, so (h = 44.5 mo. 

Besides the median, quartiles, and octiles, ordered data may be divided into fifths, 
tenths. or hundredths by quantities that are respectively called quill tiles. deciles, and 
centiles (the latter also called percentiles). Measures that divide a group of ordered 
data into equal parts are collectively termed quantiles.t The expression "LD50." used 
in some areas of biological research, is simply the 50th percentile of the lethal doses, 
or the median lethal dose. That is, 50% of the experimental subjects survived this 
dose, whereas 50% did not. Likewise, "LC,o" is the median lethal concentration, or 
the 50th percentile of the lethal concentrations. 

Instead of distance between the 25th and 75th percentiles. distances between other 
quantiles (e.g .. 10th and 90th percentiles) may be used as a dispersion measure. 
Quantile-based measures of dispersion are valid for ordinal-. interval-. or ratio-scale 
data, and they do not exhibit the bias and inefficiency of the range. 

*This measure was proposed in IH46 hy L. A.J. Quetelet (1796-IH74); Sir Francis Galton 
(1822-1911) later called it the "quartile deviation ,. (Walker. 1929: 84) and, in 1882. used the terms 
"quartile" and "interquartile range" (David. 1(95). 

tSir Francis Galton developed the concept of percentiles. quartiles, deciles. and other quantiles 
in writings from 1869 to 1885 (Walker. 1929: 86-87. 177. 179). The term qllamile was introduced in 
1940 hy M. G. Kendall (David. 19(5). 
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4.3 THE MEAN DEVIATION 

As is evident from the two samples in Example 4.1. the range conveys no information 
about how clustered about the middle of the distribution the measurements are. As 
the mean is so useful a measure of central tendency, one might express dispersion in 
terms of deviations from the mean. The sum of all deviations from the mean, that is. 
2(Xj - X). will always equal zero. however. so such a summation would be useless 
as a measure of dispersion (as seen in Example 4.1). 

Using the absolute values of the deviations from the mean eliminates the negative 
signs of the deviations. and summing those absolute values results in a quantity that 
is an expression of dispersion about the mean. Dividing this quantity by n yields a 
measure known as the mean deviation. or mean absolute deviation" of the sample; 
this measure has the same units as do the data. In Example 4.1. Sample 1 is more 
variable (or more dispersed, or less concentrated) than Sample 2. Although the two 
samples have the same range. the mean deviations. calculated as 

.. ~IXj - XI 
sample mean devIatIon = , ( 4.10) 

n 

express the differences in dispersion. t A different kind of mean deviation can 
be defined by using the sum of the absolute deviations from the median instead of 
from the mean. 

Mean deviations are seldom encountered. because their utility is far less than that 
of the statistics in Sections 4.4 and 4.5. 

4.4 THE VARIANCE 

Another method of eliminating the negative signs of deviations from the mean 
is to square the deviations. The sum of the squares of the deviations from the 
mean is often simply called the slim of squares, abbreviated SS, and is defined as 
follows:~ 

population SS = ~ (Xi 

sample SS = ~ (Xi 

(4.11) 

(4.12) 

It can be seen from the above two equations that as a measure of variability. or 
dispersion. the sum of squares considers how far the Xj's deviate from the mean. In 

·The Icrm mean deviatiol1 is apparently due to Karl Pearson (1857-1936) (Walker. 1929: 55) 
and mean absolllle deviation. in 1972. to D. F. Andrews. P. J. Bickel. F. R. Hampel. P. J. Huber. 
W. H. Rogers. and J. W. Tukey (David. 1995). 

t Karl Weierstrass. in 1841. was the first to denote the absolute value of a quantity by enclosing 
it within two vertical lines (Cajori. 1928/9. Vol. II: p. 123): that is.lal = a and I-al = a. 

*The modern notation using raised numerals as exponents was introduced by Rene Descartes in 
1637. and many other kinds of notation for exponents were employed before and after that (Cajori. 
1928/9. Vol. I: 358: Gullberg. 1997: 134). An 1R45 notation of Augustus De Morgan. a 1\ b to indicate 
0" (Cajori. ibid.: 358). has reemerged in modern computer use. Nicolas Chuquet (1445-1488) was 
the first to use negative exponents. and Nicole (also known as Nicolaus) Oresme (1323-1382) was 
the first to use fractional exponents. though neither of these French mathematicians employed the 
modern notation of Isaac Newton (1642-1727). the colossal English mathematician. physicist. and 
astronomer (Cajori. ibid.: 91. 102.354-355): 

X-II = _1_: X;, = Vi. 
Xu 

Using parentheses or brackets to group quantities dates from the mid-sixteenth century. though it 
was not common mathematical notation until more than two centuries later (ibid.: 392). 
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Sample 1 of Example 4.1, the sample mean is 1.8 g and it is seen (in the last column) 
that 

Sample SS = (1.2 - 1.8)2 + (1.4 - 1.8)2 + (1.6 - 1.8)2 + (1.8 - 1.8)2 

+ (2.0 - 1.8f + (2.2 - 1.8)2 + (2.4 - 1.8)2 

= 0.36 + 0.16 + 0.04 + 0.00 + 0.04 + 0.16 + 0.36 
= 1.12 

(where the units are grams2).* The sum of squares may also be visualized as a measure 
of the average extent to which the data deviate from each other, for (using the same 
seven data from Sample 1 in Example 4.1): 

SS = [( 1.2 - 1.4 f + (1.2 - 1.6)2 + (1.2 - 1.8)2 + (1.2 - 2.0)2 

+ (1.2 - 2.2)2 + (1.2 - 2.4)2 + (1.4 - 1.6)2 + (1.4 - 1.8)2 

+ (1.4 - 2.0)2 + (1.4 - 2.2)2 + (1.4 - 2.4)2 + (1.6 - 1.8)2 

+ (1.6 - 2.0)2 + (1.6 - 2.2)2 + (1.6 - 2.4)2 + (1.8 - 2.0)2 

+ (1.8 - 2.2)2 + (1.8 - 2.4)2 + (2.0 - 2.2)2 + (2.0 - 2.4)2 

+ (2.2 - 2.4)2]/7 
= [0.04 + 0.16 + 0.36 + 0.64 + 1.00 + 1.44 + 0.04 + ... + 0.04 + 0.16 

+ 0.04]/7 
= 7.84/7 = 1.12 

(again in grams2). 
The mean sum of squares is called the variance (or mean square,t the latter being 

short for mean squared deviation). and for a population is denoted by (T2 ("sigma 
squared." using the lowercase Greek letter): 

(T2 = ~(Xi - p.)2 (4.14) 
N 

The best estimate of the population variance, (T2, is the sample variance, s2: 

~ -2 i = ~(Xi - X) (4.15) 
n - 1 

If, in Equation 4.14. we replace p. by X and N by n. the result is a quantity that is a 
biased estimate of (T2 in that it underestimates (T2. Dividing the sample sum of squares 

·Owing to an important concept in statistics. known as least sqllares. the sum of squared 
deviations from the mean is smaller than the sum of squared deviations from any other quantity 
(e.g .. the median). Indeed. if Equation 4.12 is applied using some quantity in place of the mean. the 
resultant "sum of squares" would be 

( 4.13) 

where d is the difference between the mean and the quantity used. For the population sum of 
squares (defined in Equation 4.11). 'the relationship would be SS + Nd2• 

tThe term mean sqlltlre dates back at least to an 1875 publication of Sir George Biddel Airy 
(1801-1892). Astronomer Royal of England (Walker. 1929: 54). The term variance was introduced 
in 1918 by English statistician Sir Ronald Aylmer Fisher (l890-1962) (ibid.: 189: David. 1995). 



Section 4.4 The Variance 39 

by n - 1 (called the degrees of freedom,· often abbreviated OF), rather than by n, 
yields an unbiased estimate, and it is Equation 4.15 that should be used to calculate 
the sample variance. 

If all observations in a sample are equal, then there is no variability (that is, 
no dispersion) and ,<;2 = O. And s2 becomes increasingly large as the amount of 
variability, or dispersion, increases. Because s2 is a mean sum of squares, it can never 
be a negative quantity. 

The variance expresses the same type of information as does the mean deviation, 
but it has certain very important mathematical properties relative to probability and 
hypothesis testing that make it superior. Thus, the mean deviation is very seldom 
encountered in biostatistical analysis. 

The calculation of s2 can be tedious for large samples, but it can be facilitated by 
the use of the equality 

sample SS = ~ xl _ (~Xi)2 
n 

(4.16) 

This formula is equivalent to Equation 4.12 but is much simpler to work with. 
Example 4.2 demonstrates its use to obtain a sample sum of squares. 

Because the sample variance equals the sample SS divided by DF, 

(4.17) 

This last formula is often referred to as a "working formula:' or "machine formula," 
because of its computational advantages. There are, in fact, two major advantages in 
calculating SS by Equation 4.16 rather than by Equation 4.12. First, fewer computa­
tional steps are involved, a fact that decreases chance of error. On many calculators 
the summed quantities, ~ Xi and ~ xl, can both be obtained with only one pass 
through the data, whereas Equation 4.12 requires one pass through the data to calcu­
late X and at least one more pass to calculate and sum the squares of the deviations, 
Xi - X. Second, there may be a good deal of rounding error in calculating each 
Xi - X. a situation that leads to decreased accuracy in computation, but that is 
avoided by the use of Equation 4.16. t 

For data recorded in frequency tables. 

sample SS = ~ f;xl ( 4.18) 
n 

*Given the sample mean (X) and sample size (n) in Example 4.1. degrees of freedom means that 
the data could have been weights different from those shown. but when any six (i.e .. n - I) of the 
seven weights are specified. then the seventh weight is also known. The term was first used. though 
in a different context. by Ronald Aylmer Fisher in 1922 (David. 1955). 

t Computational formulas advantageous on calculators may not prove accurate on computers 
(Wilkinson and Dallal. \977).largcly because computers may use fewer significant figures. (Also see 
Ling. 1974.) Good computer programs use calculation techniques designed to help avoid rounding 
errors. 



40 Chapter 4 Measures of Variability and Dispersion 

where f; is the frequency of observations with magnitude Xi. But with a calculator 
or computer it is often faster to use Equation 4.18 for the individual observations. 
disregarding the class groupings. 

The variance has square units. If measurements are in grams, their variance will be 
in grams squared, or if the measurements are in cubic centimeters, their variance will 
be in terms of cubic centimeters squared, even though such squared units have no 
physical interpretation. The question of how many decimal places to report for the 
variance will be considered at the end of Section 6.2. 

EXAMPLE 4.2 "Machine Formula" Calculation of Variance. Standard 
Deviation. and Coefficient of Variation (These are the data of 
Example 4.1) 

Xi (g) 

1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 

Sample 1 

1.44 
1.96 
2.56 
3.24 
4.00 
4.84 
5.76 

LXi = 12.6 g Lxl = 23.80 g2 

n=7 

X - 12.6g - 18 ----.g 
7 

SS = Lxl _ (LXi 
n 

= 23.80 g2 _ (12.6 g)2 
7 

= 23.80 g2 _ 22.68 g2 

= 1.12 g2 

;=~ 
n - 1 

1.12 g2 = 0.1867 g2 
6 

s = J0.1867 g2 = 0.43 g 

V = s = 0.43 g = 0.24 = 24% 
X 1.8g 

Xi (g) 

1.2 
1.6 
1.7 
1.8 
1.9 
2.0 
2.4 

Sample 2 

1.44 
2.56 
2.89 
3.24 
3.61 
4.00 
5.76 

LXi = 12.6g Lxl = 23.50g2 

n=7 

X - 12.6g - 18 ----.g 
7 

( 12.6 g)2 
SS = 23.50 g2 -

7 
= 0.82g2 

s2 = 0.82 g2 = 0.1367 g2 
6 

s = JO.l367 g2 = 0.37 g 

V = 0.37g = 0.21 = 21% 
1.8 g 
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4.S THE STANDARD DEVIATION 

The standard deviation* is the positive square roott of the variance; therefore, it has 
the same units as the original measurements. Thus, for a population. 

N 
(4.19) u= 

And for a sample,* 

n-1 
( 4.20) s= 

Examples 4.1 and 4.2 demonstrate the calculation of s. This quantity frequently is 
abbreviated SD. and on rare occasions is called the root mean square deviation or 
root mean square. Remember that the standard deviation is, by definition, always 
a nonnegative quantity.§ The end of Section 6.2 will explain how to determine 

*It was the great English statistician Karl Pearson (1857 -1936) who coined the term stuntiorti 
deviation and its symbol, u, in 1893, prior to which this quantity was called the mean error (Eells, 1926; 
Walker. 1929: 54-55.183.188). In early literature (e.g .• by G. U. Yule in 1919). it was termed root 
mean sql/are deviation and acquired the symbol .~. and (particularly in the fields of education and 
psychology) it was occasionally computed using deviations from the median (or even the mode) 
instead of from the mean (Eells. 1926). 

tThe square root sign ( J ) was introduced by Silesian-born Austrian mathematician Christoff 
Rudolff (1499-1545) in 1525; by 1637 Rene Descartes (1596-1650) combined this with a vinculum 
(a horizontal bar placed above quantities to group them as is done with parentheses or brackets) 
to obtain the symbol r. but Gottfried Wilhelm Leibniz (1646-1716) preferred J( ), which is 
still occasionally seen (Cajori. 1928/9. Vol. I: 135.208.368.372.375). The first footnote in Section 
3.4 speaks to the origin of the cube root symbol ( V). 

:J:The sample s is actually a slightly biased estimate of the population u. in that on the average it 
is a slightly low estimate. especially in small samples. But this fact is generally considered to be offset 
by the statistic's usefulness. Correction for this bias is sometimes possible (e.g .. Bliss. 1967: 131; 
Dixon and Massey. 1969: 136; Gurland and Tripathi. 1971; Tolman. 1971). but it is rarely employed. 

§It can be shown that the median of a distribution is never more than one standard deviation 
away from the mean (IL): that is. 

I median - IL I S u ( 4.21 ) 

(Hotelling and Solomon. 1932; O·Cinneide. 1990; Page and Murty, 1982; Watson. 1994). This is a 
special case. where p = 50. of the relationship 

p/l00 
1 - p/lOO' 

( 4.22) IL - CT 
1 - p/100 < X < + u 

p/lOO - p - IL 

where Xp is the pth percentile of the distribution (Dharmadhikari, 1991). Also. Page and Murty 
(1982) have shown these population-parameter relationships between the standard deviation and 
the range and between the standard deviation and the mean. median. and mode: 

range/.fbi SeTS range/2; 

I mode - IL I S cT~n/ m and I mode - median I S eT( n/ m) • 

where m is the number of data at the modal value. 

( 4.22a) 

(4.22b) 
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the number of decimal places that may appropriately he recorded for the standard 
deviation. 

4.6 THE COEFFICIENT OF VARIATION 

The coefficient o/variation* or coefficiel1t o/variability, is defined as 

s s 
V = = or V = = . 100%. 

X X 
(4.23 ) 

As s/ X is generally a small quantity, it is frequently multiplied by 100% in order to 
express Vas a percentage. (The coefficient of variation is often abbreviated as CV.) 

As a measure of variability, the variance and standard deviation have magnitudes 
that are dependent on the magnitUde of the data. Elephants have ears that are perhaps 
100 times larger than those of mice. If elephant ears were no more variable. relative 
to their size, than mouse ears, relative to their size, the standard deviation of elephant 
ear lengths would be 100 times as great as the standard deviation of mouse ear lengths 
(and the variance of the former would be 1002 = 10.000 times the variance of the 
latter). The sample coefficient of variation expresses sample variability relative to 
the mean of the sample (and is on rare occasion referred to as the "relative standard 
deviation"). It is called a measure of relative variability or relative dispersion. 

Because sand X have identical units, V has no units at all, a fact emphasizing that it 
is a relative measure, divorced from the actual magnitude or units of measurement of 
the data. Thus, had the data in Example 4.2 been measured in pounds, kilograms. or 
tons, instead of grams, the calculated V would have been the same. The coefficient of 
variation of a sample, namely V, is an estimate of the coefficient of variation of the 
population from which the sample came (i.e .. an estimate of uj JL). The coefficient 
of variation may be calculated only for ratio scale data: it is, for example, not valid 
to calculate coefficients of variation of temperature data measured on the Celsius or 
Fahrenheit temperature scales. Simpson, Roe. and Lewontin (1960: 89-95) present 
a good discussion of V and its biological application. especially with regard to 
zoomorphological measurements. 

4.7 INDICES OF DIVERSITY 

For nominal-scale data there is no mean or median or ordered measurements to serve 
as a reference for discussion of dispersion. Instead, we can invoke the concept of 
diversity, the distribution of observations among categories. Consider that sparrows 
are found to nest in four different types of location (vines, caves, branches. and cavi­
ties). If, out of twenty nests observed, five are found at each of the four locations. then 
we would say that there was great diversity in nesting sites. If, however. seventeen 
nests were found in cavities and only one in each of the other three locations, then we 
would consider the situation to be one of very low nest-site diversity. In other words. 
observations distributed evenly among categories display high diversity. whereas a 
set of observations where most of the data occur in very few of the categories is one 
exhibiting low diversity. 

A large number of diversity measures have been introduced, especially for ecolog­
ical data (e.g .. Brower. Zar. and von Ende, 1998: 177-184; Magurran. 2004). a few of 
which are presented here. 

*Thc term ('oeJjicielll of variation was introduced hy the statistical giant Karl Pearson 
(1857-1936) in IH96 (David. 1995). In early literature the term was variously applied to the 
ratios of different measures of dispersion and different measures of central tendency (Eells. 1926). 
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Among the quantitative descriptions of diversity available are those based on a 
field known as information theory.* The underlying considerations of these measures 
can be visualized by considering uncertainty to be synonymous with diversity. If 
seventeen out of twenty nest sites were to be found in cavities. then one would be 
relatively certain of being able to predict the location of a randomly encountered 
nest site. However. if nests were found to be distributed evenly among the various 
locations (a situation of high nest-site diversity). then there would be a good deal 
of uncertainty involved in predicting the location of a nest site selected at random. 
If a set of nominal scale data may be considered to be a random sample. then a 
quantitative expression appropriate as a measure of diversity is that of Shannon 
(1948): 

k 

H' = - ~ Pi log Pi (4.24 ) 
i= 1 

(often referred to as the Shannon-Wiener diversity index or the Shannon-Weaver 
index). Here. k is the number of categories and Pi is the proportion of the observa­
tions found in category i. Denoting 11 to be sample size and /; to be the number 
of observations in category i. then Pi /;/ n; and an equivalent equation for 
H' is 

k 

nlog n ~/; log /; 
H' = ____ :...i=....:I __ _ (4.25 ) 

11 

a formula that is casier to use than Equation 4.24 because it eliminates the neces­
sity of calculating the proportions (Pi). Published tables of n logn and /; log/; are 
available (e.g .• Brower, Zar, and von Ende, 1998: 181; Lloyd, Zar, and Karr, 1968). 
Any logarithmic base may be used to compute H'; bases 10. e. and 2 (in that 
order of commonness) are the most frequently encountered. A value of H' (or 
of any other measure of this section except evenness measures) calculated using 
one logarithmic base may be converted to that of another base; Table 4.1 gives 
factors for doing this for bases 10, e. and 2. Unfortunately. H' is known to be an 
underestimate of the diversity in the sampled population (Bowman et aI., 1971). 
However, this bias decreases with increasing sample size. Ghent (1991) demonstrated 
a relationship between H' and testing hypotheses for equal abundance among the k 
categories. 

The magnitude of H' is affected not only by the distribution of the data but also by 
the number of categories. for, theoretically. the maximum possible diversity for a set 
of data consisting of k categories is 

H:nax = logk. ( 4.26) 

Therefore. some users of Shannon's index prefer to calculate 

J'=~ 
H:nax 

( 4.27) 

instead of (or in addition to) H', thus expressing the observed diversity as a proportion 
of the maximum possible diversity. The quantity J' has been termed evenness (Pielou, 
1966) and may also be referred to as homogeneity or relative diversity. The measure 

·CJaude Elwood Shannon (1916-2()OI) founded what he first called"a mathematical theory of 
communication" and has hecome known as "information theory:' 



44 Chapter4 Measures of Variability and Dispersion 

TABLE 4.1: Multiplication Factors for Converting among 
Diversity Measures (H, H', Hmax, or H~ax) Calculated 
Using Different Logarithmic Bases* 

To convert to: To convert from: 

Base 2 Basee Base 10 

Base 2 1.0000 1.4427 3.3219 
Base e 0.6931 1.0000 2.3026 
Base 10 0.3010 0.4343 1.0000 

For example. if H' = 0.255 using base 10: H' would be 
(0.255)(3.3219) = 0.847 using base 2. 

*Tbc measures} and}' are unaffected by change in logarithmic 
base. 

1 - i' may then be viewed as a measure of heterogeneity; it may also be considered a 
measure of dominance, for it reflects the extent to which frequencies are concentrated 
in a small number of categories. The number of categories in a sample (k) is typically 
an underestimate of the number of categories in the population from which the 
sample came, because some categories (especially the rarer ones) are likely to be 
missed in collecting the sample. Therefore, the sample evenness. J'. is typically an 
overestimate of the population evenness. (That is, i' is a biased statistic.) Example 4.3 
demonstrates the calculation of H' and 1'. 

If a set of data may not be considered a random sample. then Equation 4.24 
(or 4.25) is not an appropriate diversity measure (Pielou. 1966). Examples of such 

EXAMPLE 4.3 Indices of Diversity for Nominal Scale Data: The Nesting 
Sites of Sparrows 

Category (i) Observed Frequencies if;) 

Sample J 

Vines S 
Eaves 5 
Branches 5 
Cavities S 

, n logn - ~/; log/; 
H = = [20 log 20 - (510g S + Slog S + Slog S 

n + SlogS)1/20 

= [26.0206 - (3.4949 + 3.4949 + 3.4949 

+ 3.4949) 1/20 

= 12.0410/20 = 0.602 

H:nax = log 4 = 0.602 

i' = 0.602 = 1.00 
0.602 



Vines 
Eaves 
Branches 
Cavities 

Section 4.7 

Sample 2 

1 
1 
1 

17 
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H' = nlogn - ~f;logf; = [201og20 - (1logl + llogl + Ilog1 

Vines 
Eaves 
Branches 
Cavities 

I n logn 
H = 

n 
+ 17 log 17)]/20 

= [26.0206 - (0 + 0 + 0 + 20.9176)]/20 
= 5.1030/20 = 0.255 

H:nax = log 4 = 0.602 

l' = 0.255 = 0.42 
0.602 

Sample 3 

2 
2 
2 

34 

- ~f;logf; = [401og40 - (21og2 + 2log2 + 21og2 
n 

+ 34 log 34 )1/40 
= [64.0824 - (0.6021 + 0.6021 + 0.6021 

+ 52.0703)1/40 
= 10.2058/40 = 0.255 

H:nax = log 4 = 0.602 

J' = 0.255 = 0.42 
0.602 

situations may be when we have, in fact, data composing an entire population, or data 
that are a sample obtained nonrandomly from a population. In such a case, one may 
use the information-theoretic diversity measure of Brillouin (1962: 7 -8):* 

log (TIt 1"., ) l=iJ" 
H = ------'------'- ( 4.28) 

n 

*The notation n! is read as "II factorial" and signifies the product (n )( II - 1)( If - 2) ... (2) ( 1 ). 
It was proposed by French physician and mathematician Christian Kramp (1760-1826) around 
1798; he originally called this function faculty ("facuhes" in French) but in 1808 accepted the 
term faclOrial ("factorielle" in French) used by Alsatian mathematician Louis Franl;ois Antoine 
Arbogast(1759-1803)(Cajori, 1928/9. Vol. II: 72; Gull berg. 1997: 106; Miller. 2004a; O'Connor and 
Robertson, 1997). English mathematician Augustus De Morgan (1806-1871) decried the adoption 
of this symbol as a "barbarism" because it introduced into mathematics a symbol that already had 
an established meaning in written language. thus giving "the appearance of expressing surprise or 
admiration" in a mathematical result (Cajori. ibid.: 328). 
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where n (capital Greek pi) means to take the product. just as ~ means to take the 
sum. Equation 4.28 may be written. equivalently. as 

I n! 
ogf: 'I: ' ~ , H = (·2 .... 'k· ( 4.29) 

n 

or as 
H = (Iogn! - ~ log!;!). 

( 4.30) 
n 

Table B.4O gives logarithms of factorials to ease this calculation. Other such tables are 
available. as well (e.g .• Brower. Zar. and von Ende 1998: 183: Lloyd. Zar. and Karr. 
1968: Pearson and Hartly. 1966: Table 51).* Ghent (1991) discussed the relationship 
between H and the test of hypotheses about equal abundance among k categories. 

The maximum possible Brillouin diversity for a set of n observations distributed 
among k categories is 

_ logn! - (k - d) loge! - dlog(c + I)! 
Hmax - • ( 4.35) 

n 

where c is the integer portion of n/ k. and cI is the remainder. (For example. if Il = 17 
and k = 4. then n/ k = 17/4 = 4.25 and c = 4 and d = 0.25.) The Brillouin-based 
evenness measure is. therefore. 

J=~. 
Hmax 

(4.36 ) 

with 1 - J being a dominance measure. When we consider that we have data from 
an entire population. k is a population measurement. rather than an estimate of one. 
and J is not a biased estimate as is J'. 

For further considerations of these and other diversity measures. see Brower. Zar. 
and von Ende (1998: Chapter 58) and Magguran (2004: 100-121). 

4.8 CODING DATA 

Section 3.5 showed how coding data may facilitate statistical computations of measures 
of central tendency. Such benefits are even more apparent when calculating SS. S2. 

*For moderate to large II (or !;). "Stirling's approximation" is excellent (see note after Table 
B.40): 

n! = J21Tn(n/e)n = .[i;.jiie-"n". 

of which this is an easily usable derivation: 

logn! = (n + 0.5) log 11 - 0.434294n + 0.399090. 

An approximation with only half the error of the above is 

( + 0 'i)f1+05 
n! =.[i; II .. 

(' 

and 

(4.31 ) 

( 4.32) 

(4.33 ) 

log II! = (n + 0.5) log( n + 0.5) - 0.434294 ( II + 0.5) + 0.399090. ( 4.34 ) 

This is named for James Stirling. who published something similar to the latter approximation 
formula in 1730. making an arithmetic improvement in the approximation earlier known by 
Abraham de Moivre (Kemp. 19N9: Pearson. 1924: Walker. 1929: 16). 
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and s, because of the labor, and concomitant chances of error. involved in the unwieldy 
squaring of large or small numbers. 

When data are coded by adding or subtracting a constant (call it A), the measures 
of dispersion of Sections 4.1 through 4.5 are not changed from what they were for the 
data before coding. This is because these measures are based upon deviations, and 
deviations are not changed by moving the data along the measurement scale (e.g .. the 
deviation between 1 and 10 is the same as the deviation between 11 and 20). Sample 
1 in Example 4.4 demonstrates this. 

However, when coding by multiplying by a constant (call it M), the measures of 
dispersion are affected, for the magnitudes of the deviations will be changed. With 
such coding, the range. mean deviation. and standard deviation are changed by a 
factor of M, in the same manner as the arithmetic mean and the median are, whereas 
the sum of squares and variance are changed in accordance with the square of the 
coding constant (i.e .• M2), and the coefficient of variance is not affected. This is 
demonstrated in Sample 2 of Example 4.4. 

Appendix C presents the results of coding these and many other statistics, where a 
coded datum is described as 

[Xi] = MXi + A. ( 4.37) 

EXAMPLE 4.4 Coding Data to Facilitate the Calculation of Measures of 
Dispersion 

Sample 1 (Coding by Subtraction: A = -840 g) 

Without Coding Xi Using Coding [Xi] 
Xi (g) Xl (g2) [X;] (g) [Xi]2 (g2) 

842 708.964 2 4 
843 710,649 3 9 
844 712,336 4 16 
846 715,716 6 36 
846 715,716 6 36 
847 717,409 7 49 
848 719,104 8 64 
849 720,801 9 81 

:LXi = 6765 g :L xl = 5,720,695 g2 :L[X;] = 45 g :L[X;f = 295 g2 

5720695 g2 -
(6765 g)2 295 g2 _ (45 g)2 

8 [s2] = 8 
s2 = 

7 7 

= 5.98 g2 = 5.98 g2 

s = 2.45 g [s] = 2.44 g 

X = 845.6g [X] = 5.6 g 

V = s = 2.45 g 
X 845.6 g 

= 0.0029 = 0.29% 
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Sample 2 (Coding by Division: M = 0.01) 

Withow Coding Xi Using Coding [Xi] 

Xi (sec) Xl (sec2) [X;] (sec) [Xi]2 (sec2) 

800 640,000 8.00 64.00 
900 810.000 9.00 81.00 
950 902.500 9.50 90.25 

1100 1,210,000 11.00 121.00 
1250 1,562,500 12.50 156.25 
1300 1.690,000 13.00 169.00 

LXi = 6300 sec L xl = 6.815,000 sec2 L[X;] = 63.00 sec L[Xif = 681.50 sec2 

(6300 sec)2 681.50 sec2 -
(63.00 sec)2 

6815000 sec2 - 6 [;] = s2 = 6 
5 

5 = 4 sec2 
= 40,000 sec2 

[s] = 2.00 sec 
s = 200 sec 

X = 1050 sec [X] = 10.50 sec 

V = 0.19 = 19% [V] = 0.19 = 19% 

EXERCISES 

4.1. Five body weights. in grams. collected from a pop­
ulation of rodent body weights are 

66.1. 77.1. 74.6. 61.8. 71.5. 

(8) Compute the "sum of squares" and the vari­
ance of these data using Equations 4.12 and 
4.15. respectively. 

(b) Compute the "sum of squares" and the vari­
ance of these data by using Equations 4.16 and 
4.17. respectively. 

4.2. Consider the following data, which are a sam­
ple of amino acid concentrations (mg/IOO ml) in 
arthropod hemolymph: 

240.6.238.2.236.4.244.8.240.7.241.3.237.9. 

(8) Determine the range of the data. 
(b) Calculate the "sum of squares" of the data. 
(c) Calculate the variance of the data. 
(d) Calculate the standard deviation of the data. 
(e) Calculate the coefficient of variation of the 

data. 

4.3. The following frequency distribution of tree 
species was observed in a random sample from 
a forest: 

Species Frequency 

White oak 44 
Red oak 3 
Shagbark hickory 28 
Black walnut 12 
Basswood 2 
Slippery elm 8 

(8) Use the Shannon index to express the tree 
species diversity. 

(b) Compute the maximum Shannon diversity 
possible for the given number of species and 
individuals. 

(c) Calculate the Shannon evenness for these 
data. 

4.4. Assume the data in Exercise 4.3 were an entire 
popUlation (e.g.. all the trees planted around a 
group of buildings). 
(a) Use the Brillouin index to express the tree 

species diversity. 
(b) Compute the maximum Brillouin diversity 

possible for the given number of species and 
individuals. 

(c) Calculate the Brillouin evenness measure for 
these data. 



CHAPTER 5 

Probabilities 

5.1 COUNTING POSSIBLE OUTCOMES 
5.2 PERMUTATIONS 
5.3 COMBINATIONS 
5.4 SETS 
5.5 PROBABILITY OF AN EVENT 
5.6 ADDING PROBABILITIES 
5.7 MULTIPLYING PROBABILITIES 
5.8 CONDITIONAL PROBABILITIES 

Everyday concepts of "likelihood," "predictability." and "chance" arc formalized by 
that branch of mathematics called probability. Although earlier work on the subject 
was done by writers such as Giralamo Cardano (1501-1576) and Galileo Galilci 
(1564-1642). the investigation of probability as a branch of mathematics sprang in 
earnest from 1654 correspondence between two great French mathematicians, Blaise 
Pascal (1623-1662) and Pierre Fermat (1601-1665). These two men were stimulated 
by the desire to predict outcomes in the games of chance popular among the French 
nobility of the mid-seventeenth century: we still use the devices of such games (e.g., 
dice and cards) to demonstrate the basic concepts of probability: 

A thorough discourse on probability is well beyond the scope and intent of this 
book. but aspects of probability are of biological interest and considerations of 
probability theory underlie the many procedures for statistical hypothesis testing 
discussed in the following chapters. Therefore. this chapter will introduce probability 
concepts that bear the most pertinence to biology and biostatistical analysis. Although 
mastery of this chapter is not essential to apply the statistical procedures in the 
remainder of the book. occasionally later reference will be made to it. 

Worthwhile presentations of probability specifically for the biologist are found 
in Batschelet (1976: 441-474): Eason. Coles. and Gettinby (19HO: 395-414): and 
Mosimann (1968). 

5.1 COUNTING POSSIBLE OUTCOMES 

Suppose a phenomenon can occur in anyone of k different ways. hut in only one of 
those ways at a time. For example. a coin has two sides and when tossed will land 

*The first puhlished work on the suhject of probability and gaming was by the Dutch astronomer. 
physicist. and mathematician Christiaan (also known as Christianus) Huygens (I (121)-lhI)5). in 1f157 
(Asimov. II)~Q: 13X: David. 1%2: 113. 133). This. in turn. aroused the interest of other major 
minds. such as Jacob (also known as Jac4ues. Jakoh. and James) Bernoulli (1654- 1705. whose 
1713 hook was the first devoted entirely to probability). several other members of the remarkable 
Bernoulli family of Swiss mathematicians, and others such as Abraham de Moivre (1667 -1754), 
Pierre Remond de Montmort (167H-1711)), and Pierre-Simon Laplace (1741)-1 X27) of France. Th~ 
term prohllhilify in its modern mathematical sense was used liS early as 171 X hy de Moivrc (Miller. 
2IKl4a). For more dCI.ailed history of the suhject. see David (1962) and Walker (11)2X: 5- 13). 

49 
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with either the "head" side (H) up or the "tail" side (T) up, but not both. Or. a die 
has six sides and when thrown will land with either the], 2, 3, 4, 5, or 6 side up.* We 
shall refer to each possible outcome (i.e .• H or T with the coin: or t, 2, 3, 4, 5. or 6 
with the die) as an event. 

If something can occur in anyone of k J different ways and something else can occur 
in anyone of k2 different ways, then the number of possible ways for both things to 
occur is k, X k2. For example. suppose that two coins are tossed, say a silver one and 
a copper one. There are two possible outcomes of the toss of the silver coin (H or T) 
and two possible outcomes of the toss of the copper coin (H or T). Therefore. kJ = 2 
and k2 = 2 and there are (k, )(k2) = (2)(2) = 4 possible outcomes of the toss of 
both coins: both heads, silver head and copper tail. silver tail and copper head, and 
both tails (i.e., H,H: H,T; T.H: T,T). 

Or. consider tossing of a coin together with throwing a die. There are two possible 
coin outcomes (k, = 2) and six possible die outcomes (k2 = 6), so there are 
(k, )( k2) = (2)( 6) = 12 possible outcomes of the two events together: 

H,I; H,2; H,3; H.4; H,5: H.6; T,t; T,2; T,3; T,4; T,5; T.6. 

If two dice are thrown, we can count six possible outcomes for the first die and six 
for the second, so there are (k,)( k2) = (6)( 6) = 36 possible outcomes when two 
dice are thrown: 

1,1: 1,2; 1.3: 1.4; 1,5: 1,6; 

3.1: 3.2: 3,3; 3.4: 3,5: 3,6: 

5,1; 5.2; 5.3: 5,4: 5.5: 5.6; 

2,1; 2.2: 2,3; 2,4; 2,5; 2,6; 

4.1: 4.2: 4,3: 4.4: 4,5: 4,6: 

6.1; 6,2: 6.3; 6,4; 6.5: 6,6. 

The preceding counting rule is extended readily to determine the number of ways 
more than two things can occur together. If one thing can occur in anyone of k, 
ways, a second thing in anyone of k2 ways, a third thing in any of k3 ways, and so on, 
through an nth thing in anyone of k" ways, then the number of ways for all n things 
to occur together is 

(k, ) (k2 ) (k3 ) ... (k" ). 

Thus, if three coins are tossed, each toss resulting in one of two possible outcomes, 
then there is a total of 

possible outcomes for the three tosses together: 

H,H,H; H,H,T: H,T.H; H.T.T: T,H.H, T,H,T; T,T,H; T.T,T. 

Similarly. if three dice are thrown. there are (k, )( k2)( k3) = (6) (6)( 6) = 63 = 216 
possible outcomes: if two dice and three coins are thrown, there are 

*What we recognize as metallic coins originated shortly after 650 B.c.E.-perhaps in ancient 
Lydia (located on the Aegean Sea in what is now western Turkey). From the beginning, the obverse 
and reverse sides of coins have had different designs. in earliest times with the obverse commonly 
depicting animals and, later, deities and rulers (Sutherland. 1992). Dice have long been used for 
both games and religion. They date from nearly 3000 years S.C.E., with the modern conventional 
arrangement of dots on the six faces of a cubic die (I opposite 6, 2 opposite 5, and 3 opposite 
4) becoming dominant around the middle of the fourteenth century B.C.E. (David, 1962: 10). Of 
course. the arrangement of the numbers I through 6 on the six faces has no effect on the outcome 
of throwing a die. 
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(kd(k2)(k3)(k4)(ks) = (6)(6)(2)(2)(2) = (62 )(23) = 288 outcomes; and so 
on. Example 5.1 gives two biological examples of counting possible outcomes. 

EXAMPLE 5.1 Counting Possible Outcomes 

5.2 PERMUTATIONS 

(a) A linear arrangement of three deoxyribonucleic acid (DNA) nucleotides is 
called a triplet. A nucleotide may contain anyone of four possible bases: 
adenine (A), cytosine (C), guanine (G), and thymine (T). How many different 
triplets are possible? 
As the first nucleotide in the triplet may be anyone of the four bases (A; C; 
G; T), the second may be anyone of the four. and the third may be anyone 
of the four. there is a total of 

(k d (k2)( k3) = (4)( 4 )( 4) = 64 possible outcomes: 

that is, there are 64 possible triplets: 

A. A. A; A. A, C; A. A, G; A. A. T; 
A. C, A; A. C. C; A, C, G; A. C, T; 
A, G. A; A. G. C; A, G. G; A. G. T; 
and so on. 

(b) If a diploid cell contains three pairs of chromosomes. and one member of 
each pair is found in each gamete, how many different gametes are possible? 
As the first chromosome may occur in a gamete in one of two forms, as may 
the second and the third chromosomes. 

Let us designate one of the pairs of chromosomes as "long," with the members 
of the pair being L, and L2; one pair as "short." indicated as S, and S2; and 
one pair as "midsized," labeled M, and M2. Then the eight possible outcomes 
may be represented as 

L,.M,.S,: L,.M"S2: L"M2,S,: L"M2,S2: 
L2.M"S,: L2,M"S2: L2. M2,S,: L2, M2.S2. 

<a) Linear Arrangements. A permutation· is an arrangement of objects in a specific 
sequence. For example. a horse (H). cow (C). and sheep (S) could be arranged 
linearly in six different ways: H.C.S; H.S.C; C.H.S; C.S.H: S.H,C; S.c'H. This set of 
outcomes may be examined by noting that there are three possible ways to fill the 
first position in the linear order; but once an animal is placed in this position, there 
are only two ways to fill the second position: and after animals are placed in the 
first two positions, there is only one possible way to fill the third position. Therefore, 
k, = 3. k2 = 2. and k3 = 1. so that by the method of counting of Section 5.1 there 
are (k, )(k2)(k3) = (3)(2)( 1) = 6 ways to align these three animals. We may say 
that there are six permutations of three distinguishable objects. 

*The term permllllllion was invented by Jacob Bernoulli in his landmark posthumous 1713 book 
on probability (Walker. 1929: 9). 
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In general, if there are n linear positions to fill with n objects. the first position may 
be filled in anyone of n ways. the second may be filled in anyone of n - 1 ways. 
the third in anyone of n - 2 ways, and so on until the last position. which may be 
filled in only one way. That is, the filling of n positions with n objects results in nPII 

permutations. where 

"P,,=n(n- l)(n - 2)···(3)(2)(1). (5.1 ) 

This equation may be written more simply in factorial notation as 

"P" = n!. (5.2) 

where "n factorial" is the product of 11 and each smaller positive integer*: that is. 

II! = 11(11 - 1)(11 - 2)···(3)(2)(1). (5.3) 

Example 5.2 demonstrates such computation of the numbers of permutations. 

EXAMPLE 5.2 The Number of Permutations of Distinct Objects 

In how many sequences can six photographs be arranged on a page? 

"P" = 6! = (6)(5)(4)(3)(2)(1) = 720 

(b) Circular Arrangements. The numbers of permutations considered previously 
are for objects arranged on a line. If objects are arranged on a circle. there is no 
"starting position" as there is on a line, and the number of permutations is 

n! n?'" = - = (n - I)!. (5.4) 
II 

(Observe that the notation "P:/ is used here for circular permutations to distinguish it 
from the symbol "P" used for linear permutations.) 

Referring again to a horse, a cow, and a sheep, there are nP;/ ;;: ~ = (n - I)! = 

" (3 - 1)! = 2! = 2 distinct ways in which the three animals could be seated around a 
table, or arranged around the shore of a pond: 

H H 
or 

sec s 
In this example, there is an assumed orientation of the observer, so clockwise and 

counterclockwise patterns are treated as different. That is, the animals are observed 
arranged around the top of the table, or observed from above the surface of the 
pond. But either one of these arrangements would look like the other one if observed 
from under the table or under the water: and if we did not wish to count the results 
of these two mirror-image observations as different. we would speak of there being 
one possible permutation, not two. For example, consider each of the preceding two 
diagrams to represent three beads on a circular string, one bead in the shape of a 
horse, one in the shape of a cow. and the other in the shape of a sheep. The two 
arrangements of H, C, and S shown are not really different, for there is no specific 
way of viewing the circle: one of the two arrangements turns into the other if the 
circle is turned over. If n > 2 and the orientation of the circle is not specified. then 

·See the second footnote in Section 4.7. 
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the number of permutations of n objects on a circle is 

P.' = n! = (n - 1 )! 
"II 211 2' 

(5.5) 

(c) Fewer than n Positions. If one has n objects, but fewer than It positions in which 
to place them, then there would be considerably fewer numbers of ways to arrange 
the objects than in the case where there are positions for all n. For example, there are 
4 P4 = 4! = (4)( 3)( 2)( 1) = 24 ways of placing a horse (H), cow (C), sheep (S), and 
pig (P) in four positions on a line. However. there are only twelve ways of linearly 
arranging these four animals two at a time: 

H,C: H.S; H.P: C,H; C.S: c.P: S,H; S,C; S.P; P,H; P,C; P,S. 

The number of linear permutations of n objects taken X at a time is· 

P _ n! 
" x - (n - X)! 

(5.6) 

For the preceding example. 

P = 4! = 4! = (4)(3)(2)(1) = 12. 
4 2 (4 _ 2)! 2! (2)(1) 

Equation 5.2 is a special case of Equation 5.6. where X = n; it is important to know 
that O! is defined to be l.t 

If the arrangements are circular. instead of linear, then the number of them poss­
ible is 

P'. - n! 
/I x - (n _ X)!X (5.7) 

So, for example, there are only 4!j[ (4 - 2) !2] = 6 different ways of arranging two 
out of our four animals around a table: 

H H 
C S 

H C C S 
P S P P 

for C seated at the table opposite H is the same arrangement as H seated across from 
C, S seated with H is the same as H with S, and so on. Example 5.3 demonstrates this 
further. Equation 5.4 is a special case of Equation 5.7, where X = n; and recall that 
O! is defined as 1. 

EXAMPLE 5.3 The Number of Permutations of n Objects Taken X at a 
Time: In How Many Different Ways Can a Sequence of Four Slides Be Chosen 
from a Collection of Six Slides? 

"Px = 
p _ 6! _ 6! _ (6)(5)(4)(3)(2)(1) 

6 4 - (6 _ 4)! - 2! - (2)(1) 

= (6)(5)(4)(3) = 360 

*Notation in the form of "PX to indicate permutations of n items taken X at a time was used 
prior to 1869 by Harvey Goodwin (Cajori, 1929: 79). 

tWhy is O! defined to be I? In general. II! = tI[ (" - I)!): for example. 5! = 5( 4! ). 4! = 4( 3! ), 
3! = 3(2!),and2! = 2(1!).Thus.l! = I(O!).whichissoonlyifO! = I. 
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If 11 > 2, then for every circular permutation viewed from above there is a mirror 
image of that permutation. which would be observed from below. If these two mirror 
images are not to be counted as different (e.g .. if we are dealing with beads of different 
shapes or colors on a string), then the number of circular permutations is 

P" _ Il! 
n X - 2(11 _ X)!X (5.8) 

(d) If Some of the Objects Are Indistinguishable. If our group of four animals 
consisted of two horses (H), a cow (C), and a sheep (S). the number of permutations 
of the four animals would be twelve: 

H,H.c'S; H,H,S,C; H,C,H,S; H.C,S.H; H.S.H.C; H,S.C,H; 

C,H.H,S; C,H.S.H; C,S,H.H; S.H,H.e: S,H.c'H; S.C,H,H. 

If Ili represents the number of like individuals in category i (in this case the number 
of animals in species i), then in this example III = 2.112 = 1, and 113 = 1. and we can 
write the number of permutations as 

41 
= -- = 12. 

2!!!1! 

If the four animals were two horses (H) and two cows (C). then there would be only 
six permutations: 

H.H.c'e: C,C,H.H; H,C,H.C; C,H,C,H; H,C.c'H; C,H.H.C. 

In this case, 11 = 4.111 = 2, and 112 = 2. and the number of permutations is calculated 
tobel/PnlJI2 =11!/(111!1l2!) =4!/(2!2!) = (4)(3)(2)/[(2)(2)] =6. 

In general, if III members of the first category of objects are indistinguishable. as 
are 112 of the second category, 113 of the third category, and so on through Ilk members 
of the kth category. then the number of different permutations is 

(5.9) 

where the capital Greek letter pi (n) denotes taking the product just as the capital 
Greek sigma (~. introduced in Section 3.1) indicates taking the sum. This is shown 
further in Example 5.4. 

EXAMPLE 5.4 Permutations with Categories Containing Indistinguish-
able Members 

There are twelve pOlled plants. six of one species. four of a second species, and 
two of a third species. How many different linear sequences of species are possible 
(for example, if arranging the pots on a shelf)? 

P = _11_ 
n nlJl2.nJ n.f 

Il" 

P _ 121 
12 6.4.2 - 6!4!2! 

= ...:-( 1--=2 )....;..,( 1_1 ~)( _10-,-,)(--=9 )....;..,( 8....:...,)(,,--7..:.....:.)( --=.6 )....:...,( 5....:....)(=--4 '-'-)( 3....;..)-,-( 2....:....;)(,--,-1) = 13,860. 
(6)(5)(4)(3)(2)(1)(4)(3)(2)(1)(2)(1) 
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Note that the above calculation could have been simplified by writing 

~ = (12)(11)(1O)(9)(8)(7)6! = (12)(11)(10)(9)(8)(7) = \3.860. 
6!4!2! 6!(4)(3)(2)(2) (4)(3)(2)(2) 

Here. "( 1)" is dropped: also. "6!" appears in both the numerator and denominator. 
thus canceling out. 

5.3 COMBINATIONS 

In Section 5.2 we considered groupings of objects where the sequence within the 
groups was important. In many instances, however. only the components of a group. 
not their arrangement within the group. are important. We saw that if we select two 
animals from among a horse (H). cow (C), sheep (S), and pig (P). there are twelve 
ways of arranging the two on a line: 

H,C; H.S: H.P; C.H; C.S; C,P; S,H: S,C: S.P; P,H: P.C: P.S. 

However. some of these arrangements contain exactly the same kinds of animals, only 
in different order (e.g., H.C and C.H; H,S and S.H). If the groups of two are important 
to us, but not the sequence of objects within the groups, then we are speaking of 
combinations,* rather than permutations. Designating the number of combinations 
of n objects taken X at a time as "Cx. we havet 

C - "Px _ n! 
" x - X! - X!(n X)! 

(5.10) 

So for the present example. II = 4. X = 2. and 

C - 4! = ~ = (4)(3)(2)(1) = (4)(3) = 6 
4 2 - 2!( 4 - 2)! 2!2! (2)(1 )(2)( 1) 2 ' 

the six combinations of the four animals taken two at a time being 

H.C; H.S; H.P: C.S; c.P: S.P. 

Example 5.5 demonstrates the determination of numbers of combinations for another 
set of data. 

It may be noted that 
(5.11 ) 

meaning that there is only one way of selecting all n items; and 

(5.12) 

indicating that there are n ways of selecting 11 items one at a time. Also, 

(5.13) 

*The word comhin(/(ion was used in this mathematical sense by Blaise Pascal (1623-1662) in 
1654 (Smith. 1953: 528). 

tNotation in the form of "ex (0 indicate comhinations of n items taken X at a lime was used 
hy G. Chrystal in 1899 (Cajori. 1929: 80). 
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EXAMPLE 5.5 Combinations of n Objects Taken X at a Time 

Of a total of ten dogs. eight are to be used in a laboratory experiment. How many 
different combinations of eight animals may be formed from the ten? 

c - C - to! 
" x -10 8 - 8!( 10 _ 8)! = 8-!-2! = 

1O! (10)(9)(8)(7)(6)(5)( 4 )(3)(2)( 1) 
(8)(7)(6)(5)( 4)(3 )(2)( 1 )(2)( I) 

= 45. 

It should be noted that the above calculations with factorials could have been 
simplified by writing 

c - 10! _ (1O)(9)8! _ (10)(9) - 45 
J() II - 8!2! - 8!2! - 2 - • 

so that "8!" appears in both the numerator and denominator. thus canceling each 
other out. 

which means that if we select X items from a group of n. we have at the same 
time selected the remaining II - X items; that is. an exclusion is itself a selection. 
For example. if we selected two out of five persons to write a report. we have 
simultaneously selected three of the five to refrain from writing. Thus. 

c - 5! = 5! = 10 
5 2 - 2!(5 _ 2)! 2!3! 

and 
5! 5! 

SCs 2 = ",C3 = = - = 10 
• - .1. 3!(5 - 3)! 3!2! • 

meaning that there are ten ways to select two out of five persons to perform a 
task and ten ways to select three out of five persons to be excluded from that task. 
This question may be addressed by applying Equation 5.9. reasoning that we are 
asking how many distinguishable arrangements there are of two writers and three 
nonwriters: SP2.3 = 5!/ (2!3!) = 10. 

The product of combinatorial outcomes may also be employed to address questions 
such as in Example 5.4. This is demonstrated in Example 5.6. 

EXAMPLE 5.6 Products of Combinations 

This example provides an alternate method of answering the question of Exam­
ple 5.4. 

There are twelve potted plants. six of one species. four of a second species. and 
two of a third. How many different linear sequences of species are possible? 

There are twelve positions in the sequence. which may be filled by the six 
members of the first species in this many ways: 

C - 12! = 924. 
12 () - (12 - 6)!6! 

The remaining six positions in the sequence may be filled by the four members of 
the second species in this many ways: 

C - 6! = 15. 
() 4 - (6 _ 4) !4! 
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And the remaining two positions may be filled by the two members of the third 
species in only one way: 

c - 2! = 1. 
2 2 - (2 _ 2)!2! 

As each of the ways of filling positions with members of one species exists in 
association with each of the ways of filling positions with members of each other 
species, the total different sequences of species is 

(924) ( 15)( 1) = 13,860. 

From Equation 5.10 it may be noted that, as nCX = nPX/ X!, 

nPX = X!I/Cx, (5.14) 

It is common mathematical convention to indicate the number of combinations 

of 11 objects taken X at a time as ( ; ) instead of "Cx, so for the problem at the 

beginning of Section 5.3 we could have written* 

(;) = (~) = 2!(4 4~ 2)! = 6. 

Binomial coefficients, which are discussed in Section 24.1, take this form. 

A set is a defined collection of items. For example, a set may be a group of four 
animals, a collection of eighteen amino acids, an assemblage of twenty-five students, 
or a group of three genetic traits. Each item in a set is termed an element. If a set of 
animals includes these four elements: horse (H), cow (C), sheep (S), and pig (P), and 
a second set consists of the elements p, S, H. and C, then we say that the two sets are 
equal, as they contain exactly the same elements. The sequence of elements within 
sets is immaterial in defining equality or inequality of sets. 

If a set consisted of animals Hand p, it would be declared a subset of the above 
set (H, C, S, P). A subset is a set, all of whose elements are elements of a larger set. t 
Therefore. the determination of combinations of X items taken from a set of 11 items 
(Section 5.3) is really the counting of possible subsets of items from the set of 11 items. 

In an experiment (or other phenomenon that yields results to observe), there is a set 
(usually very large) of possible outcomes. Let us refer to this set as the outcome set. t 

Each element of the set is one of the possible outcomes of the experiment. For 
example. if an experiment consists of tossing two coins. the outcome set consists of 
four elements: H,H; H,T; T,H; T,T. as these are all of the possible outcomes. 

A subset of the outcome set is called an event. If the outcome set were the possible 
rolls of a die: 1, 2, 3, 4, 5. 6. an event might be declared to be "even-numbered 
rolls" (i.e .. 2, 4, 6), and another event might be defined as "rolls greater than 4" 

*This parenthetical notation for combinations was introduced by Andreas von Ettingshauscn in 
1826 (Miller. 20()4c). Some authors have used a symbol in the form of C~ (or "Cx) instead of "Cx 
for combinations and i>'.r (or" P x) instead of n P X for permutations: those symbols will not be used 
in this book, in order to avoid confusing II with an exponent. 

t Utilizing the terms set and subset in this fashion dates from the last half of the nineteenth 
century (Miller. 2004a). 

* Also called the sample space. 
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(i.e., 5, 6). In tossing two coins, one event could be "the two coins land differently" 
(Le .. T.H: H,T), and another event could be "heads do not appear" (i.e., T.T). If the 
two events in the same outcome set have some elements in common, the two events 
are said to intersect; and the intersection of the two events is that subset composed 
of those common elements. For example, the event "even-numbered rolls" of a die 
(2, 4. 6) and the event "rolls greater than 4" (5. 6) have an element in common 
(namely, the roll 6); therefore 6 is the intersection of the two events. For the events 
"even-numbered rolls" (2,4, 6) and "rolls less than 5" (1. 2. 3, 4). the intersection 
subset consists of those elements of the events that are both even-numbered and less 
than 5 (namely. 2,4).* 

If two events have no clements in common. they are said to be mutually exclusive. 
and the two sets are said to be disjoint. The set that is the intersection of disjoint sets 
contains no elements and is often called the empty set or the /lull set. For example. 
the events "odd-numbered rolls" and "even-numbered rolls" are mutually exclusive 
and there are no elements common to both of them. 

If we ask what elements are found in either one event or another, or in both 
of them, we are speaking of the union of the two events. The union of the events 
"even-numbered rolls" and "rolls less than 5" is that subset of the outcome set that 
contains elements found in either set (or both sets). namely J, 2, 3,4,6. t 

Once a subset has been defined, all other elements in the outcome set are said to 
be the compiemelll of that subset. So, if an event is defined as "even-numbered rolls" 
of a die (2, 4. 6). the complementary subset consists of "odd-numbered rolls" (I. 3, 
5). If subset is "rolls less than 5" (1,2.3,4), the complement is the subset consisting 
of rolls 5 or greater (5, 6). 

The above considerations may be presented by what are known as Venn diagrams, ~ 
shown in Figure 5.1. 

The rectangle in this diagram denotes the outcome set. the set of all possible 
outcomes from an experiment or other producer of observations. The circle on the 

FIGURE 5.1: A Venn diagram showing the relationships among the outcome set represented by the 
rectangle and the subsets represented by circles A, B, and C. Subsets Band C intersect, with no 
intersection with A. 

*The term illlerseclion had been employed in this manner by 1909 (Miller, 2004a). The 
mathematical symbol for intersection is "n", first used by Italian mathematician Giuseppe Peano 
(1858-1932) in 1888 (Miller. 2004a): so, for example, the intersection of set A (consisting of 2.4.6) 
and set B (consisting of 5. 6) is set A n B (consisting of 6). 

tThe term /Inion had been employed in this way by 1912 (Miller. 2004a). The mathematical 
symbol for union is .. U ". first used by Giuseppe Peano in I HHH (Miller, 2004a); so. for example, if 
set A is composed of even-numbered rolls of a die (2,4,6). and set B is odd-numbered rolls (t, 3, 
5), the union of the two sets. namely A U B. is 2. 4. 6, I. 3. 5. 

*Named for English mathematical logician John Venn (1834-1923). who in tAAO greatly 
improved and popularized the diagrams (sometimes called "Euler diagrams") devised by Leonhard 
Euler (1707-1783) (Gullberg. 1997: 242: O'Connor and Robertson. 20(3). 
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left represents a subset of the outcome set that we shall refer to as event A, the circle 
in the center signifies a second subset of the outcome set that we shall refer to as 
event B, and the circle on the right depicts a third subset of the outcome set that 
we shall call event C. If, for example, an outcome set (the rectangle) is the number 
of vertebrate animals in a forest, subset A might be animals without legs (namely, 
snakes), subset B might be mammals, and subset C might be flying animals. Figure 5.1 
demonstrates graphically what is meant by union, intersection. mutually exclusive, 
and complementary sets: The union of Band C (the areas with any horizontal or 
vertical shading) represents all birds and mammals: the intersection of Band C (the 
area with both horizontal and vertical shading) represents flying mammals (i.e., bats); 
the portion of C with only vertical shading represents birds: A is mutually exclusive 
relative to the union of Band C, and the unshaded area (representing all other 
vertebrates-namely, amphibians and turtles) is complementary to A, B, and C (and 
is also mutually exclusive of A, B, and C). 

5.5 PROBABILITY OF AN EVENT 

As in Section 1.3, we shall define the relative frequency of an event as the proportion 
of the total observations of outcomes that event represents. Consider an outcome set 
with two elements, such as the possible results from tossing a coin (H: T) or the sex 
of a person (male; female). If n is the total number of coin tosses and f is the total 
number of heads observed. then the relative frequency of heads is f / n. Thus. if heads 
are observed 52 times in 100 coin tosses. the relative frequency is 52/100 = 0.52 (or 
52%). If 275 males occur in 500 human births, the relative frequency of males is 
fin = 275/500 = 0.55 (or 55%). In general. we may write 

. frequency of that event f 
relatIVe frequency of an event = = -. 

total number of all events n 
(5.15) 

The value off may, of course, range from 0 to n, and the relative frequency may, there­
fore. range from 0 to 1 (or 0% to 100%). A biological example is given as Example 5.7. 

EXAMPLE 5.7 Relative Frequencies 

A sample of 852 vertebrate animals is taken randomly from a forest. The sampling 
was done with replacement, meaning that the animals were taken one at a time. 
returning each one to the forest before the next one was selected. This is done 
to prevent the sampling procedure from altering the relative frequency in the 
sampled population. If the sample size is very small compared to the population 
size, replacement is not necessary. (Recall that random sampling assumes that 
each individual animal is equally likely to become a part of the sample.) 

Vertebrate Relative 
Subset Number Frequency 

amphibians 53 53/852 = 0.06 
turtles 41 41/852 = 0.05 
snakes 204 204/852 = 0.24 
birds 418 418/852 = 0.49 
mammals 136 136/852 = 0.16 

total 852 1.00 
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The probability of an event is the likelihood of that event expressed either by the 
relative frequency observed from a large number of data or by knowledge of the 
system under study. In Example 5.7 the relative frequencies of vertebrate groups have 
been observed from randomly sampling forest animals. If. for the sake of the present 
example, we assume that each animal has the same chance of being caught as part of 
our sample (an unrealistic assumption in nature), we may estimate the probability, P. 
that the next animal captured will be a snake (P = 0.24). Or, using the data of the 
preceding paragraph. we can estimate that the probability that a human birth will be a 
male is 0.55, or that the probability of tossing a coin that lands head side up is 0.52. A 
probability may sometimes be predicted on the basis of knowledge about the system 
(e.g .• the structure of a coin or of a die, or the Mendelian principles of heredity). If 
we assume that there is no reason why a tossed coin should land "heads" more or less 
often than "tails," we say there is an equal probability of each outcome: P( H) = ~ and 

P( T) = ~ states that "the probability of heads is 0.5 and the probability of tails is 0.5." 
Probabilities. like relative frequencies. can range from 0 to t. A probabil­

ity of 0 means that the event is impossihle. For example, in tossing a coin. 
P(neither H nor T) = 0, or in rolling a die. P( number > 6) = O. A probability 
of 1 means that an event is certain. For example. in tossing a coin, P(H or T) = 1: or 
in rolling a die, P{l $ number $ 6) = l. * 

5.6 ADDING PROBABILITIES 

(a) If Events Are Mutually Exclusive. If two events (call them A and B) are mutually 
exclusive (e.g., legless vertebrates and mammals are disjoint sets in Figure 5.1). then 
the probability of either event A or event B is the sum of the probabilities of the two 
events: 

P( A or B) = P( A) + P( B ). (5.16) 

For example. if the probability of a tossed coin landing head up is ~ and the probability 

of its landing tail up is ~. then the probability of either head or tail up is 

P( H or T) = P( H) + P( T) = ! + ! = 1. 
2 2 

(5.17) 

And. for the data in Example 5.7. the probability of selecting, at random. a reptile 
would be P(turtle or snake) = P(turtle) + P(snake) = 0.05 + 0.24 = 0.29. 

This rule for adding probabilities may be extended for more than two mutually 
exclusive events. For example. the probability of rolling a 2 on a die is ~. the 

probability of rolling a 4 is ~. and the probability of rolling a 6 is ~; so the prohability 
of rolling an even number is 

P(evennumber) = P(20r40r6) = P(2) + P(4) + P(6) 

1+!+!=~=! 
6 6 6 6 2 

* A concept related to probability is the odd.~ for an event. namely the ratio of the probability of 
the event occurring and the probability of that event not occurring. For example. if the probability 
of a male birth is 0.55 (and. therefore. the probability of a female birth is 0.45). then the odds in 
favor of male births are 0.55/0.45. expressed as "II to 9." 
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And, for the data in Example 5.7, the probability of randomly selecting a reptile or 
amphibian would be P(turtle) + P(snake) + P(amphibian) = 0.05 + 0.24 + 0.06 = 
0.35. 

(b) If Events Are Not Mutually Exclusive. If two events are not mutually exclu­
sive-that is, they intersect (e.g., mammals and ftying vertebrates are not disjoint 
sets in Figure 5.1)-then the addition of the probabilities of the two events must be 
modified. For example. if we roll a die, the probability of rolling an odd number is 

P(oddnumber) = P(1 or30r5) = P(l) + P(3) + P(5) 
1 1 1 3 1 

= 6 + 6 + 6 = 6 = 2: 
and the probability of rolling a number less than 4 is 

P(number < 4} = P(l or20r3) = P(l) + P(2} + P(3} 
1 1 1 3 I = - + - + - = - = -. 
6 6 6 6 2 

The probability of rolling either an odd number or a number less than 4 obviously is 
not calculated by Equation 5. t 6. for that equation would yield 

P( odd number or number < 4) 
? 

~ P(odd} + P(number < 4) 

= P[(I or 3 or 5) or (1 or 2 or 3)] 

= [P( I} + P( 3) + P( 5 )] + I P( 1) + P( 2) + P( 3 )] 

= (! + ! + !) + (! + ! + !) = I 
666 666 ' 

and that would mean that we are certain (P = 1) to roll either an odd number or a 
number less than 4. which would mean that a roll of 4 or 6 is impossible! 

The invalidity of the last calculation is due to the fact that the two elements (namely 
1 and 3) that lie in both events are counted twice. The subset of elements consisting 
of rolls 1 and 3. is the intersection of the two events and its probability needs to be 
subtracted from the preceding computation so that P(l or 3) is counted once, not 
twice. Therefore, for two intersecting events, A and B, the probability of either A or 
B is 

P(A or B) = P(A) + P(B) - P(A and B). (5.18) 

In the preceding example. 

P(odd number or number < 4) 

= P(odd number) + P(number < 4) 

- P(odd number and number < 4) 

= P[(l or 3 or 5) or (lor 2 or 3)] - P(I or 3) 

= [P( 1) + P( 3) + P( 5 )] + [P( 1) + P( 2) + P( 3 )] - [P( 1) + P( 3 )] 

= (~ + ~ + ~) + (~ + ~ + ~) - (~ + ~) = ~ = ~. 
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It may be noted that Equation 5.16 is a special case of Equation 5.18, where P(A and 
B) = O. Example 5.8 demonstrates these probability calculations with a different set 
of data. 

EXAMPLE 5.8 Adding Probabilities of Intersecting Events 

A deck of playing cards is composed of 52 cards, with thirteen cards in each of 
four suits called clubs. diamonds. hearts. and spades. In each suit there is one card 
each of the following thirteen denominations: ace (A). 2. 3. 4. 5.6. 7, 8. 9. to. jack 
(1). queen (Q). king (K). What is the probability of selecting at random a diamond 
from the deck of 52 cards? 

The event in question (diamonds) is a subset with thirteen elements: therefore, 

P( diamond) = 13 = ! = 0.250. 
52 4 

What is the probability of selecting at random a king from the deck? 
The event in question (king) has four elements: therefore, 

Peking) = ~ = J.- = 0.077. 
52 13 

What is the probability of selecting at random a diamond or a king? 
The two events (diamonds and kings) intersect, with the intersection having one 

element (the king of diamonds): therefore. 

P( diamond or king) = P( diamond) + Peking) - P( diamond and king) 

=13+~_J.-
52 52 52 

= 16 = ~ = 0.308. 
52 13 

If three events are not mutually exclusive, the situation is more complex, yet 
straightforward. As seen in Figure 5.2. there may be three two-way intersections. 
shown with vertical shading (A and B: A and C: and B and C). and a three-way 

AGURE 5.2: A Venn diagram showing three intersecting sets: A. B. and C. Here there are three two-way 
intersections (vertical shading) and one three-way intersection (horizontal shading). 
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intersection. shown with horizontal shading (A and B and C). If we add the probabil­
ities of the three events. A, B, and C, as P( A) + P( B) + P( C), we are adding the 
two-way intersections twice. So, we can subtract P(A and B), P(A and C), and PCB and 
C). Also, the three-way intersection is added three times in P( A) + P( B) + P( C), 
and subtracted three times by subtracting the three two-way intersections: thus, P(A 
and B and C) must be added back into the calculation. Therefore, for three events, 
not mutually exclusive, 

P(AorBorC) = P(A) + P(B) + P(C) 
- P(A and B) - P(A and C) - P(B and C) (5.19) 

+ P(A and B and C). 

5.7 MULTIPLYING PROBABILITIES 

Iftwoor more events intersect (as A and B in Figure 5.1 and A, B, and C in Figure 5.2), 
the probability associated with the intersection is the product of the probabilities of 
the individual events. That is, 

P(A and B) = [P(A)][P(B)), 

P(A and B and C) = [P(A )][P( B)][P( C)), 
and so on. 

(5.20) 

(5.21 ) 

For example, the probability of a tossed coin landing heads is ~. If two coins are 
tossed, the probability of both coins landing heads is 

P(H,H) = [P(H))[P(H)) = (~) (~) = (1) = 0.25. 

This can be verified by examining the outcome set: 

H,H: H,T: T.H: T.T, 

where P( H, H) is one outcome out of four equally likely outcomes. The probability 
that 3 tossed coins will land heads is 

P(H,H,H) = [P(H)][P(H)][P(H») = (~) (~) (~) = (~) = 0.125. 

Note, however. that if one or more coins have already been tossed, the probability 
that the next coin toss (of the same or a different coin) will be heads is simply ~. 

5.8 CONDITIONAL PROBABILITIES 

There are occasions when our interest will be in determining a conditional probability, 
which is the probability of one event with the stipulation that another event also 
occurs. An illustration of this, using a deck of 52 playing cards (as described in 
Example 5.8), would be the probability of selecting a queen, given that the card is a 
spade. In general. a conditional probability is 

. P( A and B jointly) 
P(event A, gIven event B) = , 

P(B) 
(5.22) 

which can also be calculated as 

P( t A . B) frequency of events A and B jointly 
even , gIVen event = . 

frequency of event B 
(5.23) 
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So, the probability of randomly selecting a queen, with the specification that the card 
is a spade. is (using Equation 5.22) 

. .. P(queen of spades) 
P(queen, gIven It IS a spade) = --'-"-----'--....;. 

P(spade) 
= (1/52)/( 13/52) = 0.02/0.25 = 0.08. 

which (by Equation 5.23) would be calculated as 

P( "t . d) frequency of queen of spades queen, gIven I IS a spa e = -~-~-...!----!..--
frequency of spades 

= 1/13 = 0.8. 

Note that this conditional probability is quite different from the probability of 
selecting a spade, given that the card is a queen, for that would be (by Equation 5.23) 

P( d . .. ) frequency of queen of spades spa e, gIven It IS a queen = -~-~--'----'--
frequency of queens 

= 1/4 = 0.25. 

EXERCISES 

5.1. A person may receive a grade of either high (H), 
medium (M), or low (L) on a hearing test, and a 
grade of either good (G) or poor (P) on a sight test. 
(8) How many different outcomes are there if 

both tests are taken? 
(b) What are these outcomes? 

5.2. A menu lists three meats, four salads. and two 
desserts. In how many ways can a meal of one 
meat. one salad, and one dessert be selected? 

5.3. If an organism (e.g .• human) has 23 pairs of chro­
mosomes in each diploid cell. how many different 
gametes are possible for the individual to produce 
by assortment of chromosomes? 

5.4. In how many ways can five animal cages be 
arranged on a shelf? 

5.5. In how many ways can 12 different amino acids 
be arranged into a polypeptide chain of five amino 
acids? 

5.6. An octapeptide is known to contain four of one 
amino acid. two of another. and two of a third. How 
many different amino-acid sequences are possible? 

5.7. Students are given a list of nine books and told that 
they will be examined on the contents of five of 
them. How many combinations of five books are 
possible? 

5.S. The four human blood types below are genetic phe­
notypes that are mutually exclusive events. Of 5400 
individuals examined. the following frequency of 
each blood type is observed. What is the relative 
frequency of each blood type? 

B/ood Type Frequency 

o 2672 
A 2041 
B 486 
AB 201 

5.9. An aquarium contains the following numbers of 
tropical freshwater fishes. What is the relative fre­
quency of each species? 

Species Number 

Paracheirodon innesi. 
neon tetra 11 

Cheirodon axe/rodi. 
cardinal tetra 6 

Pterophylllll1l sea/are. 
angelfish 4 

Pterophyllum allum. 
angelfish 2 

Pterophyllllm dllmerilii. 
angelfish 2 

NannoslolnllS marginallls. 
one-lined pencil fish 2 

Nannostomus anolna/u!i 
golden pencilfish 2 



5.10. Use the data of Exercise 5.8. assuming that each 
of the 5400 has an equal opportunity of being 
encountered. 
(a) Estimate the probability of encountering a 

person with type A blood. 
(b) Estimate the probability of encountering a 

person who has either type A or type A8 
blood. 

5.11. Use the data of Exercise 5.9. assuming that each 
individual fish has the same probability of being 
encountered. 
(a) Estimate the probability of encountering an 

angelfish of the species Pterophyllllm sea/are. 
(b) Estimate the probability of encountering a 

fish belonging to the angelfish genus Ptero­
phyllllm. 

5.12. Either allele A or a may occur at a particular genetic 
locus. An offspring receives one of its alleles from 
each of its parents. If one parent possesses alleles 
A and a and the other parent possesses a and a: 
(a) What is the probability of an offspring receiv-

ing an A and an a? 
(b) What is the probability of an offspring receiv­

ing two a alleles? 
(c) What is the probability of an offspring receiv­

ing two A alleles? 

Exercises 6S 

5.13. In a deck of playing cards (see Example 5.8 for a 
description ). 
(a) What is the probability of selecting a queen of 

clubs? 
(b) What is the probability of selecting a black 

(i.e .. club or spade) queen? 
(c) What is the probability of selecting a black 

face card (i.e .. a black jack. queen, or king)? 
5.14. A cage contains six rats. two of them white (W) 

and four of them black (8); a second cage contains 
four rats. two white and two black: and a third cage 
contains five rats, three white and two black. If one 
rat is selected randomly from each cage. 
(a) What is the probability that all three rats 

selected will be white? 
(b) What is the probability that exactly two of the 

three will be white? 
(e) What is the probability of selecting at least 

two white rats? 
5.15. A group of dogs consists of three brown males. 

two brown females, four white males. four white 
females. five black males. and four black females. 
What is the probability of selecting at random 
(a) A brown female dog? 
(b) A female dog, if the dog is brown? 
(e) A brown dog. if the dog is a female? 
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Commonly. a distribution of interval- or ratio-scale data is observed to have a 
preponderance of values around the mean with progressively fewer observations 
toward the extremes of the range of values (see. e.g .. Figure \.5). If 11 is large. the 
frequency polygons of many biological data distributions are "bcll-shaped"* and look 
something like Figure 6.1. 

Figure 6.1 is a frequency curve for a normal distrilmtio17. t Not all bell-shaped curves 
are normal: alLhough biologists are unlikely to need to perform calculations with this 
equation. it can be noted that a l10rmal disrrilmliol1 is defined as one in which height 
of the curve at Xi is as expressed by the relation: 

I (X)~ 1 ~ Yi = ---e - ,-Il ~" 
(T J2ii . (6.1 ) 

The height of the curve. Yi• is referred to as the Ilormal density. It is not a frequency. for 
in a normally distributed popUlation of continuous data the frequency of occurrence 
of a measurement exaclly equal to Xi (e.g .. exactly equal to 12.5000 cm. or exactly 
equal to 12.50001 cm) is zero. Equation 6.1 contains two mathematical constants: 

*Comparing the curve's shape to that of a bell has been traced as far back as IX72 (Stigler. 199: 
4(15). 

':'The normal distribution is sometimes calleu the GIII/.Hill/l distrilJlltio/l. after [Johann] Karl 
Friedrich Gauss (1777 -IX55), a phenomenal German mathematician contributing to many fid&. 
of mathematics and for whom the unit of m<lgnctic induction ("'gauss") is named. Gauss di! .. cussed 
this uistribution in IH09. but the influential French mathematician and astronomer Pierre-Simon 
Laplace (1749-IX27) mentioned it in 1774. and it was first announced in 17.:n by mathematician 
Abraham de Moivre (1667-1754: also spelled De Moivre and Demoivre). who was born in France 
but t:mignttcd to Englanu at age 21 (after three years in prison) to escape religious persecution ns 
a Protestant (DllVid. 1902: 161-I7X: Pearson. 1924: Stigler. \9XO: Wnlker. 1934). This situation hns 
been cited as an example of "'Stigler's Law of Eponymy:' which states that "'no scientific discovery 
is named after its original discoverer" (Stigler. It)SO). The distribution was first used. by de Moivrt:. 
to approximate a binomial distribution (discussed in Section 24.1) (Stigler. 19t)t): 4(7). The adjective 
Ilormal was first used for the distribution by Charles S. Peirce in IX73. and by Wilhelm Lexis and Sir 
Francis Galton in IS77 (Stigler. I t)1}l): 40 .. -415): Karl Pcnrson recommended the routine lise of that 
term 10 avoid "'an international question of priority" although it "has the disadvantage of leauing 
people to believe thaI all other distributions of frequency are in one sense or another 'abnormar" 
(Pearson. 1l)20). 
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P.-:"T p.-21T p.-u P. p.+u p.+2u P.+3'T 

X 

FIGURE 6.1: A normal distribution. 

'IT (lowercase Greek pi)" which equals 3.14159 ... ; and e (the base of Naperian, or 
natural, logarithms),t which equals 2.71828 .... There are also two parameters (J.t and 
0'2) in the equation. Thus, for any given standard deviation, u, there are an infinite 
number of normal curves possible. depending on J.t. Figure 6.2a shows normal curves 
for u = 1 and J.t = O. 1. and 2. Likewise. for any given mean, J.t, an infinity of normal 
curves is possible, each with a different value of u. Figure 6.2b shows normal curves 
for J.t = 0 and u = 1. 1.5. and 2. 

A normal curve with J.t = 0 and u = 1 is said to be a standardized normal curve. 
Thus. for a standardized normal distribution, 

Y; = 1,.fi;e-xl/2. (6.2) 

·The lowercase Greek letter pi. 7T. denotes the ratio between the circumfercnce and the diameter 
of a circle. This symbol was advanced in 1706 by Wales-born William Jones (1675-1749). after it 
had been used for over 50 years to represent the circumference (Cajori. 192819, Vol. II: 9; Smith. 
1953: 312); but it did not gain popularity for this purpose until Swiss Leonhard Euler (1707-1783) 
began using it in 1736 instead of p (Blatner. 1997: 78; Smith. 1953: 312). According to Gullberg 
(1997: 85), Jones probably selected this symbol because it is the first letter of the Greek word 
for "periphery." (See also Section 26.1.) Pi is an "irrational number." meaning that it cannot be 
expressed as the ratio of two integers. To 20 decimal places its value is 3.14159 26535 89792 33846 
(and it may be noted that this number rounded to 10 decimal places is sufficient to obtain. from the 
diameter. the circumference of a circle as large as the earth's equator to within about a centimeter 
of accuracy). Beckmann (1977). Blatner (1997). and Dodge (1996) present the history of 7T and its 
calculation. By 2000 D.C.E., the Babylonians knew its value to within 0.02. Archimedes of Syracuse 
(287 -212 D.C.E.) was the first to present a procedure to calculate 7T to any desired accuracy. and he 
computed it accurate to the third decimal place. Many computational methods were subsequently 
developed, and 7T was determined to six decimal places of accuracy by around 500 C.E., to 20 decimal 
places by around 1600. and to 100 in 1706: tOOO decimal places were reached, using a mechanical 
calculating machine. before electronic computers joined the challenge in 1949. In the computer era. 
with advancement of machines and algorithms, one million digits were achieved in 1973. by the 
end of the 1980s there were calculations accurate to more than a billion digits. and more than one 
trillion (1.000.000.000.000) digits have now been attained. 

t e is an irrational number (as is 7T: see the preceding footnote). To 20 decimal places e is 2.71828 
18284 59045 23536. The symbol, e. for this quantity was introduced by the great Swiss mathematician 
Leonhard Euler (1707 -1783) in 1727 or 1728 and published by him in 1736 (Cajori. 1928/9. Vol. 2: 
13: Gullberg, 1997: 85). Johnson and Leeming (1990) discussed the randomness of the digits of e. 
and Maor (1994) presented a history of this number and its mathematical ramifications. In 2000. e 
was calculated to 17 billion decimal places (Adrian. 2006: 63). 
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y 

FIGURE 6.2a: Normal distribution with u = 1, varying in location with different means {JI). 

y 

-5 -4 

FIGURE 6.2b: Normal distributions with IJ. = 0, varying in spread with different standard deviations (Ir). 

6.1 PROPORTIONS OF A NORMAL DISTRIBUTION 

If a population of 1000 body weights is normally distributed and has a mean. J-L. 
of 70 kg, one-half of the population (500 weights) is larger than 70 kg and one-half 
is smaller. This is true simply because the normal distribution is symmetrical. But 
if we desire to ask what portion of the population is larger than 80 kg, we need 
to know a, the standard deviation of the population. If (J' = 10 kg, then 80 kg is 
one standard deviation larger than the mean. and the portion of the population in 
question is the shaded area in Figure 6.3a. If. however. (J' = 5 kg, then 80 kg is two 
standard deviations above J-L, and we are referring to a relatively small portion of the 
population. as shown in Figure 6.3b. 

Appendix Table B.2 enables us to determine proportions of normal distributions. 
For any Xi value from a normal population with mean J-L, and standard deviation (J', 

the value 
Z = Xi - J-L (6.3) 

tells us how many standard deviations from the mean the Xi value is located. Carrying 
out the calculation of Equation 6.3 is known as normalizing, or standardizing, Xi; and 
Z is known as a normal deviate, or a standard score.* The mean of a set of standard 
scores is 0, and the variance is 1. 

*This standard normal curve was introduced in 1899 by W. F. Sheppard (Walker. 1929: IXX). 
and the tenn normal deviate was first used. in 1907. by F. Galton (David, 1995). 
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FIGURE 6.3: Two normal distributions with JL = 70 kg. The shaded areas are the portions of the curves 
that lie above X = 80 kg. For distribution (a). JL = 70 kg and (J' = 10 kg; for distribution (b). JL = 70 kg 
and (J' = 5 kg. 

Table B.2 tells us what proportion of a normal distribution lies beyond a given value 
ofZ.*lfJL = 70 kg. 0' = 10 kg, and Xi = 70 kg, then Z = (70 kg -70kg)/1Okg = O. 
and by consulting Table B.2 we see that P(Xi > 70 kg) = P(Z > 0) = 0.5000. t 
That is, 0.5000 (or 50.00%) of the distribution is larger than 70 kg. To determine the 
proportion of the distribution that is greater than 80 kg in weight. Z = (80 kg -
70 kg)/1O kg = 1.andP(Xi > 80 kg) = P(Z > 1) = 0.1587 (or 15.87%). This could 
be stated as being the probability of drawing at random a measurement. Xi. greater 
than 80 kg from a population with a mean (JL) of 70 kg and a standard deviation (0') of 
10 kg. What, then, is the probability of obtaining. at random. a measurement, Xi. which 
is less than 80 kg? P( Xi > 80 kg) = 0.1587. so P( Xi < 80 kg) = 1.0000 - 0.1587 = 
0.8413: that is. if 15.87% of the population is greater than Xi. then 100% - 15.87% 
(i.e .• 84.13% of the population is less than Xi).* Example 6.1a presents calculations 
for determining proportions of a normal distribution lying between a variety of 
limits. 

Note that Table B.2 contains no negative values of Z. However, if we are concerned 
with proportions in the left half of the distribution. we are simply dealing with areas 
of the curve that are mirror images of those present in the table. This is demonstrated 
in Example 6.1b.§ 

*The first tables of areas under the normal curve were published in 1799 by Christian Kramp 
(Walker, 1929: 58). Today, some calculators and many computer programs determine normal 
probabilities (e.g., see Boomsma and Molenaar. 1994). 

tRead P( Xi > 70 kg) as "the probability of an Xi greater than 711 kg": P( Z > 0) is read as 
"the probability of a Z greater than 0." 

tThe statement that "P(Xi > 80kg) = 0.1587. therefore P(X; < 80) = l.OOOO - O.158T' 
does not take into account the case of Xi = 80 kg. But, as we are considering the distribution at 
hand to be a continuous one. the probability of Xi being exactly 80.000 '" kg (or being exactly 
any other stated value) is practically nil. so these types of probability statements offer no practical 
difficulties. 

*Some old literature avoided referring to negative Z's by expressing the quantity. Z + 5, called 
a prohit. This term was introduced in 1934 by C. I. Bliss (David. 1995). 
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EXAMPLE 6.1a Calculating Proportions of a Normal Distribution of Bone 
lengths, Where p. = 60 mm and (T = 10 mm 

y 

X. in millimeters 

1. What proportion of the population of bone lengths is larger than 66 mm? 

Z = X; - J.L = 66 mm - 60 mm = 0.60 
u 10mm 

P(X; > 66 mm) = P(Z > 0.60) = 0.2743 or 27.43% 

2. What is the probability of picking. at random from this population. a bone 
larger than 66 mm? This is simply another way of stating the quantity 
calculated in part (1). The answer is 0.2743. 

3. If there are 2000 bone lengths in this population. how many of them are 
greater than 66 mm? 

(0.2743)(2000) = 549 

4. What proportion of the population is smaller than 66 mm? 

P(X; < 66mm) = 1.0000 - P(X; > 66mm) = 1.0000 - 0.2743 = 0.7257 

5. What proportion of this population lies between 60 and 66 mm? Of the total 
population. 0.5000 is larger than 60 mm and 0.2743 is larger than 66 mm. 
Therefore. 0.5000 - 0.2743 = 0.2257 of the population lies between 60 
and 66 mm. That is. P( 60 mm < X; < 66 mm) = 0.5000 - 0.2743 == 
0.2257. 

6. What portion of the area under the normal curve lies to the right of 77.5 mm? 

Z = 77.5 mm - 60mm = 1.75 
IOmm 

P(X; > 77.5 mm) = P(Z > 1.75) = 0.0401 or4.01% 

7. If there are 2000 bone lengths in the population. how many of them are larger 
than 77.5 mm? 

(0.0401 )(2000) = 80 

8. What is the probability of selecting at random from this population a bone 
measuring between 66 and 77.5 mm in length? 

P(66 mm < Xi < 77.5 mm) = P(0.60 < Z < 1.75) = 0.2743 - 0.0401 
= 0.2342 
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EXAMPLE 6.1 b Calculating Proportions of a Normal Distribution of Su-
crose Concentrations, Where IL = 65 mg/100 ml and u = 25 mg/100 ml 

15 25 45 65 85 105 115 
X. in mgllOO ml 

1. What proportion of the population is greater than 85 mg/IOO ml? 

Z = (Xi - p.) = 85 mg/lOO ml - 65 mg/IOO ml = 0.8 
(1' 25 mg/tOO ml 

P(Xi > 85 mg/lOO ml) = P(Z > 0.8) = 0.2119 or 21.19% 

2. What proportion of the population is less than 45 mg/loo ml? 

Z = 45 mg/IOO ml - 65 mg/l00 ml = -0.80 
25 mg/IOO ml 

P(Xi < 45 mg/too ml) = P(Z < -0.80) = P(Z > 0.80) = 0.2119 

That is, the probability of selecting from this population an observation 
less than 0.80 standard deviations below the mean is equal to the probability 
of obtaining an observation greater than 0.80 standard deviations above the 
mean. 

3. What proportion of the population lies between 45 and 85 mg/IOO ml? 

P( 45 mg/ 100 ml < Xi < 85 mg/ 100 ml) = P( -0.80 < Z < 0.80) 

= 1.0000 - P(Z < -0.80 

or Z > 0.80) 

= 1.0000 - (0.2119 + 0.2119) 

= 1.0000 - 0.4238 

= 0.5762 

Using the preceding considerations of the table of normal deviates (Table B.2). we 
can obtain the following information for measurements in a normal population: 

The interval of p. ± (1' will contain 68.27% of the measurements.* 
The interval of p. ± 2(1' will contain 95.44% of the measurements. 
The interval of p. ± 2.5(1' will contain 98.76% of the measurements. 
The interval of p. ± 3(1' will contain 99.73% of the measurements. 
50% of the measurements lie within p. ± 0.67(1'. 
95% of the measurements lie within p. ± 1.96(1'. 
97.5% of the measurements lie within p. ± 2.24CT. 

*Thc symbol .. ± .. indicates "plus or minus" and was first published by William Oughtred in 
1631 (Cajori. 1928: 245). 
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99% of the measurements lie within JL ± 2.58/T. 
99.5% of the measurements lie within JL ± 2.81/T. 
99.9% of the measurements lie within JL ± 3.29/T. 

6.2 THE DISTRIBUTION OF MEANS 

If random samples of size n are drawn from a normal population. the means of 
these samples will conform to normal distribution. The distribution of means from 
a nonnormal population will not be normal but will tend to approximate a normal 
distribution as n increases in size.* Furthermore, the variance of the distribution 
of means will decrease as n increases; in fact. the variance of the population of all 
possible means of samples of size n from a population with variance /T- is 

2 /T2 
/Tx = -

n 
(6.4) 

The quantity O'~ is called the variance of the mean. A distribution of sample statistics is 
called a sampling distribution t; therefore, we are discussing the sampling distribution 
of means. 

Since O'~ has square units, its square root, O'x, will have the same units as 
the original measurements (and. therefore, the same units as the mean. JL, and 
the standard deviation, 0'). This value, /Ty, is the standard deviation of the mean. 
The standard deviation of a statistic is referred to as a standard error, thus, O'x is 
frequently called the standard error of the mean (sometimes abbreviated SEM). or 
simply the standard error (sometimes abbreviated SE)*: 

"x = J? or "X = ;.. (6.5) 

Just as Z = (Xi - JL)/O' (Equation 6.3) is a normal deviate that refers to the normal 
distribution of Xi values, 

Z = _X_-----'----JL (6.6) 
/Tx 

is a normal deviate referring to the normal distribution of means (X values). Thus. 
we can ask questions such as: What is the probability of obtaining a random sample 
of nine measurements with a mean larger than 50.0 cm from a population having a 
mean of 47.0 cm and a standard deviation of 12.0 cm? This and other examples of 
the use of normal deviates for the sampling distribution of means are presented in 
Example 6.2. 

As seen from Equation 6.5, to determine O'x one must know /T2 (or 0'). which is a 
population parameter. Because we very seldom can calculate population parameters, 
we must rely on estimating them from random samples taken from the population. 
The best estimate of O'~. the population variance of the mean. is 

2 s2 
Sy = -, 

n 

*This result is known as the cell1rallimit theorem. 

tThis term was apparently first used by Ronald Aylmer Fisher in 1922 (Miller. 2004a). 

(6.7) 

*This relationship between the standard deviation of the mean and the standard deviation 
was published by Karl Friedrich Gauss in 1809 (Walker. 1929: 23). The term .flalldarc/ error was 
introduced in 1897 by G. U. Yule (David, 1995). though in a different context (Miller. 2004a). 
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EXAMPLE 6.2 Proportions of a Sampling Distribution of Means 

1. A population of one-year-old children's chest circumferences has J.L = 47.0 cm 
and u = 12.0 cm. what is the probability of drawing from it a random sample 
of nine measurements that has a mean larger than 50.0 cm? 

12.0cm 40 ux= j9 =.cm 

Z = X - J.L = 50.0cm - 47.0cm = 0.75 
Ux 4.0cm 

P(X > 50.0cm) = P(Z > 0.75) = 0.2266 

2. What is the probability of drawing a sample of 25 measurements from the 
preceding population and finding that the mean of this sample is less than 
40.0cm? 

- 12.0cm - 24 Ux - - . cm g:s 

Z = 40.0 cm - 47.0 cm = -2.92 
2.4cm 

P(X < 40.0cm) = P(Z < -2.92) = P(Z > 2.92) = 0.0018 

3. If 500 random samples of size 25 are taken from the preceding population, 
how many of them would have means larger than 50.0 cm? 

- 12.0cm - 24 Ux - - . cm g:s 

Z = 50.0 cm - 47.0 cm = 1.25 
2.4 g 

P( X > 50.0 em) = P( Z > 1.25) = 0.1056 

Therefore, (0.1056)( 500) = 53 samples would be expected to have means 
larger than 50.0 cm. 

the sample variance of the mean. Thus. 

SJ{ ~ J?; or s-r 5n (6.8) 

is an estimate of U x and is the sample standard error of the mean. Example 6.3 
demonstrates the calculation of SX. 

The importance of the standard error in hypothesis testing and related procedures 
will be evident in Chapter 7. At this point. however. it can be noted that the magnitude 
of sx is helpful in determining the precision to which the mean and some measures of 
variability may be reported. Although different practices have been followed by many. 
we shall employ the following (Eisenhart. 1968). We shall state the standard error to 
two significant figures (e.g .• 2.7 mm in Example 6.3; see Section 1.2 for an explanation 
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of significant figures). Then the standard deviation and the mean will be reported 
with the same number of decimal places (e.g., X == 137.6 mm in Example 6.3*). The 
variance may be reported with twice the number of decimal places as the standard 
deviation. 

EXAMPLE 6.3 The Calculation of the Standard Error of the Mean, Sx 
The Following are Data for Systolic Blood Pressures, in mm of Mercury, of 
12 Chimpanzees. 

121 
125 
128 
134 
136 
138 
139 
141 
144 
145 
149 
151 

~X = 1651 mm 

~X2 = 228,111 mm2 

n = 12 

x = 1651 mm = 137.6 mm 
12 

SS = 228,111 mm2 _ (1651 mm? 

= 960.9167 mm2 
12 

S2 = 960.9167 mm2 = 87.3561 mm2 
11 

s = J87.3561 mm2 == 9.35 mm 

s 9.35 mm 27 SX = - = = . mm or 
In v'I2 

87.3561 mm2 = h.2797 mm2 = 2.7 mm 
12 

6.3 INTRODUCTION TO STATISTICAL HYPOTHESIS TESTING 

A major goal of statistical analysis is to draw inferences about a popUlation by 
examining a sample from that population. A very common example of this is the 
desire to draw conclusions about one or more popUlation means. 

We begin by making a concise statement about the population mean, a statement 
called a null hypothesis (abbreviated Ho)t because it expresses the concept of "no 
difference." For example, a null hypothesis about a population mean (f.L) might assert 
that f.L is not different from zero (i.e., f.L is equal to zero): and this would be written as 

Ho: f.L = o. 
Or, we could hypothesize that the population mean is not different from (i.e., is equal 
to) 3.5 cm, or not different from to.5 kg, in which case we would write Ho: f.L = 3.5 cm 
or Ho: f.L = to.5 kg, respectively. 

*In Example 6.3. s is written with more decimal places than the Eisenhart recommendations 
indicate because it is an intermediate. rather than a final. result: and rounding off intermediate 
computations may lead to serious rounding error. Indeed. some authors routinely report extra 
decimal places. even in final results. with the consideration that readers of the results may use them 
as intermediates in additional calculations. 

tThe term null hypothesis was first published by R. A. Fisher in 1935 (David. 1995; Miller. 
2004a; Pearson. 1947). J. Neyman and E. S. Pearson were the first to use the symbol "Ho" and the 
term alternate hypothesis. in 1928 (Pearson. 1947; Miller. 2004a, 2004c). The concept of statistical 
testing of something akin to a null hypothesis was introduced 300 years ago by John Arbuthnot 
(1667-1725). a Scottish-English physician and mathematician (Stigler. 1986: 225-226). 
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If statistical analysis concludes that it is likely that a null hypothesis is false. 
then an alternate hypothesis (abbreviated HA or Hd is assumed to be true (at 
least tentatively). One states a null hypothesis and an alternate hypothesis for each 
statistical test performed. and all possible outcomes are accounted for by this pair of 
hypotheses. So, for the preceding examples! 

Hu: J.L = O. HA : J.L * 0: 

Ho: J.L = 3.5 cm, HA : J.L * 3.5 cm; 

Ho: J.L = 10.5 kg. H A: J.L * 10.5 kg. 

It must be emphasized that statistical hypotheses are to be stated before data 
are collected to test them. To propose hypotheses after examination of data can 
invalidate a statistical test. One may. however. legitimately formulate hypotheses 
after inspecting data if a new set of data is then collected with which to test the 
hypotheses. 

(a) Statistical Testing and Probability. Statistical testing of a null hypothesis about 
J.L, the mean of a population, involves calculating X, the mean of a random sample 
from that population. As noted in Section 2.1, X is the best estimate of J.L; but it is only 
an estimate, and we can ask, What is the probability of an X at least as far from the 
hypothesized J.L as is the X in the sample. if Hu is true? Another way of visualizing this 
is to consider that, instead of obtaining one sample (of size 11) from the population, 
a large number of samples (each sample of size n) could have been taken from that 
population. We can ask what proportion of those samples would have had means at 
least as far as our single sample's mean from the J.L specified in the null hypothesis. 
This question is answered by the considerations of Section 6.2 and is demonstrated in 
Example 6.4. 

EXAMPLE 6.4 Hypothesis Testing of Ho: p. = 0 and HA: p. ::1= 0 

The variable. Xi, is the weight change of horses given an antibiotic for two weeks. 
The following measurements of Xi are those obtained from 17 horses (where a 
positive weight change signifies a weight gain and a negative weight change denotes 
a weight loss): 

2.0, 1.1. 4.4, -3.1. -1.3. 3.9, 3.2, -1.6 .3.5 
1.2. 2.5. 2.3, 1.9, 1.8, 2.9, -0.3, and -2.4 kg. 

For these 17 data, the sample mean (X) is 1.29 kg. Although the population 
variance (0'2) is typically not known, for the demonstration purpose of this exam­
ple. 0'2 is said to be 13.4621 kg2• Then the population standard error of the mean 
would be 

13.4621 kg2 = JO.7919 kg2 = 0.89 kg 
17 

*The symbol "#-" denotes "is not equal to": Ball (1935: 242) credits Leonhard Euler with its 
early. if not first, use (though it was first written with a vertical. not a diagonal. line through the 
equal sign). 
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and 

Z = X - jJ. = 1.29 kg - 0 = 1.45. 
(1){ 0.89 kg 

Using Table B.2. 

P(X ~ 1.29 kg) = P(Z ~ 1.45) = 0.0735 

and. because the distribution of Z is symmetrical. 

Therefore. 

P(X:5 -1.29 kg) = P(Z :5 -1.45) = 0.0735. 

P(X ~ 1.29 kg or X :5 -1.29 kg) 

= P(Z ~ 1.45 or Z :5 -1.45) 

= 0.0735 + 0.0735 = 0.1470. 

As 0.1470 > 0.05. do not reject Ho. 

In Example 6.4, it is desired to ask whether treating horses with an experimental 
antibiotic results in a change in body weight. The data shown (Xi values) are the 
changes in body weight of 17 horses that received the antibiotic. and the statistical 
hypotheses to be tested are Ho: jJ. = 0 kg and H A: jJ. # 0 kg. (As shown in this example. 
we can write "0" instead of "0 kg" in these hypotheses, because they are statements 
about zero weight change, and zero would have the same meaning regardless of 
whether the horses were weighed in kilograms, milligrams, pounds. ounces. etc.) 

These 17 data have a mean of X = 1.29 kg and they are considered to represent a 
random sample from a very large number of data, namely the body-weight changes 
that would result from performing this experiment with a very large number of horses. 
This large number of potential Xi'S is the statistical population. Although one almost 
never knows the actual parameters of a sampled population, for this introduction 
to statistical testing let us suppose that the variance of the population sampled for 
this example is known to be (1.2 = 13.4621 kg2. Thus, for the population of means 
that could be drawn from this population of measurements. the standard error of the 
mean is CTx = ~a2/n = ~13.4621 kg2f17 = ~0.7919 kg2 = 0.89 kg (by Equation 6.5). 
We shall further assume that the population of possible means follows a normal 
distribution, which is generally a reasonable assumption even when the individual 
data in the population are not normally distributed. 

This hypothesis test may be conceived as asking the following: 

If we have a normal population with JJ. = 0 kg. and (Tx = 0.89 kg. what is the probability 
of obtaining a random sample of 17 data with a mean (X) at least as far from 0 kg as 1.29 
kg (i.e., at least 1.29 kg larger than 0 kg or at least 1.29 kg smaller than 0 kg)? 

Section 6.2 showed that probabilities for a distribution of possible means may 
be ascertained through computations of Z (by Equation 6.6). The preceding null 
hypothesis is tested in Example 6.4, in which Z may be referred to as our test statistic 
(a computed quantity for which a probability will be determined). In this example, Z 
is calculated to be 1.45. and Appendix Table B.2 informs us that the probability of a 



Section 6.3 Introduction to Statistical Hypothesis Testing 71 

Z 2: ].45 is 0.0735.* The null hypothesis asks about the deviation of the mean in either 
direction from 0 and. as the normal distribution is symmetrical, we can also say that 
P( - Z $ 1.45) = 0.0735 and, therefore, P( IZI 2: 1.45) = 0.0735 + 0.0735 = 0.1470. 
This tells us the probability associated with a IZI (absolute value of Z) at least as 
large as the IZI obtained; and this is the probability of a Z at least as extreme as that 
obtained, if the null hypothesis is true. 

It should be noted that this probability. 

P( IZI 2: Icomputed ZI. if Ho is true). 

is 110t the same as 

P(Ho is true, if IZI 2: Icomputed ZI), 

for these are conditional probabilities, discussed in Section 5.B. In addition to the 
playing-card example in that section, suppose a null hypothesis was tested 2500 times. 
with results as in Example 6.5. By Equation 5.23. the probability of rejecting Ho, if Ho 
is true, is P(rejecting Ho, if Ho is true) = (number of rejections of true Ho's)/(number 
oftrue Ho's) = 100/2000 = 0.05. And the probability that Ho is true, if Ho is rejected, 
is P(Ho true. if Ho is rejected) = (number of rejections of true Ho's)/(number of 
rejections of Ho's) = 100/550 = O.1S. These two probabilities (0.05 and 0.18) are 
decidedly not the same, for they are probabilities based on different conditions. 

EXAMPLE 6.5 Probability of Rejecting a True Null Hypothesis 

Hypothetical outcomes of testing the same null hypothesis for 2500 random 
samples of the same size from the same population (where the samples are taken 
with replacement). 

If Ho is true If Ho is false Row total 

If Ho is rejected 
If Ho is not rejected 

Column total 

100 
190(} 

2000 

450 
50 

500 

Probability that Ho is rejected if Ho is true = 100/2000 = 0.05. 
Probability that Ho is true if Ho is rejected = 100/550 = O.lS. 

550 
1950 

2500 

In hypothesis testing, it is correct to say that the calculated probability (for example, 
using Z) is 

P(the data, given Ho is true) 

and it is not correct to say that the calculated probability is 

P(Ho is true, given the data). 

Furthermore, in reality we may not be testing Ho: JJ- = 0 kg in order to conclude 
that the population mean is exactly zero (which it probably is 110t). Rather, we 

*Note that "~ .. and "::;'" are symbols for "greater than or equal to" and "less than or equal to:' 
respectively. 
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are interested in concluding whether there is a very small difference between the 
population mean and 0 kg: and what is meant by very small will be discussed in 
Section 6.3(d). 

(b) Statistical Errors in Hypothesis Testing. It is desirable to have an objective 
criterion for drawing a conclusion about the null hypothesis in a statistical test. Even 
if Ho is true. random sampling might yield a sample mean (X) far from the population 
mean (J,L). and a large absolute value of Z would thereby be computed. However. 
such an occurrence is unlikely, and the larger the IZI, the smaller the probability that 
the sample came from a population described by Ho. Therefore. we can ask how 
small a probability (which is the same as asking how large a IZI) will be required to 
conclude that the null hypothesis is not likely to be true. The probability used as the 
criterion for rejection of Ho is called the significance level. routinely denoted by a 
(the lowercase Greek letter alpha).* As indicated below. an a of 0.05 is commonly 
employed. The value of the test statistic (in this case, Z) corresponding to a is 
termed the critical value of the test statistic. In Appendix Table B.2 it is seen that 
P( Z 2: l. 96) = 0.025: and, inasmuch as the normal distribution is symmetrical. it is 
also the case that P( Z :5 -1.96) = 0.025. Therefore. the critical value for testing the 
above Ho at the 0.05 level (i.e., 5% level) of significance is Z = 1.96 (see Figure 6.4). 
These values of Z may be denoted as ZO.025( I) = 1.96 and ZO.OS(2) = 1.96, where the 
parenthetical number indicates whether one or two tails of the normal distribution 
are being referred to. 

y 

FIGURE 6.4: A normal curve showing (with shading) the 5% of the area under the curve that is 
the rejection region for the null hypothesis of Example 6.4. This rejection region consists of 2.5% of 
the curve in the right tail (demarcated by ZO.05(2) = 1.96) and 2.5% in the left tail (delineated by 
-ZO.05(2) = -1.96). The calculated test statistic in this example. Z = 1.45. does not lie within either tail; 
so Ho is not rejected. 

So. a calculated Z greater than or equal to 1.96. or less than or equal to -1.96. 
would be reason to reject Ho. and the shaded portion of Figure 6.4 is known as the 
"rejection region." The absolute value of the test statistic in Example 6.4 (namely, 
IZ/ = 1.45) is not as large as the critical value (i.e., it is neither 2: 1.9 nor :S-1.96), so 
in this example the null hypothesis is not rejected as a statement about the sampled 
population. 

*David (1955) credits R. A. Fisher as the first to refer to "Ievel of significance:' in 1925. Fisher 
(l925b) also was the first to formally recommend use of the 5% significance level as guidance for 
drawing a conclusion about the propriety of a null hypothesis (Cowles and Davis. 1982). although 
he later argued that a fixed significance level should not be used. This use of the Greek "a" /irsl 
appears in a 1936 publication of J. Neyman and E. S. Pearson (Miller. 2004c). 
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It is very important to realize that a true null hypothesis will sometimes be rejected. 
which of course means that an error has been committed in drawing a conclusion 
about the sampled population. Moreover. this error can be expected to be committed 
with a frequency of ex. The rejection of a null hypothesis when it is in fact true is what 
is known as a Type I error (or "Type 1 error" or "alpha error" or "error of the first 
kind"). On the other hand, a statistical test will sometimes fail to detect that a HI) is 
in fact false. and an erroneous conclusion will be reached by not rejecting Ho. The 
probability of committing this kind of error (that is. not rejecting HI) when it is false) 
is represented by (3 (the lowercase Greek letter beta). This error is referred to as a 
Type II error (or "Type 2 error" or "beta error" or "error of the second kind"). The 
power of a statistical test is defined as 1 - (3: the probability of correctly rejecting 
the null hypothesis when it is false. * If HI) is not rejected, some researchers refer to it 
as having been "accepted." but most consider it better to say "not rejected." for low 
statistical power often causes failure to reject. and "accept" sounds too definitive. 
Section 6.3(c) discusses how both the Type I and the Type II errors can be reduced. 

Table 6.1 summarizes these two types of statistical errors. and Table 6.2 indicates 
their probabilities. Because. for a given n, a relatively small probability of a Type I 
error is associated with a relatively large probability of a Type II error, it is appropriate 
to ask what the acceptable combination of the two might be. By experience. and 
by convention. an ex of 0.05 is typically considered to be a "small enough chance" 
of committing a Type J error while not being so small as to result in "too large a 
chance"of a Type II error (sometimes considered to be around 20%). But the 0.05 
level of significance is not sacrosanct. I t is an arbitrary. albeit customary, threshold for 
concluding that there is significant evidence against a null hypothesis. And caution 
should be exercised in emphatically rejecting a null hypothesis if p = 0.049 and not 
rejecting if p = 0.051. for in such borderline cases further examination-and perhaps 
repetition-of the experiment would be recommended. 

TABLE 6.1: The Two Types of Errors in Hypothesis Testing 

If /-In is rejected: 
If Ho is not rejected: 

If Ho is true 

Type I error 
No error 

If Ho is false 

No error 
Type II error 

Although 0.05 has been the most widely used significance level, individual 
researchers may decide whether it is more important to keep one type of error 

*The distinction between these two fundamental kinds of statistical errors, and the concept of 
power. date back to the pioneering work, in England. of Jerzy Neyman (1894-1981: Russian-born, 
of Polish roots, emigrating as an adult to Poland and then to England, and spending the last 
half of his life in the United States) and the English statistician Egon S. Pearson (1895-1980) 
(Lehmann and Reid, 1982: Neyman and Pearson, 1928a: Pearson. 1947). They conceived of the 
two kinds of errors in 1928 (Lehmann, 1999) and named them. and they formulated the concept of 
power in 1933 (David. 1995). With some influence by W. S. Gosset ("StudenC) (Lehmann. 1999). 
their modifications (e.g., Neyman and Pearson. 1933) of the ideas of the colossal British statistician 
(1890-1962) R. A. Fisher (1925b) provide the foundations of statistical hypothesis testing. However. 
from the mid-1930s until his death. Fisher disagreed intensely with the Neyman-Pearson approach, 
and the hypothesis testing commonly used today is a fusion of the Fisher and the Neyman-Pearson 
procedures (although this hybridi7.ation of philosophies has received criticism-e.g .• by Hubbard 
and Bayarri. 2(03). Over the years there has been further controversy regarding hypothesis testing, 
especially-but not entirely-within the social sciences (e.g., Harlow, Mulaik, and Steiger, 1997). 
The most extreme critics conclude that hypothesis tests should never be used. while most others 
advise that they may be employed but only with care to avoid abuse. 
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TABLE 6.2: The Long-Term Probabilities of Outcomes in Hy!?othesis Testing_ 

II II" i~ I rtll' 

I r 1111 is n:.il:l:ll'J tr 

II 1111 is 1101 rl:kl:I~:J I - (I 

-------
- P ("pll\\l''''') 

I~ 
----------------- ------_.-_. ---

or the other low. In some instances. we may he "'illin!! to h:st with an H !!I\.'all:r 
than 11.05. An example of the later decision could be when there i ... an adverse health 
or safety implication if \\'e incorrectly fail to reject a false null hypothesis. So in 
perrormin~ an experinll'nt such as in Example 6'-+. perhaps it is deemed important 
to the continuetl usc of this antihiotic that it not cause a chan~e in hod~ \\'ei!!ht: and 
we want to have a small chance or conc\udin,!! that the dru~ causes no \\'ei~ht chan!!l' 
when such a tI~.'cision is inl'orrecl. In other words. we may be especiall~ desirous of 
a\'()iding a Type" error. In that cas~:. an cr 01'0.10 (i.e .. IO'~',,) mi~ht he ll',ed. ror that 
would del'fease the probahility of a Type II error. allhough it would wncomit:ll1tly 
increase the likelihood or incorrectly n:jectin~ a true 110 (i.e .. commillin~ a Type I 
error). In other cases. such as indicated in Section 6 .. ~(d). a (1.(15 (i.e .. )lIj,J chance of 
an incorrect rejeclion of 1111 may he fell to he unacceptahly hi~h. so a lower (I \\CHlld 
I'll.' employed in order to reduce the prnhahilit~ or a Type I error (ch.'n though Ihat 
woultl increase the likelihood of a Type" error). 

It is necessary. of course. to slate Illl' signilicance h.:vel us~,:d when cOl11munil'atin!! 
the results of a statistical tes\. Illlked. rathl'r than simply statin~ whether the null 
hypothesis is rejectetl. it is good procedure to report also the sample size. thl' 
test statistic. anti the hest estimate of the exact prohahility of the slatistic (and such 
prohahilitics arc ohtainahle from many computer pro!!rams anti Soml' calculators. and 
may he estimatetl fromtahlcs such as those in Appendix t-n Note that in lxampk h.-t 
it is reported that /I == 17. Z == 1 A:'i. and I' = ll.l..J70. in addition to expre,,"sin!! the 
conclusion that 110 is not rejected. In this \\ay. realkrs of the rese;m:h results ma~ 
draw their own conclusions. even if their choke of signilicance level is diffen:nt from 
the author·s. It is also gOOl.I practice to report rl'sults regardless of \\hether 110 is 
rejected. Bear in mind. hmvever. that the choice of tr is to he madc hefore seein!! thc 
tlata. Othe\'\\ ise there is a great risk of having the choice inlluenced hy examination of 
the data. introducing hi as instead of ohjecti\ it)' into the proceedings. The hl'st practicl' 
!!l'nerally is to decide on the null and .. lIernate hypothese .... and the si!!nilicancl' Ie\el. 
hefore coml11cncin!! with data collcction and. after performing the statisticaltl'sl. to 
l'xpress thl' prohahility that the sClmpk camc from a population for \\hkh 1111 is tnll·. 
It is conventional 10 refer to rejection of /-III at the 5% si!!nilicance 1c\'l'I as denotin~ Cl 
"statistically si!!nilicant" dilTcrence hdwecn X and the J1 hypothesiZl'd in /III (e.g .. in 
Example 6.4. hcl\wen X -- 1.-t5 kg and J1 = II kg).' Hut. in analyzing hiolo~kal data. 
we shoulll consider whether a statistically ddeeted dilTlTence relleets a hi%gimlly 
sigllil1cW/I lIiffercnce. as will he discussed in Scct ion 6.3( d). 

(c) Onc-THiIed \'crsus Two-Tuiled Tcstin~. In Section 6.3(a). Fxampk' 6.-1 tcsh 
wlwther a population mcan \\as signilicantly differcnt from a hypothesi/cd \·alue. 
\\ here the alternate hypothesis emhodies dilTcrence in l'ithcr direction (i.l' .. !!reater 
than or kss than) from that valuc. This is known as III'o-'iit!et!. or III·tHai/ct!. testin!!. 

, In n:p(lrJing. n:Sl:a.-dl rl'slllh. SIIIll\.: alilhors han: illladll:d an a"ll·ri,~ ( : ) 10 a Il"1 'lali,Iil' if.I 
i, assol:iall'd "ith a probability ::":11.05 alld t\\-(I a:-.krisk~ ( '.) if Ihl: probabilit~ j .. --(1.01. sOIlll.'lillll." 
rdl:rring 10 rl:stllt~ <II ~(UII a' ··hig.hl~ ,ignilkanl": hut 11ll.' lalkr krill i~ bl·~I<I\lljlkd. ill prdl:l'l:ll\.:l· 
10 rl.'pllrJing Ihl: Illagnillllk' or fl. 
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for we reject Ho if Z (the test statistic in this instance) is within either of the two tails 
of the normal distribution demarcated by the positive and negative critical values of 
Z (the shaded areas in Figure 6.4). 

However. there are cases where there is good scientific justification to test for a 
significant difference specifically in one direction Dilly. That is. on occasion there is 
a good reason to ask whether a population mean is significantly larger than p.o, and 
in other situations there is a good rationale for asking whether a population mean is 
significantly smaller than p.o. Statistical testing that examines difference in only one 
of the two possible directions is called one-sided, or one-tailed, testing. 

Example 6.4 involved a hypothesis test interested in whether a drug intended to 
be an antibiotic caused weight change as a side effect of its use. For such a test. Ho is 
rejected if Z (the test statistic in this instance) is within the rejection region in either 
the right-hand or the left-hand tail of the normal distribution (i.e., within the shaded 
areas of Figure 6.4 and Figure 6.5a). However, consider a similar experiment where 
the purpose of the drug is to cause weight loss. In that case. the statistical hypotheses 
would be Ho: p. ~ 0 versus H A: p. < O. That is. if the drug works as intended and there 

y 

y 

-3 -I 

Z 

(a) 

o 
Z 

(h) 

2 3 

FIGURE 6.5: (a) As in Figure 6.4, a normal curve showing (with shading) the 5% of the area under the 
curve that is the rejection region for the two-tailed null hypotheses, Ho: p. = p.o versus HA: p. 'F #l0' 
This rejection region consists of 2.5% of the curve in the right tail (demarcated by ZO.05(2) = 1.96). 
and 2.5% in the left tail (delineated by -ZO.05(2) = -1.96). (b) A normal curve showing (with shading) 
the 5% of the area under the curve that is the rejection region for the one-tailed null hypotheses. 
Ho: #l ~ p.o vs. HA: p. < p.o. This rejection region consists of 5% of the curve in the left tail (demarcated 
by ZO.05( 1) = 1.645). 
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is a mean weight loss. then Ho would be rejected; and if the drug does not work (that 
is, there is a mean weight gain or the mean weight did not change), Ho would not be 
rejected. In such a situation. the rejection region would be entirely in one tail of the 
normal distribution, namely the left-hand tail. This is an example of a one-tailed test. 
whereas Example 6.4 represents a two-tailed test. 

It can be seen in Appendix B.2 that. if one employs the 5% level of significance. the 
one-tailed Z value is 1.645. The normal distribution's tail defined by this one-tailed Z 
is the shaded area of Figure 6.5b. If the calculated Z is within this tail, Ho is rejected 
as a correct statement about the population from which this sample came. 

Figure 6.5a shows the rejection region of a normal distribution when performing 
two-tailed testing of Ho: f.L = f.LO at the 5% significance level (i.e .. the same shaded 
area as in Figure 6.4. namely 2.5% in each tail of the curve); and Figure 6.5b shows the 
rejection region for one-tailed testing of Ho: f.L ~ () versus H A: f.L < 0 at the 5% level. 
(If the experimental drug were intended to result in weight gain. not weight loss, then 
the rejection region would be in the right-hand tail instead of in the left-hand tail.) 

In general, one-tailed hypotheses about a mean are 

in which case Ho is rejected if the test statistic is in the left-hand tail of the distribution, 
or 

in which case Ho is rejected if the test statistic is in the right-hand tail of the 
distribution. * 

The one-tailed critical value (let's call it Za( I) is found in Appendix Table B.2. 
It is always smaller than the two-tailed critical value (Za(2»: for example. at the 
5% significance level Za( I) = 1.645 and Za(2) = 1.96. Thus. as will be noted in 
Section 6.3(d), for a giyen set of data a one-tailed test is more powerful than a 
two-tailed test. But it is inappropriate to employ a one-tailed test unless there is a 
scientific reason for expressing one-tailed, in preference to two-tailed, hypotheses. 
And recall that statistical hypotheses are to be declared before examining the data. 
Another example of one-tailed testing of a mean is found in Exercise 6.5(a). 

(d) What Affects Statistical Power. The power of a statistical testing procedure 
was defined in Section 6.3(b) as the probability that a test correctly rejects the null 
hypothesis when that hypothesis is a false statement about the sampled population. It 
is useful to be aware of what affects the power of a test, and later chapters will show 
how to estimate the power a test will have and to estimate how small a difference 
will be detected between a population parameter (e.g .. f.L) and a hypothesized value 
(e.g., f.Lo). 

Figure 6.6a represents a normal distribution of sample means, where each sample 
was the same size and each sample mean estimates the same population mean. This 
mean of this distribution is J.L(J, the population mean specified in the null hypothesis. 
This curve is the same as shown in Figure 6.5. As in Figure 6.5. the shaded area in 
each of the two tails denotes 0.025 of the area under the curve; so both shaded areas 
compose an area of 0.05. the probability of a Type I error (a). 

·Some authors write the first of these two pairs of hypotheses as Ho: #l = #lO and H A: #l < #lo. 
and the second pair as Ho: #l = JLO and H A: #l > #lO. ignoring mention of the tail that is not of 
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FIGURE 6.6: (a) A normal curve, such as that in Figure 6.4, where IL, the mean of the distribution, is ILO, 
the value specified in the null and alternate hypotheses. The shaded area in each of the two tails is 
0.025 of the area under the curve, so a total of 0.05 (i.e., 5%) of the curve is the shaded critical region, 
and a, the probability of a Type I error, is 0.05. (b) The same normal curve, but where IL is larger than 
ILO and the shaded area is the probability of a Type II error (P). (c) The same normal curve, but where IL 
is much larger than ILO. 

Figure 6.6b is the same normal curve, but with a population mean. /-L. different from 
(i.e., larger than) /Lo. If Ho: /L = /Lo is not a true statement about the population, yet 
we fail to reject Ho, then we have committed a Type II error, the probability of which 
is {3, indicated by the shaded area between the vertical dashed lines in Figure 6.6b. 
The power of the hypothesis test is defined as 1 - {3, which is the unshaded area 
under this curve. 

Figure 6.6c is the same depiction as in Figure 6.6b, but with a population mean, /L, 
even more different· from /-LO. An important result is that, the farther /-L is from the 
/LO specified in Ho. the smaller {3 becomes and the larger the power becomes. 

*The symbol ">" has been introduced as meaning "greater than." and "<" as meaning "less 
than," The symbols "»" and "«" mean "much greater than" and "much less than:' respectively. 
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Figure 6.7 indicates the outcome if a larger a is used. namely 10% instead of 5% 
(meaning that 5%. instead of 2.5%. of the curve is in each tail). If the probability of a 
Type I error (a) is increased, then the probability of a Type II error (13) is decreased, 
and the power of the test is increased. 

y 

(a) 

J.I.>J.I.() 

y 

(b) 

J.I.»J.l.lI 

y 

(c) 

FIGURE 6.7: (a) A normal curve, such as that in Figure 6.6, where J.I., the mean of the distribution, is J.I.(J, 

the value specified in the null and alternate hypotheses, but where the shaded area in each of the two 
tails is 0.05 of the area under the curve, so a total of 0.10 (i.e., 10%) of the curve is the shaded critical 
region, and a, the probability of a Type I error, is 0.10. (b) The same normal curve, but where J.I. is larger 
than J.l.O and the shaded area is the probability of a Type II error (f3). (c) The same normal curve, but 
where J.I. is much larger than J.l.O' 

Another important outcome is seen by examining Equations 6.5 and 6.6. With 
larger sample size (n), or with smaller variance (u2), the standard error Ux becomes 
smaller, which means that the shape of the normal distribution becomes narrower. 
Figure 6.3 shows an example of this narrowing as the variance decreases in a 
population of data, and the figures would appear similar if they were for a population 
of means. So, for a given value of a and of JL, either a smaller u 2 or a larger 11 will 
result in a smaller u x' which will result in a smaller 13 and greater power to reject Ho. 
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In some circumstances. a larger n can be used. but in other situations this would 
be difficult because of cost or effort. A smaller variance of the sampled population 
will result if the population is defined as a more homogeneous group of data. In 
Example 6.4. the experiment could have been performed using only female horses, or 
only horses of a specified age. or only hors ~s of a specified breed. Then the hypothesis 
test would be about the specified sex. age, and/or breed. and the population variance 
would probably be smaller; and this would result in a greater power of the test. 

To summarize what influences power, 

• For given a, (12. and n. power is greater for larger difference between IL and lLo. 

• For given fl. (12. and difference between IL and ILl), power is greater for larger a. 
• For given a. (12. and difference between IL and J.Lo. power is greater for larger 11. 

• For given a. n, and difference between IL and ILl), power is greater for smaller 
(12. 

• For given a. n. (1.2, and difference between IL and JLO, power is greater for 
one-tailed than for two-tailed tests (but one-tailed tests may be employed only 
when the hypotheses are appropriately one-tailed). 

(e) Summary of Statistical Hypothesis Testing. Earlier portions of Section 6.3 intro­
duced the principles and practice of testing hypotheses about population parameters. 
using sample statistics as estimates of those parameters. It is also good practice to 
report an estimate of the precision with which a parameter has been estimated, 
by expressing what are known as "confidence limits." which will be introduced in 
Section 6.4. 

To summarize the steps for testing of statistical hypotheses. 

1. State Ho and H A. using two-tailed or one-tailed hypotheses depending upon the 
objective of the data analysis. 

2. Declare the level of significance, a. to be employed. 
3. Collect the data and calculate the test statistic (Z in this chapter). 
4. Compare the test statistic to the critical value(s) of that statistic (that is. the 

value(s) delimiting the rejection region of the statistical distribution of the test 
statistic). For the testing in this chapter. the critical values are both Za(2) and 
- Za(2) for a two-tailed test and the critical value is Za( I) for a one-tailed test. 
If the calculated Z exceeds a critical value, Ho is rejected. 

5. State P. the probability of the test statistic if Ho is true. 
6. State confidence limits (two-tailed or one-tailed) for the population parameter. 

as discussed in Section 6.4. 
7. State conclusion in terms of biological or other practical significance. 

~ CONFIDENCE LIMITS 

Sections 6.3a and 6.3b discussed the distribution of all possible samples of size n from 
a population with mean IL. [t was noted that 5% of the values of Z (by Equation 6.6) 
for those sample means will be at least as large as ZO.OS(2) or no larger than -ZO.()5(2)' 
This can be expressed as 

[ X-IL 1 P -ZO.05(2) =::; (1x =::; ZO.05(2) = 95%. (6.9) 
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and this can be rearranged to read 

P[X - ZO.05(2)UX :=;; J-L :=;; X + ZO.05(2)UX] = 0.95. 

Tn general, we can say 

P[X - Za(2)Ux :=;; J-L :=;; X + Za(2)uxl = 1 - a. 

The lower confidence limit is defined as 

and the upper confidence limit is 

L2 = X + Za(2)Ux· 

The distance between LI and L2, namely 

X ± Za(2)Ux 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

(6.14) 

(where "±" is read as "plus or minus"), is called a confidence interval (sometimes 
abbreviated el). 

When referring to a confidence interval, t - a is known as the confidence level 
(or confidence coefficient or confidence probability). * 

Although X is the best estimate of J-L, it is only an estimate, and the calculation 
of a confidence interval for J-L allows us to express the precision of this estimate. 
Example 6.6 demonstrates this for the data of Example 6.4, determining the confi­
dence interval for the mean of the population from which the sample came. As the 
95% confidence limits are computed to be -0.45 kg and 3.03 kg, the 95% confidence 
interval may be expressed as P( -0.45 kg :=;; J-L :=;; 3.03 kg) = 95%. This means that, 
if all possible means of size n (n = 17 in this example) were taken from the population 
and a 95% confidence interval were calculated from each sample, 95% of those 
intervals would contain J-L. (It does not mean that there is a 95% probability that the 
confidence interval computed from the one sample in Example 6.6 includes J-L.) 

EXAMPLE 6.6 Confidence Limits for the Mean 

For the 17 data in Example 6.4, X = t .29 kg and Ux = 0.89 kg. 
We can calculate the 95% confidence limits for J-L using Equations 6.13 and 6.14 
and ZO.05(2) = 1.96: 

L[ = X - Za(2)Ux 

= 1.29 kg - (1.96)(0.89 kg) 

= 1.29 kg - 1.74 kg = -0.45 kg 

*We owe the development of confidence intervals to Jerzy Neyman. between 1928 and 1933 
(Wang. 2(00). although the concept had been enunciated a hundred years before. Neyman 
introduced the terms confidence ;llIerval and confidence coejficielll in 1934 (David. 1995). On rare 
occasion, biologists may see reference to "fiducial intervals," a concept developed by R. A. Fisher 
beginning in 1930 and identical to confidence intervals in many, but not all, situations (Pfanzagl. 
1978). 
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L2 = X + Za(2)Ux 

= 1.29 kg + (1.96)(0.89kg) 

= 1.29 kg + 1.74 kg = 3.03 kg. 

So, the 95% confidence interval could be stated as 

P( -0.45 kg =:; JL =:; 3.03 kg). 

Note that the JLO of Example 6.4 (namely 0) is included between LJ and L2, 
indicating that Ho is not rejected. 

As seen in Equation 6.15, a small Ux will result in a smaller confidence interval, 
meaning that JL is estimated more precisely when Ux is small. And, recall from 
Equation 6.5 that Ux becomes small as 11 becomes large. So. in general, a parameter 
estimate from a large sample is more precise than an estimate of the same parameter 
from a small sample. 

If. instead of a 95% confidence interval, we wished to state an interval that 
gave us 99% confidence in estimating JL, then ZO.OJ(2) (which is 2.575) would have 
been employed instead of ZO.05(2). and we would have computed LJ = 1.29 kg -
(2.575) (0.89 kg) = 1.29 kg - 2.29 = - 1.00 and L2 = 1.29 kg + (2.575) (0.89 kg) 
= 1.29 kg + 2.29 kg = 3.58 kg. It can be seen that a larger confidence level (e.g., 
99% instead of 95%) results in a larger width of the confidence interval, evincing 
the trade-off between confidence and utility. Indeed, if we increase the confidence 
to 100%, then the confidence interval would be -00 to 00, and we would have a 
statement of great confidence that was useless! Note, also, that it is a two-tailed value 
of Z (i.e., ZO.05(2» that is used in the computation of a confidence interval when we 
set confidence limits on both sides of JL. 

In summary, a narrower confidence interval will be associated with a smaller 
standard error (ux->' a larger sample size (n), or a smaller confidence coefficient 
(1 - a). 

It is recommended that a 1 - a confidence interval be reported for JL whenever 
results are presented from a hypothesis test at the a significance level. If Ho: JL = JLO 
is not rejected, then the confidence interval includes JLO (as is seen in Example 6.6, 
where JLO = 0 is between LJ and L2). 

(a) One-Tailed Confidence Limits. In the case of a one-tailed hypothesis test. it is 
appropriate to determine a one-tailed confidence interval; and, for this, a one-tailed 
critical value of Z (i.e., Za( J» is used instead of a two-tailed critical value (Z(r(2». 
For Ho: JL =:; JLO and HA: JL > JLO, the confidence limits for JL are L) = X - Za( I )ux 
and L2 = 00. For Ho: JL 2: JL() and HA: JL < JLO. the confidence limits are L) = -00 

and L2 = X + Za( J lUx. An example of a one-sided confidence interval is Exercise 
6.6(b). If a one-tailed null hypothesis is not rejected, then the associated one-tailed 
confidence interval includes JL{). 

6.5 SYMMETRY AND KURTOSIS 

Chapters 3 and 4 showed how sets of data can be described by measures of central 
tendency and measures of variability. There are additional characteristics that help 
describe data sets. and they are sometimes used when we want to know whether 
a distribution resembles a normal distribution. Two basic features of a distribution 
of measurements are its symmetry and its kurtosis. A symmetric distribution (as in 
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FIGURE 6.8: Symmetric frequency distributions. Distribution (a) is mesokurtic ("normal"), (b) is platykurtic, 
and (e) is leptokurtie. 

distributed populations have /32 = 3), some asymmetric distributions have a symmetry 
measure of 0 and some nonnormal distributions exhibit a kurtosis value of 3 (Thode, 
2002: 43). 

In practice, researchers seldom calculate these symmetry and kurtosis measures. 
When they do, however. they should be mindful that using the third and fourth 
powers of numbers can lead to very serious rounding errors, and they should employ 
computer programs that use procedures minimizing this problem. 

(c) Quantile Measures of Symmetry and Kurtosis. Denoting the ith quartile as Qi 
(as in Section 4.2), QI is the first quartile (i.e .. the 25% percentile), Q3 is the third 
quartile (the 75% percentile), and Q2 is the second quartile (the 50% percentile, 
namely the median). A quantile-based expression of skewness (Bowley, 1920: 116: 
Groeneveld and Meeden, 1984) considers the distance between Q3 and Q2 and that 
between Q2 and QI: 

Quantile skewness measure = (Q3 - Q2) - (Q2 
(Q3 - Q2) + (Q2 

= Q3 + QI - 2Q2 
Q3 - Q. 

(6.18) 

which is a measure, without units, that may range from -1, for a distribution with 
extreme left skewness; to 0, for a symmetric distribution; to I, for a distribution with 
extreme right skewness. Because Equation 6.18 measures different characteristics of 
a set of data than ./liI does, these two numerical measures can be very different (and, 
especially if the skewness is not great. one of the measures can be positive and the 
other negative). 

Instead of using quartiles QI and Q3. any other symmetric quantiles could be 
used to obtain a skewness coefficient (Groeneveld and Meeden, 1984), though the 
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numerical value of the coefficient would not be the same as that of Equation 6.18. 
For example, the 10th and 90th percentiles could replace Ql and Q3, respectively, in 
Equation 6.18, along with Q2 (the median). 

A kurtosis measure based on quantiles was proposed by Moors (1988), using 
octiles: (h. the first octile, is the L2.5th percentile; 03, the third octile, is the 37.5th 
percentile; 05 is the 62.5th percentile; and 07 is the 87.5th percentile. Also, (j2 

Ql. C'4 = Q2. and ()'6 = Q3. The measure is 

Quantile kurtosis measure = 
(07 Os) + (03 Od 

(06 (2) 

(07 - Os) + (03 - Od (6.19) = 
(Q3 Qd 

which has no units and may range from zero. for extreme platykurtosis, to 1.233, for 
mesokurtosis; to infinity, for extreme leptokurtosis. 

Quantile-based measures of symmetry and kurtosis are rarely encountered. 

6.6 ASSESSING DEPARTURES FROM NORMALITY 

It is sometimes desired to test the hypothesis that a sample came from a population 
whose members follow a normal distribution. Example 6.7 and Figure 6.9 present 
a frequency distribution of sample data, and we may desire to know whether the 
data are likely to have come from a population that had a normal distribution. 
Comprehensive examinations of statistical methods applicable to such a question 
have been reported (e.g .. by D'Agostino, 1986; Landry and Lepage, 1992; Shapiro, 
1986; and Thode, 2002), and a brief overview of some of these techniques will be 
given here. The latter author discusses about 40 methods for normality testing and 
notes (ibid.: 143-157) that the power of a testing procedure depends upon the sample 
size and the nature of the nonnormality that is to be detected (e.g., asymmetry, 
long-tailedness, short-tailedness). 
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FIGURE 6.9: The frequency polygon for the student height data in Example 6.7 (solid line) with the 
frequency curve that would be expected if the data followed a normal distribution (broken line). 
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EXAMPLE 6.7 The Heights of the First 70 Graduate Students in My Bio-
statistics Course 

Height Observed Cumulative 
(Xi) Frequency Frequency f;Xi f;X? 
(in.) (f; ) (cum.f;) (in.) (in.2) 

63 2 2 126 7.938 
64 2 4 128 8.192 
65 3 7 195 12,675 
66 5 12 330 21.780 
67 4 16 268 17.956 
68 6 22 408 27.744 
69 5 27 345 23,805 
70 8 35 560 39,200 
71 7 42 497 35,287 
72 7 49 504 36,288 
73 10 59 730 53.290 
74 6 65 444 32.856 
75 3 68 225 16.875 
76 2 70 152 11,552 

'I-f; = 'I-f;X; = 'I-f;X;2 = 

n = 70 4,912 in. 345,438 in.2 

SS='I-f;X? - 'I-(f;Xi)2 = 345,438in.2 _ (14.912in.)2 = 755.9429in.2 
Il 70 

;. = ~ = 755.9429 in.2 = 10.9557 in.2 

n - 1 69 

(a) Graphical Assessment of Normality. Many methods have been used to assess 
graphically the extent to which a frequency distribution of observed data resembles a 
normal distribution (e.g., Thode, 2002: 15-40). Recall the graphical representation of 
a normal distribution as a frequency curve. shown in Figure 6.1. A frequency polygon 
for the data in Example 6.7 is shown in Figure 6.9, and superimposed on that figure 
is a dashed curve showing what a normal distribution, with the same number of data 
(n) mean (X). and standard deviation (s), would look like. We may wish 10 ask 
whether the observed frequencies deviate significantly from the frequencies expected 
from a normally distributed sample. 

Figure 6.10 shows the data of Example 6.7 plotted as a cumulative frequency 
distribution. A cumulative frequency graph of a normal distribution will be S-shaped 
(called "sigmoid"). The graph in Figure 6.10 is somewhat sigmoid in shape, but in this 
visual presentation it is difficult to conclude whether that shape is pronounced enough 
to reflect normality. So, a different approach is desired. Note that the vertical axis 
on the left side of the graph expresses cumulative frequencies and the vertical axis 
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FIGURE 6.10: The cumulative frequency polygon of the student-height data of Example 6.7. 

on the right side displays relative frequencies (as introduced in Figure 1.9), and the 
latter may be thought of as percentiles. For instance, the sample of 70 measurements 
in Example 6.7 contains 22 data, where Xi ~ 68 inches, so 68 in. on the horizontal 
axis is associated with a cumulative frequency of 22 on the left axis and a cumulative 
relative frequency of 22/70 = 0.31 on the right axis; thus. we could say that a height 
of 68 in. is at the 31st percentile of this sample. 

Examination of the relative cumulative frequency distribution is aided greatly 
by the use of the normal probability scale, as in Figure 6.11, rather than the linear 
scale of Figure 6.10. As the latter figure shows, a given increment in Xi (on the 
abscissa, the horizontal axis) near the median is associated with a much larger 
change in relative frequency (on the ordinate, the vertical axis) than is the same 
increment in Xi at very high or very low relative frequencies. Using the normal­
probability scale on the ordinate expands the scale for high and low percentiles and 
compresses it for percentiles toward the median (which is the 50th percentile). The 
resulting cumulative frequency plot will be a straight line for a normal distribution. 
A leptokurtic distribution will appear as a sigmoid (S-shaped) curve on such a 
plot, and a platykurtic distribution will appear as a reverse S-shape. A negatively 
skewed distribution will show an upward curve, as the lower portion of an S, and a 
positively skewed distribution will manifest itself in a shape resembling the upper 
portion of an S. Figure 6.11 shows the data of Example 6.7 plotted as a cumulative 
distribution on a normal-probability scale. The curve appears to tend slightly toward 
leptokurtic. 

Graph paper with the normal-probability scale on the ordinate is available com­
mercially, and such graphs are produced by some computer software. One may also 
encounter graphs with a normal-probability scale on the abscissa and Xi on the 
ordinate. The shape of the plotted curves will then be converse of those described 
previously. 

(b) Assessing Normality Using Symmetry and Kurtosis Measures. Section 6.5 indi­
cated that a normally distributed population has symmetry and kurtosis parameters 
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FIGURE 6.11: The cumulative relative frequency distribution for the data of Example 6.7, plotted with 
the normal probability scale as the ordinate. The expected frequencies (Le., the frequencies from a 
normal distribution) would fall on the straight line shown. 

of JlJI = 0 and {32 = 3. respectively. Therefore. we can ask whether a sample of 
data came from a normal population by testing the null hypothesis Ho: ,JJJJ = 0 
(versus the alternate hypothesis, HA: ./lI1:¢: 0) and the hypothesis Ho: f32 = 3 (versus 
HA : (32 :¢: 3), as shown in Section 7.16. There are also procedures that employ the 
symmetry and kurtosis measures simultaneously. to test Ho: The sample came from 
a normally distributed population versus HA: The sample came from a population 
that is not normally distributed (Bowman and Shenton. 1975. 1986; D'Agostino and 
Pearson, 1973; Pearson, D'Agostino, and Bowman, 1977; Thode. 2002: 54-55. 283). 

Statistical testing using these symmetry and kurtosis measures. or the procedure 
of Section 6.6(d), is generally the best for assessing a distribution's departure from 
normality (Thode. 2002: 2). 

(c) Goodness-of-Fit Assessment of Normality. As will be discussed in Chapter 22. 
procedures called goodness-of-fit tests are applicable when asking whether a sample of 
data is likely to have come from a population with a specified distribution. Goodness­
of-fit procedures known as chi-square, log-likelihood, and Kolmogorov-Smirnov. or 
modifications of them. have been used to test the hypothesis of normality (e.g., Zar, 
1984: 88-93); and Thode (2002) notes that other goodness-of-fit tests. such as that of 
Kuiper (1960, which is alluded to in Section 27.18 for other purposes) may also be 
used. These methods perform poorly. however. in that they possess very low power; 
and they are not recommended for addressing hypotheses of normality (D' Agostino. 
1986; D'Agostino, Belanger. and D'Agostino, 1990; Moore. 1986; Thode, 2002: 152). 
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(d) Otber Methods of Assessing Normality. Shapiro and Wilk (1965) presented a test 
for normality involving the calculation of a statistic they called W. This computation 
requires an extensive table of constants, because a different set of n/2 constants is 
needed for each sample size, n. The authors provided a table of these constants 
and also of critical values of W. but only for n as large as 50. The power of this 
test has been shown to be excellent when testing for departures from normality 
(0' Agostino, 1986; Shapiro, Wilk. and Chen, 1968). Royston (1982a, 1982b) provided 
an approximation that extends the W test to n as large as 2000. Shapiro and 
Francia (1972) presented a modified procedure (employing a statistic they called 
W') that allows n to be as large as 99; but Pearson. D'Agostino, and Bowman 
(1977) noted errors in the published critical values. Among other modifications of 
W, Rahman and Govindarajulu (1997) offered one (with a test statistic they called 
W) declared to be applicable to any sample size, with critical values provided for n 
up to 5000. Calculation of W or its modifications is cumbersome and will most likely 
be done by computer; this test is unusual in that it involves rejection of the null 
hypothesis of normality if the test statistic is equal to or less than the one-tailed critical 
value. 

The performance of the Shapiro-Wilk test is adversely affected by the common 
situation where there are tied data (i.e., data that are identical. as occur in Example 6.7. 
where there is more than one observation at each height) (Pearson. O'Agostino, and 
Bowman, 1977), but modifications of it have addressed that problem (e.g., Royston, 
1986, 1989). Statistical testing using the Shapiro-Wilk test. or using symmetry and 
kurtosis measures (Section 6.6(b». is generally the preferred method for inquiring 
whether an underlying population is normally distributed (Thode. 2002: 2). 

EXERCISES 

6.L The following body weights were measured in 37 
animals: 

Weight (Xi) 
(kg) 

4.0 
4.3 
4.5 
4.6 
4.7 
4.8 
4.9 
5.0 
5.1 

Frequency 
Vi) 
2 
3 
5 
8 
6 
5 
4 
3 
1 

(8) Calculate the symmetry measure • ../51. 
(b) Calculate the kurtosis measure. b2. 
(c) Calculate the skewness measure based on 

quantiles. 
(d) Calculate the kurtosis measure based on quan­

tiles. 

6.2. A normally distributed population of lemming 
body weights has a mean of 63.5 g and a standard 
deviation of 12.2 g. 
(8) What proportion of this popUlation is 78.0 g 

or larger? 

(b) What proportion of this popUlation is 78.0 g 
or smaller? 

(c) If there are 1000 weights in the population. 
how many of them are 78.0 g or larger? 

(d) What is the probability of choosing at random 
from this population a weight smaller than 
41.0 g? 

6.3. (a) Considering the popUlation of Exercise 6.2. 
what is the probability of selecting at random 
a body weight between 60.0 and 70.0 g? 

(b) What is the probability of a body weight 
between 50.0 and 60.0 g? 

6.4. (a) What is the standard deviation of all possible 
means of samples of size 10 which could be 
drawn from the popUlation in Exercise 6.2? 

(b) What is the probability of selecting at random 
from this population a sample of 10 weights 
that has a mean greater than 65.0 g? 

(c) What is the probability of the mean of a sample 
of to being between 60.0 and 62.0 g? 

6.5. The following 18 measurements are obtained of a 
pollutant in a body of water: to.25, 10.37. 10.66. 
10.47.10.56. 10.22, 10.44, 10.38, 10.63, 10.40. 10.39, 
10.26, 10.32, 10.35, 10.54. 10.33. 10.48. 10.68 mil­
ligrams per liter. Although we would not know this 
in practice. for the sake of this example let us say 
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we know that the standard error of the mean is 
OX = 0.24 mg/liter in the population from which 
this sample came. The legal limit of this pollutant 
is 10.00 milligrams per liter. 
(a) Test whether the mean concentration in 

this body of water exceeds the legal limit 
(Le., test Ho: p. :S 10.00 mg/L versus HA: 
IL > 10.00 mg/L). using the 5% level of signifi­
cance. 

(b) Calculate the 95% confidence interval for p.. 

6.6. The incubation time was measured for 24 alligator 
eggs. Let's say that these 24 data came from a pop­
ulation with a variance of 002 = 89.06 days2. and 
the sample mean is X = 61.4 days. 
(a) Calculate the 99% confidence limits for the 

population mean. 
(b) Calculate the 95% confidence limits for the 

popUlation mean. 
(c) Calculate the 90% confidence limits for the 

popUlation mean. 
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This chapter will continue the discussion of Section 6.3 on how to draw inferences 
ahout population parameters hy testing hypotheses about them using appropri­
ate sample statistics. It will consider hypotheses about each of several population 
parameters. including the population mean. median. variance, standard deviation. 
and coefficient of variation. The chapter will also discuss procedures (introduced 
in Section 6.4) for expressing the confidence one can have in estimating population 
parameters from sample statistics. 

7.1 TWO-TAILED HYPOTHESES CONCERNING THE MEAN 

Section 6.4 introduced the concept of statistical testing using a pair of statistical 
hypotheses, the null and alternate hypotheses. as statements that a popUlation mean 
(JL) is equal to some specified value (let's call it JLI)): 

Ho: JL = JLo: 

H;t: JL * J.L(1· 

For example. let us consider the body temperatures of 25 intertidal crabs that we 
exposed to air at 24.3' C (Example 7.1). We may wish to ask whether the mean 
body temperature of members of this species of crah is the same as the ambienl air 
temperature of 24,3"C. Therefore, 

Ho: JL = 24.3 C. and 

H;t: JL -F 24.::r c. 

97 
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where the null hypothesis states that the mean of the population of data from which 
this sample of 25 came is 24.3°C (i.e., p. is "no different from 24.3°C"), and the 
alternate hypothesis is that the population mean is not equal to (i.e .. p. is different 
from) 24.3°C. 

EXAMPLE 7.1 The Two-Tailed t Test for Difference between a Population 
Mean and a Hypothesized Population Mean 

Body temperatures (measured in <1C) of25 intertidal crabs placed in air at 24.3°C: 
25.8,24.6,26.1,22.9,25.1.27.3.24.0.24.5,23.9, 26.2, 24.3. 24.6, 23.3, 25.5, 28.1,24.8. 
23.5,26.3,25.4,25.5.23.9,27.0.24.8.22.9,25.4. 

Ho: p. = 24.3°C 

HA: p."* 24.3"'C 

a = 0.05 

11 = 25 

X = 25.03°C 

s2 = 1.80( oC)2 

1.80( ° C )2 = 0.270 C 
25 

I = X - p. = 25.03cC - 24.3°C = 0.73°C = 2.704 
Sx 0.27"C 0.27°C 

v = 24 

10.05 ( 2).24 = 2.064 

As III > 10.U5(2). 24, reject Ho and conclude that the sample of 25 body tempera­
tures came from a population whose mean is not 24.3 ° C. 

0.0] < P < 0.02 [P = 0.012]* 

In Section 6.1 (Equation 6.6), Z = (X - p.)/ux was introduced as a normal 
deviale. and it was shown how one can determine the probability of obtaining a 
sample with mean X from a population with a specified mean p.. And Section 6.3 
discussed how the normal deviate can be used to test hypotheses about a population 
mean. Note, however, that the calculation of Z requires the knowledge of UX' which 
we typically do not have. The best we can do is to calculate Sx as an estimate 
of UX. If 11 is very, very large. then Sx is a good estimate of ux, and we can be 

*Throughout the examples in this book. the exact probability of a calculated test statistic 
(such as I). as determined by computer software. is indicated in brackets. It should not be assumed 
that the many decimal places given by computer programs are all accurate (McCullough, 1998. 
1999); therefore. the book's examples will routinely express these probabilities to only two or 
three (occasionally four) decimal places. The term "software" was coined by John Wilder Tukey 
(Leonhardt. 2(00). 
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tempted to calculate Z using this estimate. However, for most biological situations n 
is insufficiently large to do this; but we can use, in place of the normal distribution (Z), 
a distribution known as t, the development of which was a major breakthrough in 
statistical methodology:* 

X-II. 
1= r-. (7.1 ) 

SX 
Because the I-testing procedure is so readily employed, we need not wonder 

whether n is large enough to use Z; and, in fact, Z is almost never used for hypothesis 
testing about means. 

As do some other distributions to be encountered among statistical methods, the I 
distribution has different shapes for different values of what is known as degrees of 
freedom (denoted by v, the lowercase Greek nu}.t For hypotheses concerning a mean, 

II=n-l. 

.".--v=x> ,- .. """ 
,', ... ,~~v = 3 

I~' ,\ v=l 
" " , I, \, I, \, 

I~ \'. 
'I \' :' \' ., ~ 

-4 -3 -2 -\ o 2 

(7.2) 

3 4 

FIGURE 7.1: The t distribution for various degrees of freedom, II. For II =- 00, the t distribution is identical 
to the normal distribution. 

Recall that n is the size of the sample (i.e., the number of data from which X has been 
calculated). The influence of II on the shape of the t distribution is shown in Figure 7.1. 

*The I statistic is also referred to as "Studenfs t' because of William Sealy Gosset (1876-1937), 
who was an English statistician with the title "brewer" in the Guinness brewery of Dublin. He used 
the pen name "Student" (under his employer's policy requiring anonymity) to publish noteworthy 
developments in statistical theory and practice, including ("Student," 1908) the introduction of 
the distribution that bears his pseudonym. (See Boland, 1984,2000; Irwin, 1978; Lehmann, 1999; 
Pearson, 1939; Pearson. Plackett. and Barnard, 1990; Zabell. 2008.) Gosset originally referred to his 
distribution as z: and, especially between 1922 and 1925, R. A. Fisher (e.g., 1925a, 1925b: 106-113, 
117 -125; 1928) helped develop its potential in statistical testing while modifying it; Gosset and 
Fisher then called the modification "I" (Eisenhart, 1979). Gosset was a modest man. but he was 
referred to as "one of the most original minds in contemporary science" by Fisher (1939a), himself 
one of the most insightful and influential statisticians of all time. From his first discussions of the I 
distribution, Gosset was aware that it was strictly applicable only if sampling normally distributed 
popUlations, though he surmised that only large deviations from normality would invalidate the use 
of I (Lehmann. 1999). 

tIn early writings of the I distribution (during the 1920s and 1930s), the symbol n or f was used 
for degrees of freedom. This was often confusing because these letters had commonly been used to 
denote other quantities in statistics so Maurice G. Kendall (1943: 292) recommended II. 
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This distribution is leptokurtic (see Section 6.5), having a greater concentration of 
values around the mean and in the tails than does a normal distribution; but as n 
(and, therefore, /I) increases, the I distribution tends to resemble a normal distribution 
more closely, and for /I = 00 (i.e .. for an infinitely large sample*), the t and normal 
distributions are identical; that is, la.oo = Za. 

The mean of the sample of 25 data (body temperatures) shown in Example 7.1 is 
25.03 0 C. and the sample variance is 1.80( 0 C)2. These statistics are estimates of the 
mean and variance of the population from which this sample came. However. this is 
only one of a very large number of samples of size 25 that could have been taken at 
random from the population. The distribution of the means of all possible samples 
with n = 25 is the t distribution for /I = 24, which is represented by the curve of 
Figure 7.2. In this figure, the mean of the I distribution (i.e., t = 0) represents the mean 
hypothesized in Ho (i.e., p. = p.o = 24.3° C). for, by Equation 7.1, t = 0 when X = p.. 
The shaded areas in this figure represent the extreme 5% of the total area under the 
curve (2.5% in each tail). Thus. an X so far from p. that it lies in either of the shaded 
areas has a probability of less than 5% of occurring by chance alone, and we assume 
that it occurred because Ho is. in fact, false. As explained in Section 6.3 regarding the 
Z distribution, because an extreme t value in either direction from p. will cause us to 
reject Ho, we are said to be considering a "two-tailed" (or "two-sided") test. 

~ . . ;;; 
c .. 
C 

-) 

-2.1164 2.064 

FIGURE 7.2: The t distribution for I' = 24, showing the critical region (shaded area) for a two-tailed test 
using a = 0.05. (The critical value of t is 2.064.) 

For /I = 24, we can consult Appendix Table B.3 to find the following two-tailed 
probabilities (denoted as "a(2 )") of various values of t: 

II a(2): 0.50 0.20 0.10 0.05 0.02 0.01 

24 0.685 1.318 1.711 2.064 2.492 2.797 

Thus. for example. for a two-tailed a of 0.05, the shaded areas of the curve begin at 
2.064 t units on either side of p.. Therefore. we can state: 

P( It I ~ 2.064) = 0.05. 

That is, 2.064 and - 2.064 are the critical values of t; and if t (calculated from 
Equation 7.1) is equal to or greater than 2.064. or is equal to or less than -2.064, 
that will be considered reasonable cause to reject Ho and consider H A to be a true 

*The modern symbol for infinity (00) was introduced in 1655 by inHuential English mathematician 
John Wallis (1616-1703) (Cajori. 1928/9. Vol. 2: 44), but it did not appear again in print until a 
work by Jacob Bernoulli was published posthumously in 1713 by his nephcw Nikolaus Bernoulli 
(Gullberg. 1997: 30). 
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statement. That portion of the I distribution beyond the critical values (i.e., the shaded 
areas in the figure) is called the crilical region.* or rejection region. For the sample of 
25 body temperatures (see Example 7.1). I = 2.704. As 2.704 lies within the critical 
region (i.e .. 2.704 > 2.064). Ho is rejected. and we conclude that the mean body 
temperature of crabs under the conditions of our experiment is not 24.3°C. 

To summarize. the hypotheses for the two-tailed test are 

Ho: J.L = J.LO and H A: J.L "* ILl)' 

where J.LO denotes the hypothesized value to which we are comparing the population 
mean. (In the above example. J.LO = 24.3°C.) The test statistic is calculated by 
Equation 7.1. and if its absolute value is larger than the two-tailed critical value of I 
from Appendix Table B.3, we reject Ho and assume HA to be true. The critical value 
of I can be abbreviated as la(2). '" where a( 2) refers to the two-tailed probability of a. 
Thus. for the preceding example. we could write 10.05(2).24 = 2.064. In general, for a 
two-tailed I test. 

if III ~ 1«(2).", then reject Ho. 

Example 7.1 presents the computations for the analysis of the crab data. A t of 
2.704 is calculated, which for 24 degrees of freedom lies between the tabled critical 
values of IU.02(2).24 == 2.492 and 10.01(2).24 == 2.797. Therefore. if the null hypothesis. 
Ho, is a true statement about the population we sampled, the probability of X being at 
least this far from J.L is between 0.01 and 0.02; that is, 0.01 < P( III ~ 2.704) < 0.02.t 
As this probability is Jess than 0.05, we reject Ho and declare it is not a true statement. 
For a consideration of the types of errors involved in rejecting or accepting the null 
hypothesis, refer to Section 6.4. 

Frequently, the hypothesized value in the null and alternate hypotheses is zero. For 
example. the weights of twelve rats might be measured before and after the animals 
are placed on a regimen of forced exercise for one week. The change in weight of 
the animals (i.e .. weight after minus weight before) could be recorded, and it might 
have been found that the mean weight change was -0.65 g (i.e .. the mean weight 
change is a 0.65 g weight loss). If we wished to infer whether such exercise causes any 
significant change in rat weight, we could state Ho: J.L == 0 and HA: J.L "* 0; Example 7.2 
summarizes the I test for this Ho and HA . This test is two tailed, for a large X - J.L 
difference in either direction will constitute grounds for rejecting the veracity of Ho.t 

EXAMPLE 7.2 A Two-Tailed Test for Significant Difference between a 
Population Mean and a Hypothesized Population Mean of Zero 

Weight change of twelve rats after being subjected to a regimen of forced exercise. 
Each weight change (in g) is the weight after exercise minus the weight before. 

1.7 Ho: J.L == 0 
0.7 HA: J.L "* 0 

-0.4 a = 0.05 

·David (1995) traces the first use of this term to J. Neyman and E. S. Pearson in 1933. 
tSome calculators and many computer programs have the capability of determining the 

probability of a given r (e.g .. see Boomsma and Molenaar. 1994). For the present example. we would 
thereby find that P(Jrl ~ 2.7(4) = 0.012. 

*Data that result from the differences between pairs of data (such as measurements before and 
after an experimental treatment) are discussed further in Chapter 9. 
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-1.8 
0.2 
0.9 

-1.2 
-0.9 
-1.8 
-1.4 
-1.8 
-2.0 

n = 12 
X = -0.65 g 
s2 = 1.5682 g2 

1.5682 g2 = 0.36 Sx = 12 g 

t = X -p. = -0.65 g = -1.81 
!ix 0.36 g 

v=Il-1=11 

to.OS(2).I1 = 2.201 

Since III < 10.05(2).11' do not reject Ho. 

0.05 < P < 0.10 [P = 0.098] 

Therefore. we conclude that the exercise does not cause a weight change in the 
population from which this sample came. 

It should be kept in mind that concluding statistical significance is not the same 
as determining biological significance. In Example 7.1, statistical significance was 
achieved for a difference of 0.73°C between the mean crab body temperature 
(25.03° C) and the air temperature (24.3° C). The statistical question posed is whether 
that magnitude of difference is likely to occur by chance if the nun hypothesis of no 
difference is true. The answer is that it is unlikely (there is only a 0.012 probability) 
and. therefore, we conclude that Ho is not true. Now the biological question is whether 
a difference of 0.73"C is of significance (with respect to the crabs' physiology, to 
their ecology. or otherwise). If the sample of body temperatures had a smaller 
standard error. sX' an even smaller difference would have been declared statistically 
significant. But is a difference of, say, 0.1 c, Cor 0.01 ° C of biological importance (even 
if it is statistically significant)? In Example 7.2, the mean weight change, 0.36 g, was 
determined not to be significant statistically. But if the sample mean weight change 
had been 0.8 g (and the standard error had been the same), t would have been 
calculated to be 2.222 and Ho would have been rejected. The statistical conclusion 
would have been that the exercise regime does result in weight change in rats. but 
the biological question would then be whether a weight change as small as 0.8 g has 
significance biologically. Thus, assertion of statistical difference should routinely be 
followed by an assessment of the significance of that difference to the objects of the 
study (in these examples. to the crabs or to the rats). 

(a) Assumptions. The theoretical basis of t testing assumes that sample data came 
from a normal population. assuring that the mean at hand came from a normal 
distribution of means. Fortunately, the t test is robust,* meaning that its validity is 
not seriously affected by moderate deviations from this underlying assumption. The 
test also assumes-as other statistical tests typically do-that the data are a random 
sample (see Section 2.3). 

The adverse effect of nonnormality is that the probability of a Type I error 
differs substantially from the stated a. Various studies (e.g .. Cicchitelli. 1989; Pearson 
and Please, 1975: and Ractliffe. 1968) have shown that the detrimental effect of 
nonnormality is greater for smaller a but less for larger n, that there is little effect if 

*Thc term robustness was introduced by G. E. P. Box in 1953 (David. 191)5). 
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the distribution is symmetrical, and that for asymmetric distributions the effect is less 
with strong leptokurtosis than with platykurtosis or mesokurtosis; and the undesirable 
effect of nonnormality is much less for two-tailed testing than for one-tailed testing 
(Section 7.2). 

It is important to appreciate that a sample used in statistical testing such as that 
discussed here must consist of truly replicated data. where a replicale* is defined 
as the smallest experimental unit to which a treatment is independently applied. In 
Example 7.1, we desired to draw conclusions about a population of measurements 
representing a large number of animals (Le .. crabs). Therefore. the sample must 
consist of measurements (i.e .. body temperatures) from n (i.e .. 25) animals; it 
would nol be valid to obtain 25 body temperatures from a single animal. And. 
in Example 7.2. 12 individual rats must be used: it would nol be valid to employ 
data obtained from subjecting the same animal to the experiment 12 times. Such 
invalid attempts at replication are discussed by Hurlbert (1984), who named them 
pseudoreplicalion. 

7.2 ONE-TAILED HYPOTHESES CONCERNING THE MEAN 

In Section 7.1, we spoke of the hypotheses Ho: J.L = J.LO and HA: J.L "* J.LO. because we 
were willing to consider a large deviation of X in either direction from J.L<) as grounds 
for rejecting Ho. However, in some instances. our interest lies only in whether X is 
significantly larger (or significantly smaller) than J.LO. and this is termed a "one-tailed" 
(or "one-sided") test situation. For example. we might be testing a drug hypothesized 
to cause weight reduction in humans. The investigator is interested only in whether 
a weight loss occurs after the drug is taken. (In Example 7.2, using a two-sided test. 
we were interested in determining whether either weight loss or weight gain had 
occurred.) It is important to appreciate that the decision whether to test one-tailed 
or two-tailed hypotheses must be based on the scientific question being addressed. 
before data are collected. 

In the present example. if there is either weight gain or no weight change. the 
drug will be considered a failure. Therefore. for this one-sided test. we should state 
Ho: J.L 2: 0 and HA: J.L < O. Here. the null hypothesis states that there is no mean 
weight loss (i.e .. the mean weight change is greater than or equal to zero). and the 
alternate hypothesis states that there is a mean weight loss (i.e., the mean weight 
change is less than zero). By examining the alternate hypothesis, HA. we see that Ho 
will be rejected if I is in the left-hand critical region of the (distribution. In general, 

for H A: J.L < J.LO. 

if I :5 - la( I ) .• " then reject Ho. t 

Example 7.3 summarizes such a set of 12 weight change data tested against this pair 
of hypotheses. From Appendix Table 8.3 we find that to.05( I ).11 = 1.796, and the 
critical region for this test is shown in Figure 7.3. From this figure, and by examining 
Appendix Table B.3, we see that ta( I ) .• ' = 12a(2).1' or la(2).v = tal2( I ).v: that is, for 
example. the critical value of I for a one-sided test at a = 0.05 is the same as the 
critical value of I for a two-sided test at a = 0.10. 

·The term repliCllte, in the context of experimental design. was introduced by R. A. Fisher in 
1926 (Miller. 2004a). 

'!'For one-tailed testing of this Ho. prohahilities of t up to 0.25 are indicated in Appendix 
Tahle B.3. If ( = n. then P = 1).50; sO if -tn.2.'1( I ) .• ' < ( < O. then 0.25 < P < 0.511; and if ( > O. 
then P > 0.50. 
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EXAMPLE 7.3 
HA: II- < 0 

A One-Tailed t Test for the Hypotheses Ho: II- i!: 0 and 

The data are weight changes of humans, tabulated after administration of a drug 
proposed to result in weight loss. Each weight change (in kg) is the weight after 
minus the weight before drug administration. 

0.2 
-0.5 
-1.3 
-1.6 
-0.7 

0.4 
-0.1 

0.0 
-0.6 
-1.1 
-1.2 
-0.8 

n = 12 
X = -0.61 kg 

S2 = 0.4008 kg2 

0.4008 kg2 = 0.18 k 
12 g 

1= x-p. = -0.61 kg = -3.389 
Sx 0.18 kg 

v=n-l=l1 

IO.OS( 1 ).11 = 1.796. 
If t ~ - to.OS( I ). II, reject Ho. 
Conclusion: reject Ho. 

0.0025 < P(I ~ -3.389) < 0.005 [P = 0.0030] 

We conclude that the drug does cause weight loss. 

FIGURE 7.3: The distribution of t for I' = 11, showing the critical region (shaded area) for a one-tailed 
test using a = 0.05. (The critical value of t is -1.796.) 

If we are interested in whether X is significantly greater than some value, /LO, the 
hypotheses for the one-tailed test are Ho: IL ~ ILl) and HA: IL > J.t(). For example. 
a drug manufacturer might advertise that a product dissolves completely in gastric 
juice within 45 sec. The hypotheses appropriate for testing this claim are Ho: IL ~ 45 
sec and HA: IL > 45 sec, because we are not particularly interested in the possibility 
that the product dissolves faster than is claimed. but we wish to determine whether 
its dissolving time is longer than advertised. Thus. the rejection region would be 
in the right-hand tail. rather than in the left-hand tail (the latter being the case in 
Example 7.3). The details of such a test are shown in Example 7.4. In general. 

for HA: IL > J.tO. 
if t ~ la( I ).P' then reject Ho. * 

* For this HI). if t = O. then P = 0.50: therefore. if 0 < t < to.2S( I ).1" then 0.25 < P < 0.50. 
and if t < O. then P > 0.50. 
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EXAMPLE 7.4 The One-Tailed t Test for the Hypotheses Ho: p. ~ 45 sec 
and HA: p. > 45 sec 

Dissolving times (in sec) of a drug in gastric juice: 42.7,43.4,44.6,45.1,45.6,45.9, 
46.8,47.6. 

Ho: JL::5 45 sec 
HA : JL > 45 sec 

a = 0.05 
n=8 
X = 45.21 sec 
SS = 18.8288 sec2 

s2 = 2.6898 sec2 

Sx = 0.58 sec 

I = 45.21 sec - 45 sec = 0.36 
0.58 sec 

" = 7 
lo.oS( I ).7 = 1.895 

If 1 ~ to.OS( 1).7, reject Ho. 
Conclusion: do not reject Ho. 

P(I ~ 0.36) > 0.25 [P = 0.36] 

We conclude that the mean dissolving time is not greater than 45 sec. 

7.3 CONFIDENCE LIMITS FOR THE POPULATION MEAN 

When Section 7.1 defined 1 = (X - JL)/SX, it was explained that 5% of all possible 
means from a normally distributed population with mean JL will yield 1 values that are 
either larger than to.OS(2). v or smaller than - 10.05(2). v; that is, It I ~ 10.05(2). v for 5% of 
the means. This connotes that 95% of all 1 values obtainable lie between the limits of 
-to.05(2).v and to.05(2).v; this may be expressed as 

P [-to.05(2).V ::5 X - JL ::5 to.05(2).V] = 0.95. 
Sx 

(7.3) 

It follows from this that 

P[X - lo.05(2).v Sx S JL S X + to.05(2).v sx] = 0.95. (7.4) 

The value of the population mean. JL. is not known. but we estimate it as X. and 
if we apply Equation 7.4 to many samples from this population, for 95% of the 
samples the interval between X - to.05(2)."SX and X + to.05(2).vSX will include JL. As 
introduced in Section 6.4. this interval is called the confidence interval (abbreviated CI) 
for JL. 

In general, the confidence interval for JL can be stated as 

P[X - ta(2).v Sx ::5 JL ::5 X + ta(2)." sx] = 1 - a. (7.5) 

As defined in Section 6.4, X - ta (2).v Sx is called the lower confidence limit 
(abbreviated LI); and X + la(2)." Sx is the upper confidence limil (abbreviated L2); 
and the two confidence limits can be stated as 

X ± ta (2).v Sx (7.6) 

(reading "±" to be "plus or minus"). In expressing a confidence interval, we 
call the quantity 1 - a (namely. 1 - 0.05 = 0.95 in the present example) 
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the confidence level (or the confidence coefficient. or the confidence prohabil­
ity)! 

Although X is the hest estimate of /-L. it is only an estimate (and not necessarily 
a very good one). and the calculation of the confidence interval for /-L provides an 
expression of the precision of the estimate. Example 7.5. part (a). refers to the data 
of Example 7.1 and demonstrates the determination of the 95% confidence interval 
for the mean of the population from which the sample came. As the 95% confidence 
limits are computed to be LI = 24.47'-'C and L2 = 25.59°C, the 95% confidence 
interval may be expressed as P(24.47"C $ /-L $ 25.59~C). The meaning of this kind of 
statement is commonly expressed in nonprobahilistic terms as having 95% confidence 
that the interval of 24.4r C to 25.59° C contains /-L. This does no( mean that there 
is a 95% prohability that the interval constructed from this one sample contains the 
population mean, /-L; but it does mean that 95% of the confidence limits computed for 
many independent random samples would bracket /-L (or. this could be stated as the 
probahility that the confidence interval from a future sample would contain /-L). And, 
if the J,Li1 in Hu and HA is within the confidence interval. then Ho will not he rejected. 

EXAMPLE 7.5 Computation of Confidence Intervals and Confidence Lim-
its for the Mean, Using the Data of Example 7.1 

(a) At the 95% confidence level: 
X = 25.03"C 
Sx = O.27"C 

to.05(2).24 = 2.064 
" = 24 

95% confidence interval = 

= 

= 

95% confidence limits: LI 

L2 = 

(b) At the 99% confidence level: 

(o.ot (2).24 = 2.797 

99% confidence interval = 

= 

= 

99% confidence limits: L 1 

L2 = 

X ± to.05( 2).24 Sx 
25.03°C ± (2.064 )(O.27"C) 

25.03"C ± O.56'·C 

25.03°C - O.56 c C = 24.47'T 

25.03°C + O.56"C = 25.59°C 

X ± to.III(2).24 Sx 
25.03° ± (2.797)(O.27"C) 

25.03°C ± O.76°C 

25.03°C - O.76°C = 24.2rC 

25.03°C + O.76°C = 25.79°C 

In both parts (a) and (b), the hypothesized value. J,Li1 = 24.3' C in Example 7.1, 
lies outside the confidence intervals. This indicates that Ho would be rejected using 
either the 5% or the 1 % level of significance. 

·We owe the development of confidence intervals to Jerzy Neyman. between 1928 and 1933 
(Wang. 2000). although the concept had been enunciated a hundred years before. Neyman 
introduced the terms confidence interval and l'Ollfidence coefficient in 1934 (David. 19(5). On rare 
occasion. the biologist may see reference to "fiducial intervals." a concept developed by R. A. Fisher 
beginning in 1930 and identical to confidence intervals in some. but not all. situations (Pfanzagl, 
1(78). 
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The smaller sx is, the smaller will be the confidence interval. meaning that /.1. 
is estimated more precisely when "'x is small. Also, it can be observed from the 
calculation of .'ix (see Equation 6.8) that a large 11 will result in a small 5X and, 
therefore. a narrower confidence interval. As introduced in Section 6.4, a parameter 
estimate from a large sample is generally more precise that an estimate of the same 
parameter from a small sample. 

Setting confidence limits around /.1. has the same underlying assumptions as the 
testing of hypotheses about /.1. (Section 7.1a), and violating those assumptions can 
invalidate the stated level of confidence (1 - ex). 

If. instead of a 95% confidence interval. it is desired to state a higher level of 
confidence, say 99%. that LI and L2 encompass the population mean. then to.OI( 1 ).24 
rather than to.OI(2).24 would be employed. From Appendix Table B.3 we find that 
10.01(1).24 = 2.797, so the 99% confidence interval would be calculated as shown in 
Example 7.5, part (b). where it is determined that P( 24.27or :5 /.1. :5 25. 79°C) = 0.99. 

(a) One-Tailed Confidence Limits. As introduced in Section 6.4(a), one-tailed 
confidence intervals are appropriate in situations that warrant one-tailed hypothesis 
tests. Such a confidence interval employs a one-tailed critical value of I (i.e., la( I). ") 
instead of a two-tailed critical value (lu(2), v). For H(): /.1. :5 /.1.0 and HA : /.1. > /.1.{)' the 
confidence limits for /.1. are L 1 = X - la( 1 ). II 5X and L2 = 00; and for Ho: /.1. ~ /.1.0 

andHA:/.1. < 1.L(.I,theconfidence limits are LI = -00 andL2 = X + tu(I).IISX.For 

the situation in Example 7.4, in which Ho: /.1.:5 45 sec and HA : /.1. > 45 sec, L, would 
be 45.21 sec - (1.895)(0.58 sec) = 45.21 sec - 1.10 sec = 44.11 and L2 = 00. And the 
hypothesized /.l.O (45 sec) lies within the confidence interval, indicating that the null 
hypothesis is not rejected. 

(b) Prediction Limits. While confidence limits express the precision with which a 
population characteristic is estimated, we can also indicate the precision with which 
future observations from this population can be predicted. 

After calculating X and s2 from a random sample of 11 data from a popUlation, 
we can ask what the mean would be from an additional random sample, of an 
additional m data. from the same population. The best estimate of the mean of those 
m additional data would be X. and the precision of that estimate may be expressed 
by this two-tailed prediction inlerval (abbreviated PI): 

X ± l,r(2).I' 
52 s2 

+ -
m It 

(7.7) 

where v = It - 1 (Hahn and Meeker. ]991: 61-62). If the desire is to predict the 
value of one additional datum from that popUlation (i.e .. m = 1). then Equation 7.7 
becomes 

-~ 
X ± tU (2)."V s- + -;;. (7.8) 

The prediction interval will be wider than the confidence interval and will approach 
the confidence interval as m becomes very large. The use of Equations 7.7 and 7.8 is 
demonstrated in Example 7.6. 

One-tailed prediction intervals are not commonly obtained but are presented 
in Hahn and Meeker (1991: 63), who also consider another kind of interval: the 
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tolerance interval, which may be calculated to contain at least a specified proportion 
(e.g., a specified percentile) of the sampled population; and in Patel (1989), who 
also discusses simultaneous prediction intervals of means from more than one 
future sample. The procedure is very much like that of Section 7.3a. If the desire 
is to obtain only a lower prediction limit, Ll (while L2 is considered to be 00), 
then the first portion of Equation 7.7 (or 7.8) would be modified to be X -
tu( J ).p (i.e., the one-tailed t would be used); and if the intent is to express only 
an upper prediction limit, L2 (while regarding LJ to be -00), then we would 
use X + la( J ).p. As an example, Example 7.6 might have asked what the highest 
mean body temperature is that would be predicted, with probability a, from an 
additional sample. This would involve calculating L2 as indicated above, while 
L( = -00. 

EXAMPLE 7.6 Prediction Limits for Additional Sampling from the Popu-
lation Sampled in Example 7.1 

From Example 7. J, which is a sample of 25 crab body temperatures, 

n = 25, X = 25.03°C, and s2 = 1.80( vC)2. 

(a) If we intend to collect 8 additional crab body temperatures from the same 
population from which the 25 data in Example 7.1 came, then (by Equation 7.7) we 
can be 95% confident that the mean of those 8 data will be within this prediction 
interval: 

1.80( "C)2 1.80(,'C)2 
25.03~C ± to.OS(2).24 8 + 2 

= 25.03°C ± 2.064(O.545°C) 

= 25.03:)C ± 1.12°C. 

Therefore, the 95% prediction limits for the predicted mean of these additional 
data are L\ = 23.9PC and L2 = 26.15°C. 

(b) rf we intend to collect 1 additional crab body temperature from the same 
population from which the 25 data in Example 7.1 came, then (by Equation 7.8) 
we can he 95% confident that the additional datum will be within this prediction 
interval: 

25.03°C ± 10.05(2).24 

= 25.03°C ± 2.064( 1.368"C) 

= 25.03°C ± 2.82°C. 

Therefore, the 95% prediction limits for this predicted datum are LJ = 22.21 "c 
and L2 = 27.85"C. 

7.4 REPORTING VARIABILITY AROUND THE MEAN 

It is very important to provide the reader of a research paper with information 
concerning the variability of the data reported. But authors of such papers are often 
unsure of appropriate ways of doing so, and not infrequently do so improperly. 
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If we wish to describe the population that has been sampled, then the sample 
mean (X) and the standard deviation (s) may be reported. The range might also 
be reported, but in general it should not be stated without being accompanied by 
another measure of variability, such as s. Such statistics are frequently presented as 
in Table 7.1 or 7.2. 

TABLE 7.1: Tail Lengths (in mm) of Field Mice from Different Localities 

X±SD 
Location 11 (range in parentheses) 

Bedford. Indiana 18 56.22 ± 1.33 
(44.8 to 68.9) 

Rochester, Minnesota 12 59.61 ± 0.82 
(43.9 to 69.8) 

Fairfield, Iowa 16 60.20 ± 0.92 
(52.4 to 69.2) 

Pratt. Kansas 16 53.93 ± 1.24 
(46.1 to 63.6) 

Mount Pleasant. Michigan 13 55.85 ± 0.90 
(46.7 to 64.8) 

TABLE 7.2: Evaporative Water Loss of a Small Mammal at Various Air Temperatures. Sample 
Statistics Are Mean ± Standard Deviation, with Range in Parentheses 

Air Temperature eq 
16.2 24.8 30.7 36.8 40.9 

Sample size 10 13 10 8 9 
Evaporativewater 0.611 ±0.164 0.643±O.l94 0.890±O.212 1.981 ±0.230 3.762±0.641 

loss (mg/g/hr) (0.49 to 0.88) (0.38 to 1.13) (0.64 to \.39) (1.50 to 2.36) (3.16 to 5.35) 

If it is the author's intention to provide the reader with a statement about the 
precision of estimation of the population mean, the use of the standard error (sx) is 
appropriate. A typical presentation is shown in Table 7.3a. This table might instead 
be set up to show confidence intervals, rather than standard errors, as shown in 
Table 7.3b. The standard error is always smaller than the standard deviation. But this 
is not a reason to report the former in preference to the latter. The determination 
should be made on the basis of whether the desire is to describe variability within the 
popUlation or precision of estimating the population mean. 

There are three very important points to note about Tables 7.1,7.2, 7.3a, and 7.3b. 
First, n should be stated somewhere in the table, either in the caption or in the body 
of the table. (Thus, the reader has the needed information to convert from SD to SE 
or from SE to SD, if so desired.) One should always state n when presenting sample 
statistics (X, s, sx, range, etc.), and if a tabular presentation is prepared, it is very 
good practice to include n somewhere in the table, even if it is mentioned elsewhere 
in the paper. 

Second, the measure of variability is clearly indicated. Not infrequently, an author 
will state something such as "the mean is 54.2 ± 2.7 g," with no explanation of what 
"± 2.7" denotes. This renders the statement worthless to the reader, because "± 2.1" 
will be assumed by some to indicate ± SD, by others to indicate ± SE, by others to 



110 Chapter 7 One-Sample Hypotheses 

TABLE 7.3a: Enzyme Activities in the Muscle of Various 
Animals. Data Are X ± SE, with n in Parentheses 

Animal 

Mouse 
Frog 
Trout 
Crayfish 

Enzyme Activity 
(#Lmole/min/g of tissue) 

Isomerase Transketolase 

0.76 ± 0.09 (4) 0.39 ± 0.04 (4) 
1.53 ± 0.08 (4) 0.18 ± 0.02 (4) 
1.06 ± 0.12 (4) 0.24 ± 0.04 (4) 
4.22 ± 0.30 (4) 0.26 ± 0.05 (4) 

TABLE 7.3b: Enzyme Activities in the Muscle of Various 
Animals. Data Are X ± 95% Confidence Limits 

Animal n 

Mouse 4 
Frog 4 
Trout 4 
Crayfish 4 

Enzyme Activity 
(#Lmole/min/g of tissue) 

Isomerase Transketolase 

0.76 ± 0.28 0.39 ± 0.13 
1.53 ± 0.25 0.18 ± 0.05 
1.06 ± 0.38 0.24 ± 0.11 
4.22 ± 0.98 0.26 ± 0.15 

indicate the 95% (or 99%, or other) confidence interval. and by others to indicate 
the range! There is no widely accepted convention; one must state explicitly what 
quantity is meant by this type of statement. If such statements of' ±" values appear 
in a table. then the explanation is best included somewhere in the table (either in the 
caption or in the body of the table). even if it is stated elsewhere in the paper. 

Third. the units of measurement of the variable must be clear. There is little 
information conveyed by stating that the tail lengths of 24 birds have a mean of 
8.42 and a standard error of 0.86 if the reader does not know whether the tail 
lengths were measured in centimeters, or inches, or some other unit. Whenever data 
appear in tables. the units of measurement should be stated somewhere in the table. 
Keep in mind that a table should be self-explanatory; one should not have to refer 
back and forth between the table and the text to determine what the tabled values 
represent. 

Frequently. the types of information given in Tables 7.1. 7.2, 7.3a. and 7.3b are 
presented in graphs. rather than in tables. In such cases, the measurement scale is 
typically indicated on the vertical axis. and the mean is indicated in the body of 
the graph by a short horizontal line or some other symbol. The standard deviation, 
standard error. or a confidence interval for the mean is commonly indicated on such 
graphs via a vertical line or rectangle. Often the range is also included, and in such 
instances the SD or SE may be indicated by a vertical rectangle and the range by 
a vertical line. Some authors will indicate a confidence interval (generally 95%) in 

... In older literature the ± symbol referred to yet another measure. known as the "probable 
error" (which fell into disuse in the early twentieth century). In a normal curve. the probable error 
(PE) is 0.6745 limes the standard error. because X ± PE includes 50% of the distribution. The term 
probable error was first used in 1815 by German astronomer Friedrich Wilhelm Bessel (1784-1846) 
(Walker. 1929: 24. 51. 186). 



E 
E 
.: 
..: 
c;, 
c 
~ 

oJ 
0c; 
f-

Section 7.4 Reporting Variability around the Mean 111 

70 

16 12 60 
18 13 

16 

50 

40~----~----~----~------~----~------
Bedford. Rochester. Fairfield. Pratt. Mount Pleasant. 
Indiana Minnesota Iowa Kansas Michigan 

FIGURE 7.4: Tail lengths of male field mice from different localities, indicating the mean, the mean ± 
standard deviation (vertical rectangle), and the range (vertical line), with the sample size indicated for 
each location. The data are from Table 7.1. 
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FIGURE 7.5: Levels of muscle isomerase in various animals. Shown is the mean ± standard error (shaded 
rectangle), and ± the 95% confidence interval (open rectangle). For each sample, n = 4. The data are 
from Tables 7.3a and 7.3b. 

addition to the range and either SD or SE. Figures 7.4. 7.5, and 7.6 demonstrate how 
various combinations of these statistics may be presented graphically. 

Instead of the mean and a measure of variability based on the variance, one may 
present tabular or graphical descriptions of samples using the median and quartiles 
(e.g .• McGill, Tukey. and Larsen. 1978). or the median and its confidence interval. 
Thus. a graphical presentation such as in Figure 7.4 could have the range indicated 
by the vertical line. the median by the horizontal line. and the semiquartile range 
(Section 4.2) by the vertical rectangle. Such a graph is discussed in Section 7.5. Note 
that when the horizontal axis on the graph represents an interval or ratio scale 
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Air Temperature. ·C 

FIGURE 7.6: Evaporative water loss of a small mammal at various air temperatures. Shown at each 
temperature is the mean ± the standard deviation, and the sample size. The data are from Table 7.2. 

variable (as in Figure 7.6), adjacent means may be connected by straight lines to aid 
in the recognition of trends. 

In graphical presentation of data, as in tabular presentation, care must be taken to 
indicate clearly the following either on the graph or in the caption: The sample size 
(n), the units of measurement, and what measures of variability (if any) are indicated 
(e.g., SO. SE, range, 95% confidence interval). 

Some authors present X ± 2\'x in their graphs. An examination of the t table 
(Appendix Table 8.3) will show that, except for small samples, this expression will 
approximate the 95% confidence interval for the mean. But for small samples, the 
true confidence interval is, in fact. greater than X ± l\'x. Thus, the general use of this 
expression is not to be encouraged. and the calculation of the accurate confidence 
interval is the wiser practice. 

A word of caution is in order for those who determine confidence limits. or SOs 
or SEs, for two or more means and. by observing whether or not the limits overlap, 
attempt to determine whether there are differences among the population means. 
Such a procedure is not generally valid (see Section 8.2); The proper methods for 
testing for differences between means are discussed in the next several chapters. 

7.5 REPORTING VARIABILITY AROUND THE MEDIAN 

The median and the lower and upper quartiles (Q) and Q3) form the basis of a 
graphical presentation that conveys a rapid sense of the middle, the spread, and the 
symmetry of a set of data. As shown in Figure 7.7. a vertical box is drawn with its 
bottom at Q\ and top at Q3, meaning that the height of the box is the semi-quartile 
range (Q3-Q\). Then. the median is indicated by a horizontal line across the box. 
Next, a vertical line is extended from the bottom of the box to the smallest datum that 
is no farther from the box than 1.5 times the interquartile range; and a vertical line is 
drawn from the top of the box to the largest datum that is no farther from the box 
than 1.5 times the interquartile range. These two vertical lines, below and above the 
box, are termed "whiskers." so this graphical representation is called a box plot or 
box-and-whiskers plot.* If any data are so deviant as to lie beyond the whiskers, they 

*The term ho:c plot was introduced by John W. Tukey in 1970 (David. 1995). 
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Outlier • 
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FIGURE 7.7: Box plots for the data of Example 3.3. (The wording with arrows is for instructional purposes 
and would not otherwise appear in such a graph.) 

are termed outliers and are placed individually as small circles on the graph. If any 
are so aberrant as to lie at least 3 times the interquartile range from the box (let's call 
them "extraordinary outliers"). they may be placed on the graph with a distinctive 
symbol (such as "*") instead of a circle.· In addition, the size of the data set (n) 
should be indicated. either near the box plot itself or in the caption accompanying 
the plot. 

Figure 7.7 presents a box plot for the two samples in Example 3.3. For species A, the 
median = 40 mo, QI = QIO/4 = X2.5 = 34.5 mo, and Q3 = XlO-2.5 = X7.5 = 46 mo. 
The interquartile range is 46 mo - 34.5 mo = 11.5 mo, so 1.5 times the interquartile 
range is (1.5)(11.5 mo) = 17.25 mo. and 3 times the interquartile range is (3)(11.5) 
= 34.5 mo. Therefore. the upper whisker extends from the top of the box up to the 
largest datum that does not exceed 46 mo + 17.25 mo = 63.25 mo (and that datum 
is Xs = 50 rno), and the lower whisker extends from the bottom of the box down to 
the smallest datum that is no smaller than 34.5 rno - 17.25 rno = 17.25 rno (namely. 
X2 = 32 rno). Two of the data. XI = 16 mo and X9 = 79 rn~. lie farther from the 
box than the whiskers: thus they are outliers and. as X9 lies more than 3 times the 
interquartile range from the box (i.e., is more than 34.5 mo greater than Q3). it is an 
extraordinary outlier. Therefore. X, is indicated with a circle below the box and X9 
is denoted with a "*" above the box. 

·The vertical distances above and below the box by an amount 1.5 times the interquanile range 
are sometimes called inner fences. with those using the factor of 3 being called outer fences. Also. 
the top (Q3) and bottom (Q,) of the box are sometimes called the hinges of the plot. 
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For species B, the median = 52 mo. QI = QII/4 = Q2.75. which is rounded up to 
QI = 38 mo, and Q3 = X II -3 = Xx = 59 mo. The interquartile range is 59 mo -
38 mo = 21 mo. so (1.5)(21 mol = 31.5 mo and (3)(21 mol = 63 mo. Thus, the upper 
whisker extends from the box up to the largest datum that does not exceed 59 mo + 
21 mo = 80 mo (namely. X9 = 69 mol. and the lower whisker extends from the box 
down to the smallest datum that is no smaller than 38 mo - 21 mo = 17 mo (namely. 
XI = 34 mol. As only XIO = 91 lies farther from the box than the whiskers. it is 
the only outlier in the sample of data for species B: it is not an extraordinary outlier 
because it is not (3)(21 mol, namely 63 mo. above the box. 

Box plots are especially useful in visually comparing two or more sets of data. In 
Figure 7.7. we can quickly discern from the horizontal lines representing the medians 
that, compared to species A. species B has a greater median life span: and. as the box 
for spccies B is larger. that species' sample displays greater variability in life spans. 
Furthermore. it can be observed that species B has its median farther from the middle 
of the box, and an upper whisker much longcr than the lower whisker, indicating that 
the distribution of life spans for this species is more skewed toward longer life than is 
thc distribution for species A. 

David (1995) attributes the 1970 introduction of box plots to J. W. Tukey. and 
the capability to produce such graphs appears in many computer software packages. 
Some authors and some statistical software have used multiplication factors other 
than 1.5 and 3 to define outliers. some have proposed modifications of box plots 
to provide additional information (e.g .. making the width of each box proportional 
to the number of data, or to the square root of that number). and some employ 
quartile determination different from that in Section 4.2. Indeed, Frigge. Hoaglin, 
and Iglewicz (1989) report that. although common statistical software packages only 
rarely define the median (Q2) differently than that presented in Scction 3.2, they 
identified eight ways QJ and Q3 are calculated in various packages. Unfortunately, 
the different presentations of box plots provide different impressions of the data, 
and some of the methods of expressing quartiles are not recommended by the latter 
authors. 

7.6 SAMPLE SIZE AND ESTIMATION OF THE POPULATION MEAN 

A commonly asked question is. "How large a sample must be taken to achieve a 
desired precision* in cstimating the mean of a popUlation?" The answer is related to 
the concept of a confidence interval, for a confidence interval expresses the precision 
of a sample statistic. and the precision increases (i.e., the confidence interval becomes 
narrower) as the sample size increases. 

Let us write Equation 7.6 as X ± d, which is to say that d = la(2).vSx. We 
shall refer to d as the half-width of the confidence interval, which means that JL 
is estimated to within ±d. Now, the number of data we must collect to calcu­
late a confidence interval of specified width depends upon: (1) the width desired 
(for a narrower confidence interval-Le., more precision in estimating IL-requires 
a larger sample: (2) the variability in the popUlation (which is estimated by s2, 

and larger variability requires larger sample size); and (3) the confidence level 
specified (for greater confidence-e.g .• 99% vs. 95%-requircs a larger sample 
size). 

*Recall from Section 2.4 that the precision of a sample statistic is the closeness with which it 
estimates the population parameter: it is not to be confused with the concept of the precision of 
a measurement (defined in Section 1.2), which is the nearness of repeated measurements to each 
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If we have a sample estimate (s2) of the variance of a normal population, then we 
can estimate the required sample size for a future sample as 

s2p __ a12-,-)._" n= 
cf2 

(7.9) 

In this equation, s2 is the sample variance, estimated with v = 11 - 1 degrees of 
freedom, d is the half-width of the desired confidence interval, and 1 - ex is the 
confidence level for the confidence interval. Two-tailed critical values of Student's t. 
with v = n - 1 degrees of freedom, are found in Appendix Table B.3. 

There is a basic difficulty in solving Equation 7.9. however; the value of 
(a(2). (1/-1) depends upon 11, the unknown sample size. The solution may be 
achieved by iteration-a process of trial and error with progressively more accurate 
approximations-as shown in Example 7.7. We begin the iterative process of estima­
tion with an initial guess; the closer this initial guess is to the finally determined n, 
the faster we shall arrive at the final estimate. Fortunately, the procedure works well 
even if this initial guess is far from the final 11 (although the process is faster if it is a 
high, rather than a low, guess). 

The reliability of this estimate of n depends upon the accuracy of.o;2 as an estimate 
of the population variance. (F2. As its accuracy improves with larger samples. one 
should use s2 obtained from a sample with a size that is not a very small fraction of 
the 11 calculated from Equation 7.9. 

EXAMPLE 7.7 Determination of Sample Size Needed to Achieve a Stated 
Precision in Estimating a Population Mean, Using the Data of Example 7.3 

If we specify that we wish to estimate J.L with a 95% confidence interval no wider 
than 0.5 kg, then d = 0.25 kg, I - a = 0.95. and a = 0.05. From Example 7.3 we 
have an estimate of the population variance: s2 = 0.4008 kg2• 

Let us guess that a sample of 40 is necessary; then, 

(0.05(2).:\9 = 2.023. 

So we estimate (by Equation 7.7): 

11 = (0.4008)( 2.023 )2 = 26.2. 
(0.25 )2 

Next, we might estimate n = 27, for which to.05(2).26 = 2.056, and we calculate 

11 = (0.4008)(2.056)2 = 27.1. 
(0.25)2 

Therefore, we conclude that a sample size greater than 27 is required to achieve 
the specified confidence interval. 

7.7 SAMPLE SIZE, DETECTABLE DIFFERENCE, AND POWER IN TESTS CONCERNING THE MEAN 

(a) Sample Size Required. If we are to perform a one-sample test as described in 
Section 7.1 or 7.2, then it is desirable to know how many data should be collected 
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to detect a specified difference with a specified power. An estimate of the minimum 
sample size (n) required will depend upon u 2• the population variance (which can 
be estimated by s~ from previous similar studies). The beginning of Section 8.4 lists 
considerations (based upon Lenth. 2001 ) relevant to the determination of sample size. 

We may specify that we wish to perform a I test with a probability of a of committing 
a Type I error and a probability of f3 of committing a Type II error: and we can state 
that we want to be able to detect a difference between #1- and J.LO as small as 5 (where J..L 

is the actual population mean and #1-0 is the mean specified in the null hypothesis).· To 
test at the a significance level with 1 - f3 power. the minimum sample size required 
to detect 5 is 

S2 ? 

n = 52 (la.v + IJ3(I).v)-. (7.10) 

where a can be either 0'(1) or 0'(2), respectively, depending on whethcr a one-tailed 
or two-tailed test is to be used. However, ." depends on n, so n cannot be calculated 
directly but must be obtained by iteration t (i.e .• by a series of estimations. each 
estimation coming closer to the answer than that preceding). This is demonstrated in 
Example 7.8. 

Equation 7.10 provides bctter estimates of n when s2 is a good estimate of the 
population variance, u 2, and the latter estimate improves when :;2 is calculated from 
larger samples. Therefore. it is most desirable that s2 be obtained from a sample with 
a size that is not a small fraction of the estimate of 12: and it can then be estimated 
how large an n is needed to repeat the experiment and use the resulting data to test 
with the designated a. f3. and 5. 

EXAMPLE 7.8 Estimation of Required Sample Size to Test Ho: p. = Po 

How large a sample is needed to reject the null hypothesis of Example 7.2 when 
sampling from the population in that example? We wish to test at the 0.05 level 
of significance with a 90% chance of detecting a population mean different from 
J.LO = 0 by as little as 1.0 g. In Example 7.2. s2 = 1.5682 g2. 

Let us guess that a sample size of20 would be required. Then. v = 19.10.05(2). 19 = 
2.093. f3 = 1 - 0.90 = 0.10, lo.IO( 1).19 = 1.328, and we use Equation 7.8 to cal­
culate 

11 = 1.56822 (2.093 + 1.328 f = 18.4. 
( 1.0) 

We now use n = 19 as an estimate. in which case." = 18, lo.05(2).Il! = 2.101. 
IO.IO( I ).ll! = 1.330. and 

n = 1.5682 (2.101 + 1.330)2 = 18.5. 
( 1.0)2 

Thus. we conclude that a new sample of at least 19 data may be taken from this 
population to test the above hypotheses with the specified a, f3, and 5 . 

• 1) is lowercase Greek delta. 
tlf the popUlation variance. u 2• were actually known (a most unlikely situation). rather than 

estimated by s2. then Za would be substituted for fa in this and the other computations in lhis 
section. and 11 would be determined in one step instead of iteratively. 
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(b) Minimum Detectable Difference. By rearranging Equation 7.10, we can ask 
how small a 1) (the difference between p. and p.() can be detected by the t test 
with 1 - {3 power. at the a level of significance. using a sample of specified 
size 11: 

(7.11 ) 

where tao p, can be either la( 1 ). p or ta(2). p. depending on whether a one-tailed 
or two-tailed test is to be performed. The estimation of 1) is demonstrated in 
Example 7.9. Some literature (e.g., Cohen, 1988: 811-814) refers to the "effect size," 
a concept similar to minimum detectable difference. 

EXAMPLE 7.9 Estimation of Minimum Detectable Difference in a One-
Sample t Test for Ho: IL = ILo 

In the two-tailed test of Example 7.2, what is the smallest difference (i.e., difference 
between p. and p.o) that is detectable 90% of the time using a sample of 25 data 
and a significance level of 0.05? 

Using Equation 7.9: 

~ ~ 1.5682 ( + ) (]::; ---zs lO.oS( 2).24 to. JO( 1 ).24 

= (0.25)(2.064 + 1.318) 

= 0.85 g. 

(c) Power of One-Sample Testing. If our desire is to express the probability of 
correctly rejecting a false Ho about p.. then we seek to estimate the power of a I test. 
Equation 7.10 can be rearranged to give 

1) 
113(1).,,= fs2 

\j-;; 

- ta• I" (7.12) 

where a refers to either a(2) or a( 1). depending upon whether the null hypothesis 
to be tested is two-tailed or one-tailed, respectively. As shown in Example 7.10, for 
a stipulated 1), a. s2, and sample size, we can express Ip( I). p. Consulting Appendix 
Table B.3 allows us to convert Ip( I). p to {3. but only roughly (e.g., (3 > 0.25 in 
Example 7.10). However, Ip( 1 ).11 may be considered to be approximated by Zp( I), 
so Appendix Table B.2 may be used to determine {3.* Then, the power of the test 
is expected to be 1 - {3, as shown in Example 7.10. Note that this is the estimated 
power of a test to be run on a new sample of data from this population. not the power 
of the test performed in Example 7.2. 

*Some calculators and computer programs yield f3 given '13.'" Approximating '(J( 1 ).". by Z(J( 1) 

apparently yields a f3 that is an underestimate (and a power that is an overestimate) of no more 
than 0.01 for /I of at least 11 and no more than 0.02 for /I of at least 7. 
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EXAMPLE 7.10 
Ho: #L = #Lo 

Estimation of the Power of a One-Sample t Test for 

What is the probability of detecting a true difference (i.e .. a difference between 
11- and 11-0) of at least 1.0 g. using a = 0.05 for the hypotheses of Example 7.2. 
if we run the experiment again using a sample of 15 from the same popula­
tion? 

Forn = 15. JI = 14: a = 0.05.10.05(2).14 = 2.145,,<;2 = 1.5682g2. and 5 = 1.0 
g; and we use Equation 7.12 to find 

1.0 
tp( 1 ). 14 = ---;:.=== 

1.5682 g2 
- 2.145 

15 
= 0.948. 

Consulting Appendix Table B.3 tells us that, for Ip( 1 ).14 = 0.948, 0.10 < f3 < 0.25, 
so we can say that the power would be 0.75 < 1 - f3 < 0.90. Alternatively. by 
considering 0.948 to be a normal deviate and consulting Appendix Table B.2, we 
conclude that f3 = 0.17 and that the power of the test is 1 - f3 = 0.83. (The exact 
probabilities, by computer, are f3 = 0.18 and power = 0.82.) 

When the concept of power was introduced in the discussion "Statistical Errors in 
Hypothesis Testing" in Section 6.4, it was stated that. for a given sample size (11). a is 
inversely related to f3: that is, the lower the probability of committing a Type I error, 
the greater the probability of committing a Type II error. It was also noted that a and 
f3 can be lowered simultaneously by increasing n. Power is also greater for one-tailed 
than for two-tailed tests. but recall (from the end of Section 6.4 and from Section 7.2) 
that power is not the criterion for performing a one-tailed instead of a two-tailed test. 
These relationships are shown in Table 7.4. Table 7.5 shows how power is related to n. 
s2. and 5. It can be seen that. for a given s2 and 5, an increased sample size (n) results 
in an increase in power. Also. for a given nand 5. power increases as s2 decreases, 
so a smaller variability among the data yields greater power. And for a given nand 
s2, power increases as 5 increases, meaning there is greater power in detecting large 
differences than there is in detecting small differences. 

Often a smaller .<;2 is obtained by narrowing the definition of the population of 
interest. For example, the data of Example 7.2 may vary as much as they do because 
the sample contains animals of different ages. or of different strains, or of both sexes. It 
may be wiser to limit the hypothesis, and the sampling. to animals of the same sex and 
strain and of a narrow range of ages. And power can be increased by obtaining more 
precise measurements: also, greater power is associated with narrower confidence 
intervals. A common goal is to test with a power between 0.75 and 0.90. 

7.S SAMPLING FINITE POPULATIONS 

In general we assume that a sample from a population is a very small portion of 
the totality of data in that population. Essentially, we consider that the popUlation 
is infinite in size. so that the removal of a relatively smalI number of data from the 
popUlation does not noticeably affect the probability of selecting further data. 

However. if the sample size. n. is an appreciable portion of the population size 
(a very unusual circumstance). N (say, at least 5%), then we are said to be sampling 
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TABLE 7.4: Relationship between 01, /3, Power (1 - /3), and n, for the 
Data of Example 7.9 
Sample Variance (sl = 1.5682 g2) and True Difference (l) = 1.0 g) 
of Example 7.10, Using Equation 7.12 

Two-Tailed Test One-Tailed Test 

n 01 {3 1-{3 n 01 {3 1 - {3 

10 0.10 0.25 0.75 10 0.10 0.14 0.86 
10 0.05 0.40 0.60 10 0.05 0.25 0.75 
10 0.01 0.76 0.24 10 0.01 0.61 0.39 
12 0.10 0.18 0.82 12 0.10 0.09 0.91 
12 0.05 0.29 0.71 12 0.05 0.18 0.82 
12 0.01 0.73 0.27 12 0.01 0.48 0.52 
15 0.10 0.10 0.90 15 0.10 0.05 0.95 
15 0.05 0.18 0.82 15 0.05 0.10 0.90 
15 0.01 0.45 0.S5 15 0.01 0.32 0.68 

20 0.10 0.04 0.96 20 0.10 0.02 0.98 
20 0.05 0.08 0.92 20 0.05 0.04 0.96 
20 om 0.24 0.76 20 0.01 0.16 0.84 

TABLE 7.5: Relationship between n, sl, 8, and Power (for Testing at 
01 = 0.05) for the Hypothesis of Example 7.9, Using Equation 7.10 

Power of Power of 
Il .\2 8 Two-~ailed Test One-Tailed Test 

Effect of n 
10 1.5682 1.0 0.60 0.75 
12 1.5682 1.0 0.71 0.82 
15 1.5682 1.0 0.82 0.90 
20 1.5682 1.0 0.92 0.96 
Effect of 52 

12 2.0000 1.0 0.60 0.74 
12 1.5682 1.0 0.71 0.82 
12 1.0000 1.0 0.88 0.94 
Effect of l) 
12 1.5682 1.0 0.71 0.82 
12 1.5682 1.2 0.86 0.92 
12 1.5682 1.4 0.96 0.97 

a finite population. In such a case, X is a substantially hetter estimate of JL the closer 
n is to N; specifically, 

(7.13) 

where n/ N is the sampling fraction and 1 - n/ N is referred to as the finite population 
correction. * 

Obviously, from Equation 7.13, when n is very small compared to N, then the 
sampling fraction is almost zero, the finitt: population correction will be nearly one, 

*One may also calculate 1 - n/ N as (N - n)/ N. 
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and s x will be nearly Js2 In. just as we have used (Equation 6.8) when assuming the 
population size. N. to be infinite. As n becomes closer to N, the correction becomes 
smaller, and Sx becomes smaller. which makes sense intuitively. If n = N. then 
I - III N = 0 and Sx = O. meaning there is no error at all in estimating p. if the 
sample consists of the entire population; that is, X = p. if n = N. In computing 
confidence intervals when sampling finite populations (i.e .• when Il is not a negligibly 
small fraction of N). Equation 7.13 should be used instead of Equation 6.8. 

If we are determining the sample size required to estimate the population mean 
with a stated precision (Section 7.6), and the sample size is an appreciable fraction of 
the population size. then the required sample size is calculated as 

n m= 
1 + (Il - 1)1 N 

(Cochran, 1977: 77 - 78). where 11 is from Equation 7.9. 

(7.14) 

7.9 HYPOTHESES CONCERNING THE MEDIAN 

In Example 7.2 we examined a sample of weight change data in order to ask whether 
the mean change in the sampled population was different from zero. Analogously, we 
may test hypotheses about the popUlation median, M. such as testing Ho: M = Mo 
against H A: M :1: Mo, where Mo can be zero or any other hypothesized popUlation 
median.* 

A simple method for testing this two-tailed hypothesis is to determine the confi­
dence limits for the population median, as discussed in Section 23.9, and reject Ho 
(with probability:s a of a Type I error) if Mo :S L, or Mo ~ L2. This is essentially a 
binomial test (Section 23.6), where we consider the number of data < Mo as being in 
one category and the number of data> Mo being in the second category. If either of 
these two numbers is less than or equal to the critical value in Appendix Table B.27, 
then Ho is rejected. (Data equal to Mo are ignored in this test.) 

For one-tailed hypotheses about the median, the binomial test may also be 
employed. For Ho: M ~ Mo versus HA : M < Mo, Ho is rejected if the number of 
data less than Mo is :S the one-tailed critical value, Ca ( I ).11' For Ho: M :S Mo versus 
H A: M > Mo, Ho is rejected if the number of data greater than Mo is ~ Il - Ca ( I ).,,' 

As an alternative to the binomial test, for either two-tailed or one-tailed hypotheses, 
we may use the more powerful Wilcoxon signed-rank test. The Wilcoxon procedure 
is applied as a one-sample median test by ranking the data as described in Section 9.5 
and assigning a minus sign to each rank associated with a datum < Mo and a plus 
sign to each associated with a datum> Mo. Any rank equal to Mo is ignored in this 
procedure. The sum of the ranks with a plus sign is called T + and the sum of the ranks 
with a minus sign is T _. with the test then proceeding as described in Section 9.5. The 
Wilcoxon test assumes that the sampled population is symmetric (in which case the 
median and mean are identical and this procedure becomes a hypothesis test about 
the mean as well as about the median, but the one-sample t test is typically a more 
powerful test about the mean). Section 9.5 discusses this test further. 

7.10 CONFIDENCE LIMITS FOR THE POPULATION MEDIAN 

The sample median (Section 3.2) is used as the best estimate of M, the population 
median. Confidence limits for M may be determined by considering the binomial 
distribution, as discussed in Section 24.9. 

*Here M represents the Greek capital letter mu. 
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HYPOTHESES CONCERNING THE VARIANCE 

The sampling distribution of means is a symmetrical distribution. approaching the 
normal distribution as n increases. But the sampling distribution of variances is not 
symmetrical, and neither the normal nor the t distribution may be employed to test 
hypotheses about (1'2 or to set confidence limits around u 2• However. theory states 
that 

(7.15 ) 

(if the sample came from a population with a normal distribution), where X2 represents 
a statistical distribution* that. like t, varies with the degrees of freedom. v. where 
v = Il - 1. Critical values of X~." are found in Appendix Table B.l. 

Consider the pair of two-tailed hypotheses, Ho: u 2 = ~ and HA: u 2 #: (1'~. where 
ufi may be any hypothesized popUlation variance. Then, simply calculate 

'1 I 2_SS or, equJva ent y, X - 2' 
(1'0 

(7.16) 

and if the calculated X2 is 2: x!/2." or ~ xrl-a/2).v' then Hn is rejected at the 
a level of significance. For example, if we wished to test Ho: u 2 = 1.0( oC)2 and 
HA : u 2 #: I.O( "C)2 for the data of Example 7.1. with a = 0.05. we would first calculate 
X2 = SSj u5. In this example. v = 24 and s2 = 1.80( 0 C)2 , so SS = vs2 = 43.20(,' C)2. 
Also, as u2 is hypothesized to be 1.0( "C)2, X2 = SSju~ = 43.20( "C)2j1.0( "C)2 = 
43.20. Two critical values are to be obtained from the chi-square table (Appendix 

Table B.1): XrO.05/2).24 = X6.025.24 = 39.364 and xrl-O.05/2).24 = X~.975.24 = 12.401. 
As the calculated X2 is more extreme than one of these critical values (i.e., the 
calculated X2 is > 39.364), Ho is rejected, and we conclude that the samfle of data 
was obtained from a population having a variance different from l.O( °C) . 

It is more common to consider one-tailed hlPotheses concerning variances. For 
the hypotheses Ho: u 2 ~ ufi and H A: u2 > uo' Ho is rejected if the X2 calculated 
from Equation 7.16 is 2: X~.II' For Ho: u 2 2: ufi and HA : u2 < ufi. a calculated 
X2 that is ~ xr I -a}. II is grounds for rejecting Hn. For the data of Example 7.4, a 
manufacturer might be interested in whether the variability in the dissolving times of 
the drug is greater than a certain value-say, 1.5 sec. Thus. Ho: u 2 ~ 1.5 sec2 and 
HA : u 2 > 1.5 sec2 might be tested, as shown in Example 7.11. 

EXAMPLE 7.11 A One-Tailed Test for the Hypotheses Ho: 0'2 ~ 1.5 sec2 

and HA: 0'2 > 1.5 sec2, Using the Data of Example 7.4 

SS = 18.8288 sec2 
v=7 
52 = 2.6898 sec2 

X2 = s~ = IIUI2!!1! ~c2 = 12.553 
Un 1.5 sec· 

X~.05. 7 = 14.067 

*The Greek letter "chi"' (which in lowercase is X) is pronounced as the "ky" in "sky." 
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Since 12.553 < 14.067, Ho is not rejected. 

0.05 < P < 0.10 [P = O.OM] 

We conclude that the variance of dissolving times is no more than 1.5 sec2. 

As is the case for testing hypotheses about a population mean, J.I. (Sections 7.1 
and 7.2), the aforementioned testing of hypotheses about a population variance, u, 
depends upon the sample's having come from a population of normally distributed 
data. However, the F test for variances is not as robust as the t test for means: that 
is, it is not as resistant to violations of this underlying assumption of normality. The 
probability of a Type 1 error will be very different from the specified a if the sampled 
population is nonnormal, even if it is symmetrical. And. likewise. a will be distorted if 
there is substantial asymmetry (say. l../Fi I > 0.6), even if the distribution is normal 
(Pearson and Please. 1975). 

7.12 CONFIDENCE LIMITS FOR THE POPULATION VARIANCE 

Confidence intervals may be determined for many parameters other than the 
population mean. in order to express the precision of estimates of those param­
eters. 

By employing the X2 distribution, we can define an interval within which there is 
a 1 - a chance of including u 2 in repeated sampling. Appendix Table B.I tells us 
the probability of a calculated X2 being greater than that in the Table. If we desire 
to know the two r values that enclose 1 - a of the chi-square curve. we want the 
portion of the curve between X~I-O'/2)." and X!/2." (for a 95% confidence interval. 

this would mean the area between X5.975." and X~.025.,,).1t follows from Equation 7.13 
that 

2 
2 < ~ < 2 

X( 1-0'/2)." - 2 - Xa/2.,,' 
U 

(7.17) 

and 
1IS2 2 1Is2 

-2 - 5. U 5. --;;-2 ---

XO'/2." X(I-a/2)." 
(7.18) 

Since vs2 = SS, we can also write Equation 7.16 as 

~S 5. u 2 5. 2 SS (7.l9) 
XO'/2.v X( 1-0'/2)." 

Referring back to the data of Example 7.1. we would calculate the 95% confidence 
interval for u 2 as follows. As v = 24 and s2 = 1.80( oC)2, SS = vs2 = 43.20( cC)2. 
From Appendix Table B.1, we find X5.025.24 = 39.364 and X5.97S.24 = 12.401. There­
fore, LI = SS/X!/2." = 43.20(oC)2/39.364 = l.10CC)2, and L2 = SS/Xll_a)." = 
43.20(OC)/12.401 = 3.48("'C)2. If the null hypothesis Hu: (1"2 = u5 would have 
been tested and rejected for some specified variance. Uo • then (TO would be outside 
of the confidence interval (i.e., u5 would be either less than LI or greater than 
L2). Note that the confidence limits. l.lO( "C)2 and 3.48( "C)2, are not symmetrical 
around s2; that is. the distance from LIto s2 is not the same as the distance from l­
to L2. 
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To obtain the 1 - a confidence interval for the population standard deviation. 
simply use the square roots of the confidence limits for u 2• so that 

~ss< < SS 2 -u- 2 
Xa/2.v X(I-a/2).v 

(7.20) 

For the preceding example. the 95% confidence interval for u would be ~1.10( °C)2 :5 

u :5 b.48( °C)2. or 1.0°C :5 U :5 1.9"C. 
The end of Section 7.11 cautioned that testing hypotheses about u 2 is adversely 

affected if the sampled population is nonnormal (even if it is symmetrical) or if the 
population is not symmetrical (even if it is normal). Determination of confidence 
limits also suffers from this unfavorable effect. 

(a) One-Tailed Confidence Limits. In a fashion analogous to estimating a population 
mean via a one-tailed confidence interval. a one-tailed interval for a population 
variance is applicable in situations where a one-tailed hypothesis test for the variance 
is appropriate. For Ho: u 2 :5 u5 and HA: u 2 > U5, the one-tailed confidence limits 
for u2 are LI = SS/ Xct.v and L2 = 00; and for Ho: (1'2 2!: ~ and HA: (1'2 < u5. the 
confidence limits are L I = 0 and L2 = sS/ XI -a. I" Considering the data in Example 
7.4, in which Ho: q2 :5 45 sec2 and HA: u > 45 sec2. for 95% confidence, LI would 
be SS/X5.0S.7 = 18.8188 sec2/14.067 = 1.34 sec2 and L2 = 00. The hypothesized u6 
(45 sec2) lies within the confidence interval, indicating that the null hypothesis would 
not be rejected. 

If the desire is to estimate a population's standard deviation (u) instead of the 
population variance (u2), then simply substitute u for u 2 and Uo for U5 above and 
use the square root of LI and L2 (bearing in mind that roo = (0). 

(b) Prediction Limits. We can also estimate the variance that would be obtained 
from an additional random sample of m data from the same population. To do so. the 
following two-tailed I - a prediction limits may be determined: 

S2 
LI = -----

Fu (2).1I-l.m-1 
(7.21 ) 

L2 = i Fa(2).m-I.1I-1 (7.22) 

(Hahn. 1972: Hahn and Meeker, 1991: 64, who also mention one-tailed prediction 
intervals; Patel. 1989). A prediction interval for s would be obtained by taking the 
square roots of the prediction limits for s2. 

The critical values of F, which will be employed many times later in this book. are 
given in Appendix Table B.4. These will be written in the form Fa.vl.v2' where VI 

and V2 are termed the "numerator degrees of freedom" and "denominator degrees 
of freedom," respectively (for a reason that will be apparent in Section 8.5). So, if we 
wished to make a prediction about the variance (or standard deviation) that would 
be obtained from an additional random sample of 10 data from the population from 
which the sample in Example 7.1 came, n = 25, n - 1 = 24, m = 10. and m - 1 = 9: 
and to compute the 95% two-tailed prediction interval, we would consult Table B.4 
and obtain Fa (2).1I-I.m-1 = FO.OS(2).24.9 = 3.61 and Fa (2).m-l.n-1 = FO.OS(2).9.24 = 
2.79. Thus, the prediction limits would be LI = 1.BO( "C)2/3.61 = 0.50( "C)2 and 
L2 = [1.BO( 'C)2][2.79] = 5.02( oC)2. 
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7.13 POWER AND SAMPLE SIZE IN TESTS CONCERNING THE VARIANCE 

(a) Sample Size Required. We may ask how large a sample would be required to 
perform the hypothesis tests of Section 7.12 at a specified power. For the hypotheses 
Ho: u2 ::5 u5 versus HA: u2 > u5, the minimum sample size is that for which 

2 2 
XI_~." _ Uo 
-2- - s2' 

Xa ." 

(7.23) 

and this sample size, n, may be found by iteration (i.e .• by a directed trial and error). 
as shown in Example 7.12. The ratio on the left side of Equation 7.23 increases in 
magnitude as 11 increases. 

EXAMPLE 7.12 Estimation of Required Sample Size to Test Ho: (T2 s (T~ 
versus HA: (T2 > (T~ 

How large a sample is needed to reject Ho : u 2 ::5 1.50 sec2• using the data of 
Example 7.11, if we test at the 0.05 level of significance and with a power of 0.90? 
(Therefore, ex = 0.05 and (3 = 0.10.) 

From Example 7.11. s2 = 2.6898 sec2. As we have specified u5 = 1.75 sec2, 

u6/ s2 = 0.558. 
To begin the iterative process of estimating n, let us guess that a sample size of 

30 would be required. Then. 

2 
X~.90.29 = 19.768 = 0.465. 
X O.OS. 29 42.557 

Because 0.465 < 0.558. our estimate of n is too low. So we might guess that 
n = 50 is required: 

2 
X~.90.49 = 36.818 = 0.555. 
XO.05.49 66.339 

Because 0.555 is a little less than 0.558, n = 50 is a little too low and we might 
guess n = 55, for which X5.90.S4/ x5.0S.S4 = 41.183/70.153 = 0.571. 

Because 0.571 is greater than 0.558. our estimate of n is high. so we could try 
n = 51, for which X6.90.S0/ X5.os.so = 37.689/67.505 = 0.558. 

Therefore, we estimate that a sample size of at least 51 is required to perform 
the hypothesis test with the specified characteristics. 

For the hypotheses Ho: u2 :=: u6 versus HA: u2 < ufi, the minimum sample size is 
that for which 

2 2 
X{3." _ Uo 

-2-- - 2' 
XI-a." S 

(7.24) 

(b) Power of the Test. If we plan to test the one-tailed hypotheses Ho: (7'2 ::5 0'5 
versus H A: a2 > 0'6. using the ex level of significance and a sample size of n, then the 
power of the test would be 

(7.25) 
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Thus. if the experiment of Example 7.11 were to be repeated with the same sample 
size. then n = 8. v = 7. a = 0.05. Xk05. I.) = 14.067. s2 = 2.6898 sec2• O"~ == 1.5 sec2• 

and the predicted power of the test would be 

I - (3 = P[x2 ~ (14.067)( 1.5)/2.6898] = p(i ~ 7.845). 

From Appendix Table 8.] we see that. for X2 ~ 7.845 with v = 7. P lies between 
0.25 and 0.50 (that is. 0.25 < P < 0.50). By linear interpolation between Ai.25.7 and 
X~50. 7' we estimate P( X2 ~ 7.845), which is the predicted power of the test. to be 
0.38.* H greater power is preferred for this test. we can determine what power would 
be expected if the experiment were performed with a larger sample size. say n = 40. 
In that case. v = 39. X~.05.31.) = 54.572, and the estimate of the power of the test 
would be 

I - (3 = P[X2 ~ (54.572)( 1.5)/2.68981 = P(X2 ~ 30.433). 

Consulting Table Bl for v = 39, we see that 0.75 < P < 0.90. By linear interpolation 
between X6.75.31.) and X~.90.3\)' we estimate P(X2 ~ 54.572). the power of the test. to 
be 0.82:t 

One-tailed testing of H,,: 0"2 ~ <Tij versus H,,: 0"2 $ 0"1, would also employ 
Equation 7.25. For two-tailed testing of Ho: CT2 = <T~ versus HA : u2 :;: oT,. substitute 
X~/2.11 for X~.II in Equation 7.25. 

7.14 HYPOTHESES CONCERNING THE COEFFICIENT OF VARIATION 

Although rarely done. it is possible to ask whether a sample of data is likely 
to have come from a population with a specified coefficient of variation, call it 
(ul p. )". This amounts to testing of the following pair of two-tailed hypotheses: 
H,,: u I p. = (CT I p. )" and H A: u I p. :;: (<TIp. )". Among the testing procedures proposed. 
that presented by Miller (199]) works well for a sample size of at least 10 if the sampled 
population is normal with a mean > O. with a variance> O. and with a coefficient of 
variation. ulp.. no greater than 0.33. For one-tailed testing (Le .• Ho: 0"1p. $ (ulp.)o 
vs. HA:O"Ip. > (<Tlp.)o, or H,,:CTIp. ~ (<Tlp.)" vs. H,,:O"Ip. < (<Tlp.),,). the test 
statistic is 

Z = Jil=l [V - (<TIp. ),,] 

(p.I u )oJO.5 + (<TIp. )~ , 
(7.26) 

the probability of which may be obtained from Appendix Table B.2: or Z may be 
compared to the critical values of Zer. read from the last line of Appendix Table B.3. 
Miller also showed this procedure to yield results very similar to those from a X2 
approximation by McKay (1932) that, although applicable for n as small as 5, lacks 
power at such small sample sizes. 

Miller and Feltz (1997) present an estimate of the power of this test. 

*See the beginning of Appendix B for a discussion or interpolation. [n this example. lin­
ear interpolation yields P = (UX. harmonic interpolation concludes P = 0.34. and the true 
probability (from appropriate computer software) is P = (U5. So interpolation gave very good 
approximations. 

tThe actual prohahility (via computer) is O.X4. while linear and harmonic interpolations each 
produced a prohahility of O.X2. an excellent approximation. 
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7.15 CONFIDENCE LIMITS FOR THE POPULATION COEFFICIENT OF VARIATION 

The 1 - a confidence limits for the population coefficient of variation may be 
estimated as 

V JO.5 + V2Za/ 2 . 
V ± Jv . (7.27) 

see Miller and Feltz (1997). 

7.16 HYPOTHESES CONCERNING SYMMETRY AND KURTOSIS 

Section 6.5 introduced the assessment of a population's departure from a normal 
distribution. including a consideration of a population parameter. JlJi. for symmetry 
around the mean and a parameter. f32, for kurtosis; and their respective sample 
statistics are JliI and h2. Methods will now be discussed for testing hypotheses about 
a population's symmetry and kurtosis. Such hypotheses are not often employed, but 
they are sometimes called upon to conclude whether a sampled population follows a 
normal distribution, and they do appear in some statistical computer packages. 

(a) Testing Symmetry around the Mean. The two-tailed hypotheses Ho: JlJI = 
o versus Ho: JlJI *- 0 address the question of whether a sampled population's 
distribution is symmetrical around its mean. The sample symmetry measure, ./51, is 
an estimate of .Ji3i and may be calculated by Equation 6.16. Its absolute value may 
then be compared to critical values, ( JliI)rr(2)JP in Appendix Table 8.22. 

As an illustration of this, let us say that the data of Example 6.7 yield ./bi = 0.351. 
To test the above Ho at the 5% level of significance. the critical value from Table 
B.22 is ( Jb1)0.05(2). 70 = 0.556. So, Ho is not rejected and the table indicates that 
P( I AI > 0.10). 

One-tailed testing could be employed if the interest were solely in whether the 
distribution is skewed to the right (Ho: JlJI ~ 0 vs. Ho: JlJI > 0). in which case Ho 
would be rejected if Jb1 ~ ( .J5\)a( 1 ).11" Or, a one-tailed test of Ho: 51 ~ 0 versus 
Ho: J7Ji < 0 could be used to test specifically whether the distribution is skewed to 
the left; and Ho would be rejected if A ~ - ( ./lil)a( 1 ).11' 

If the sample size. 11. does not appear in Tanle 8.22, a conservative approach (i.e., 
one with lowered power) would be to use the largest tabled 11 that is less than the 
II of our sample: for example, if n were 85, we would use critical values for n = 80. 
Alternatively. a critical value could be estimated, from the table's critical values for 
n's immediately above and below n under consideration, using linear or harmonic 
interpolation (see the introduction to Appendix B), with harmonic interpolation 
appearing to be a little more accurate. There is also a method (D'Agostino, 1970, 
1986: D' Agostino, Belanger, and D' Agostino, 1990) by which to approximate the 
exact probability of Ho. 

(b) Testing Kurtosis. Our estimate of a population's kurtosis (f32) is h2' given by 
Equation 6.17. We can ask whether the population is not mesokurtic by the two-tailed 
hypotheses Ho: f32 = 3 versus Ho: f31 =1= 3. Critical values for this test are presented in 
Tanle 8.23, and Ho is rejected if b2 is either less than the lower-tail critical value for 
(b2 )n(21.11 or greater than the upper-tail critical value for (b2 )a(2). n' 

For the data of Example 6.7. h2 = 2.25. To test the above Ho at the 5% level of sig­
nificance, we find that critical values for n = 70 do not appear in Table B.23. A conser­
vative procedure (i.e., one with lowered power) is to employ the critical values for the 
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tabled critical values for the largest 11 that is less than our sample's n. In our example, 
this is n = 50, and Ho is rejected if b2 is either less than the lower-tail (b2 )0.05(2).50 = 
2.06 or greater than the upper-tail (b2)O.05(2).50 = 4.36. In the present example, 
b2 = 2.25 is neither less than 2.06 nor greater than 4.36, so Ho is not rejected. And. 
from Table B.23, we see that 0.05 < P < 0.10. Rather than using the nearest lower 11 in 
Table 8.23, we could engage in linear or harmonic interpolation between tabled crit­
ical values (see introduction to Appendix B), with harmonic interpolation apparently 
a little more accurate. There is also a method (D'Agostino. 1970. 1986: D'Agostino. 
Belanger. and D'Agostino. 1990) to approximate the exact probability of Ho. 

One-tailed testing could be employed if the interest is solely in whether the 
population's distribution is leptokurtic. for which H(): {h ~ 3 versus Ho: {32 > 3 
would apply; and Ho would be rejected if b2 ~ the upper-tail (b2 )a( I ).11" Or. if testing 
specifically whether the distribution is platykurtic. a one-tailed test of Ho: {32 ~ 3 
versus Ho: {32 < 3 would be applicable: and Ho would be rejected if b2 ~ the lower-tail 
(b2)a(1 ).n· 

EXAMPLE 7.13 Two-Tailed Nonparametric Testing of Symmetry Around 
the Median, Using the Data of Example 6.7 and the Wilcoxon Test of 
Section 9.5 

Ho: The population of data from which this sample came is distributed 
symmetrically around its median. 

HA : The population is not distributed symmetrically around its median. 

11 = 70; median = X(7o+ I )/2 = XJ5.5 = 70.5 in. 

X d Idl Rank of Signed rank 
(in.) (in.) f (in.) ltil of Idl (f)(Signed rank) 

63 -7.5 2 7.5 69.5 -69.5 -139 
64 -6.5 2 6.5 67.5 -67.5 -135 
65 -5.5 3 5.5 64 -64 -192 
66 -4.5 5 4.5 57.5 -57.5 -287.5 
67 -3.5 4 3.5 48.5 -48.5 -194 
68 -2.5 6 2.5 35.5 -35.5 -213 
69 -1.5 5 1.5 21.5 -21.5 -107.5 
70 -0.5 8 0.5 8 -8 -64 
71 0.5 7 0.5 8 8 56 
72 1.5 7 1.5 21.5 21.5 160.5 
73 2.5 10 2.5 35.5 35.5 355 
74 3.5 6 3.5 48.5 48.5 291 
75 4.5 3 4.5 57.5 57.5 172.5 
76 5.5 2 5.5 64 64 128 

70 

T_ = 1332 

T+ = 1163 
TO.05(2).70 = 907 (from Appendix Table B.12) 
As neither T _ nor T + < TO.05(2).70. do not reject Ho. [P > 0.50] 
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(c) Testing Symmetry around the Median. Symmetry of dispersion around the 
median instead of the mean may be tested nonparametrically by using the Wilcoxon 
paired-sample test of Section 9.5 (also known as the Wilcoxon signed-rank test). For 
each datum (Xi) we compute the deviation from the median (di = Xi - median) and 
then analyze the di'S as in Section 9.5. For the two-tailed test (considering both L 
and T + in the Wilcoxon test), the null hypothesis is Ho: The underlying distribution 
is symmetrical around (i.e., is not skewed from) the median. For a one-tailed test, 
T _ is the critical value for Ho: The underlying distribution is not skewed to the right 
of the median; and T + is the critical value for Ho: The underlying distribution is not 
skewed to the left of the median. This test is demonstrated in Example 7.13. 

EXERCISES 

7.1. The following data are the lengths of the menstrual 
cycle in a random sample of 15 women. Test the 
hypothesis that the mean length of human men­
strual cycle is equal to a lunar month (a lunar 
month is 29.5 days). 

The data are 26. 24. 29. 33. 25. 26. 23. 30. 31. 30. 
28.27.29.26. and 28 days. 

7.2. A species of marine arthropod lives in seawa­
ter that contains calcium in a concentration of 
32 mmole/kg of water. Thirteen of the animals are 
collected and the calcium concentrations in their 
coelomic fluid are found to be: 28. 27. 29. 29. 30. 
30.31. 30. 33. 27. 30. 32. and 31 mmole/kg. Test the 
appropriate hypothesis to conclude whether mem­
bers of this species maintain a coelomic calcium 
concentration less than that of their environment. 

7.3. Present the following data in a graph that shows 
the mean. standard error. 95% confidence interval. 
range. and number of observations for each month. 

Table of Caloric Intake (kcal/g of Body Weight) 
of Squirrels 

Number Stant/ard 
Month of Data Mean Error Range 

January 13 0.458 0.026 0.289-0.612 
February 12 0.413 0.027 0.279-0.598 
March 17 0.327 0.018 0.194-0.461 

7.4. A sample of size 18 has a mean of 13.55 cm and a 
variance of 6.4512 cm2. 

(a) Calculate the 95°/., confidence interval for the 
population mean. 

(b) How large a sample would have to be taken 
from this population to estimate p. to within 
1.00 cm. with 95% confidence? 

(c) to within 2.00 cm with 95% confidence? 
(d) to within 2.00 cm with 99% confidence? 
(e) For the data of Exercise 7.4. calculate the 95% 

prediction interval for what the mean would 

be of an additional sample of 10 data from the 
same population. 

7.5. We want to sample a population of lengths and to] 
perform a test of Ho: p. = p.o versus /-I A: p. #- 1L(j, a~ 
the 5% significance level. with a 95% probabilit 
of rejecting /-10 when Ip. - p.ol is at least 2.0 em 
The estimate of the population variance, u 2, • 
s2 = 8.44 cm2. 

(a) What minimum sample size should be used?' 
(b) What minimum sample size would be requir -

if a were om '? 
(c) What minimum sample size would be requir 

if a = 0.05 and power = 0.99? 
(d) If 11 = 25 and a = 0.05. what is the small 

difference.lp. - p.ol. that can be detected wi 
95% probability? 

(e) If II = 25 and a = 0.05, what is the probabilit 
of detecting a difference, Ip. - p.ol. as sm 
as 2.0 cm? 

7.6. There arc 200 members of a state legislatur 
The ages of a random sample of 50 of them ar 
obtained. and it is found that X = 53.87 yr and s 
9.89 yr. 
(a) Calculate the 95% confidence interval for th 

mean age of all members of the legislature. 
(b) If the above X and s had been obtained fro 

a random sample of 100 from this populatio 
what would the 95% confidence interval fo 
the population mean have been'? 

7.7. For the data of Exercise 7.4: 
(a) Calculate the 95% confidence interval for th 

population variance. 
(b) Calculate the 95% confidence interval for th 

population standard deviation. 
(c) Using the 5'Yo level of significance. t 

Ho:;;'2 :S; 4.4000 cm2 vers~s /-I,,: (r2 

4.4000 cm2. 

(d) Using the 5% level of significance. te­
Ho: (T 2! 3.00 cm versus H A : (T < 3.00 cm. 

(e) How large a sample is needed to t 
I/o: u 2 :s; 5.()(XlO cm~ if it is desired to t 



at the 0.05 level of significance with 75% 
power? 
For the data of Exercise 7.4. calculate the 95% 
prediction interval for what the variance and 
standard deviation would be of an additional 
sample of 20 data from the same population. 
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7.8. A sample of 100 body weights has ../51 = 0.375 
and b2 = 4.20. 
(a) Test Ho: ../fJi = 0 and HA: ../fJi ::F 0, at the 

5% significance level. 
(b) Test Ho: fh = 3 and HA: {32 ::F 3, at the 5% 

significance level. 
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Two-Sample Hypotheses 

8.1 TESTING FOR DIFFERENCE BETWEEN TWO MEANS 
8.2 CONFIDENCE UMITS FOR POPULATION MEANS 
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8.6 CONFIDENCE UMITS FOR POPULATION VARIANCES 
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8.8 TESTING FOR DIFFERENCE BETWEEN TWO COEFFICIENTS OF VARIATION 
8.9 CONFIDENCE UMITS FOR THE DIFFERENCE BETWEEN TWO COEFFICIENTS OF VARIATION 
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8.12 TESTING FOR DIFFERENCE BETWEEN TWO MEDIANS 
8.13 TWO-SAMPLE TESTING OF NOMINAL-SCALE DATA 
8.14 TESTING FOR DIFFERENCE BETWEEN TWO DIVERSITY INDICES 
8.15 CODING DATA 

Among the most commonly employed hiostatistical procedures is the comparison 
of two samples to infer whether differences exist between the two populations 
sampled. This chapter will considcr hypotheses comparing two population means. 
medians. variances (or standard deviations). cocfficients of variation. and indices of 
diversity. In doing so. we introduce another very important sampling distribution. 
the F distribution-named for its discoverer. R A. Fisher-and will demonstrate 
further use of Student's I distribution. 

The objective of many two-sample hypotheses is to make inferences about popula­
tion parameters by examining sample statistics. Other hypothesis-testing procedures. 
however. draw inferences about popUlations without referring to parameters. Such 
procedures are called IlOflparamelric methods. and several will be discussed in this 
and following chaptcrs. 

8.1 TESTING FOR DIFFERENCE BETWEEN TWO MEANS 

130 

A very common situation for statistical testing is whcre a researcher desires to infer 
whether two population means are the same. This can be done by analyzing the 
difference hetwcen the means of samples taken at random from those populations. 

Example 801 presents the results of an experiment in which adult male rabbits 
were divided at random into two groups, one group of six and one group of seven.· 
The members of the first group were given one kind of drug (called "BOO). and the 

·Sir Ronald Aylmer Fisher (IXl)(I-I%2) is crcditcd with the first explicit rccommendation ufthe 
important concept of assigning subjccts tit rtllll/olll to groups for different cxpcrimcntClllrcalmcnts 
(Bartlell. Il)():'i: Fisher. 1925h: Ruhin. 19l)(1). 
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members of the second group were given another kind of drug (called "G"). Blood is 
to be taken from each rabbit and the time it takes the blood to clot is to be recorded. 

EXAMPLE 8.1 A Two-Sample t Test for the Two-Tailed Hypotheses, Ho: 
1L1 = 1L2 and HA: 1L1 :1= 1L2 (Which Could Also Be Stated as Ho: 1L1 - 1L2 = 0 
and HA: 1L1 - 1L2 :1= 0). The Data Are Blood-Clotting Times (in Minutes) of 
Male Adult Rabbits Given One of Two Different Drugs 

Ho: ILl = 1L2 

HA: ILI"* IL2 
Given drug B 

nl = 6 
VI = 5 

8.8 
8.4 
7.9 
8.7 
9.1 
9.6 

XI = 8.75 min 

SSI = 1.6950 min2 

Given drug G 

9.9 
9.0 

11.1 
9.6 
8.7 

10.4 
9.5 

n2 = 7 
V2 = 6 

X2 = 9.74 min 

SS2 = 4.0171 min2 

S2 = SSI + SS2 = 1.6950 + 4.0171 = 5.7121 = 0.5193 min2 
P VI + V2 5 + 6 11 

+ 0.5193 = JO.0866 + 0.0742 
7 

I = Xl - X2 = 8.75 - 9.74 = -0.99 = -2.475 
sX1 -X2 0.40 0.40 

to.OS( 2 ).1' = to.OS( 2 ).11 = 2.20 I 
Therefore, reject Ho. 

0.02 < P( It I ~ 2.475) < 0.05 [P = 0.031] 

We conclude that mean blood-clotting time is not the same for subjects receiving 
drug B as it is for subjects receiving drug G. 

We can ask whether the mean of the population of blood-clotting times of all adult 
male rabbits who might have been administered drug B (Jet's call that mean ILl) is 
the same as the population mean for blood-clotting times of all adult male rabbits 
who might have been given drug G (call it IL2). This would involve the two-tailed 
hypotheses Hu: ILl - 1L2 = 0 and HA: ILl - 1L2 "* 0; and these hypotheses are 
commonly expressed in their equivalent forms: HI): ILl = IL2 and H A : ILl "* 1L2. The 
data from this experiment are presented in Example 8.1. 
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In this example. a total of 13 members of a biological population (adult male 
rabbits) were divided at random into two experimental groups. each group to 
receive treatment with one of the drugs. Another kind of testing situation with 
two independent samples is where the two groups are predetermined. For example. 
instead of desiring to test the effect of two drugs on blood-clotting time. a researcher 
might want to compare the mean blood-clotting time of adult male rabbits to that 
of adult female rabbits. in which case one of the two samples would be composed 
of randomly chosen males and the other sample would comprise randomly selected 
females. In that situation. the researcher would not specify which rabbits will be 
designated as male and which as female; the sex of each animal (and, therefore. the 
experimental group to which each is assigned) is determined before the experiment 
is begun. Similarly. it might have been asked whether the mean blood-clotting time is 
the same in two strains (or two ages, or two colors) of rabbits. Thus. in Example 8.1 
there is random allocation of animals to the two groups to be compared, while in the 
other examples in this paragraph. there is random sampling of animals within each of 
two groups that arc already established. The statistical hypotheses and the statistical 
testing procedure are the same in both circumstances. 

If the two samples came from two normally distributed populations, and if the 
two populations have equal variances. then a t value to test such hypotheses may 
be calculated in a manner analogous to its computation for the one-sample t test 
introduced in Section 7.1. The I for testing the preceding hypotheses concerning the 
difference between two population means is 

t = XI - X2. (8.1 ) 

The quantity X I X 2 is the difference between the two sample means; and 
SXI-X2 is the standard error of the difference between the sample means (explained 
further below). which is a measure of the variability of the data within the two 
samples. Therefore, Equation 8.1 compares the differences between two means to 
the differences among all the data (a concept to be enlarged upon when comparing 
more than two means-in Chapter 10 and beyond). 

The quantity SXI -X2' along with S~I_X2' the variance of the difference between the 

means. needs to be considered further. Boths~'_X2 and SXI -Xl are statistics that can 
be calculated from the sample data and are estimates of the popUlation parameters, 
U~I-X2 and UXI-X2' respectively. It can be shown mathematically that the variance 
of the difference between two independent variables is equal to the sum of the 
variances of the two variables. so that U~I-:X2 ::; ujl + uj2. Independence means 
that there is no association correlation between the data in the two populations.* As 
u~ = u 2jn. we can write 

2 _ ui 01 u- - - - + - (8.2) 
XI- X 2 III n2 

Because the two-sample t test requires that we assume ui = u~. we can write 

2 u 2 u 2 
u- - = - + -

XI-XZ nl 112 
(8.3) 

*If there is a unique relationship between each datum in one sample and a specific datum in 
another sample. then the data are considered paired and the considerations of Chapter 9 apply 
instead of the methods of the present chapter. 
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Thus. to calculate the estimate of U~I-X2' we must have an estimate of u 2• Since both 

s1 and s~ are assumed to estimate u 2, we compute the pooled variance, s~. which is 
then used as the best estimate of u 2: 

~ = SSI + SS2 
P VI + V2 ' 

(8.4) 

and 
., s2 

s?:... _ = sf, + 1-
XI- X 2 nl n2 

(8.5) 

Thus: 

(8.6) 

and Equation 8.1 becomes 

1= 
X2 

0;2 
., , 

s-
:.J!. + 1 

(8.7a) 

nl n2 

which for equal sample sizes (Le .. nl = n2. so each sample size may be referred 
toasn), 

XI - X2 t= fl· (8.7b) 

Example 8.1 summarizes the procedure for testing the hypotheses under consider­
ation. The critical value to be obtained from Appendix Table B.3 is la(2).(vl +"2)' the 
two-tailed I value for the a significance level. with VI + V2 degrees of freedom. We 
shall also write this as la(2).". defining the pooled degrees of freedom to be 

V = VI + V2 or. equivalently, V = nl + 112 - 2. (8.8) 

In the two-tailed test, Ho will be rejected if either I 2: la(2)." or I :s -la (2).v- Another 
way of stating this is that Ho will be rejected if It I 2: la( 2).v-

This statistical test asks what the probability is of obtaining two independent 
samples with means (XI and X2) at least this different by random sampling from 
populations whose means (ILl and IL2) are equal. And. if that probability is a or less. 
then Ho: ILl = IL2 is rejected and it is declared that there is good evidence that the 
two population means are different. t 

Ho: ILl = IL2 may be written Ho: ILl - IL2 = 0 and HA: ILl *" IL2 as H,1: ILl - IL2 *" 0; 
the generalized two-tailed hypotheses are Ho: ILl - IL2 = ILO and HA: ILl - IL2 *" ILO. 
tested as 

, = IXI - X21 - ILO. (8.9) 
SXI-X2 

where ILO may be any hypothesized difference between population means. 

*The standard error of the difference between means may also be calculated as s XI _ Xl = 

~Ns~/(nln2). where N = nl + n2· 

tlnstead of testing this hypotheses. a hypothesis of "correlation" (Section 19.1lb) could be 
tested, which would ask whether there is a significant linear relationship between the magnitude of 
X and the group from which it came. This is not commonly done. 
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By the procedure of Section 8.9. one can test whether the measurements in one 
population are a specified amount as large as those in a second population. 

(a) One-Tailed Hypotheses about the Difference between Means. One-tailed 
hypotheses can be tested in situations where the investigator is interested in detecting 
a difference in only one direction. For example, a gardener may use a particular 
fertilizer for a particular kind of plant. and a new fertilizer is advertised as being an 
improvement. Let us say that plant height at maturity is an important characteristic 
of this kind of plant. with taller plants being preferable. An experiment was run, 
raising ten plants on the present fertilizer and eight on the new one. with the resultant 
eighteen plant heights shown in Example 8.2. If the new fertilizer produces plants that 
are shorter than. or the same height as. plants grown with the present fertilizer. then 
we shall decide that the advertising claims are unfounded; therefore. the statements 
of ILl > IL2 and ILl = IL2 belong in the same hypothesis, namely the null hypothesis, 
Ho. If. however, mean plant height is indeed greater with the newer fertilizer. then it 
shall be declared to be distinctly better. with the alternate hypothesis (H A: ILl < J.l.2) 
concluded to be the true statement. The 1 statistic is calculated by Equation 8.1, just 
as for the two-tailed test. But this calculated 1 is then compared with the critical value 
la( I ) .• " rather than with lu(2).,,' 

EXAMPLE 8.2 A Two-Sample t Test for the One-Tailed Hypotheses, Ho: 
IL, ~ IL2 and HA: IL, < IL2 (Which Could Also Be Stated as Ho: IL' - IL2 ~ 0 
and HA: IL1 - IL2 < 0). The Data Are Heights of Plants, Each Grown with 
One of Two Different Fertilizers 

Ho: J.l.1 ~ J.l.2 

HA: J.l.1 < J.l.2 

Presenl fertilizer 

48.2 cm 
54.6 
58.3 
47.8 
51.4 
52.0 
55.2 
49.1 
49.9 
52.6 

nl = 10 
PI = 9 
XI = 51.91 em 

SSI = 102.23 cm2 

Newer fertilizer 

n2 = 8 
P2 = 7 

52.3 cm 
57.4 
55.6 
53.2 
61.3 
58.0 
59.8 
54.8 

X2 = 56.55 em 

SS2 = 69.20 cm2 

S2 = 102.23 + 69.20 = 171.43 = 10.71 cm2 
II 9 + 7 16 

10.71 + 10.71 _ J2.41 = 1.55 cm .\"X.-X2 = 10 8 
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t = XI X2 = 51.91 - 56.55 = -4.64 = -2.99 
SXI-X2 1.55 1.55 

to.05( I ).16 = 1.746 

As t of-2.99 is less than -1.746,Ho is rejected. 

0.0025 < P < 0.005 [P = 0.0043] 

The mean plant height is greater with the newer fertilizer. 

In other cases. the one-tailed hypotheses. Ho: ILl ~ IL2 and HA: ILl > IL2. may be 
appropriate. Just as introduced in the one-sample testing of Sections 7.1 and 7.2. the 
following summary of procedures applies to two-sample t testing: 

For H A: ILl #: IL2, if It I ;::= tu(2).I" then reject Ho. 

For HA:ILI < IL2. if 1 ~ -lu(I).IJ' then reject Ho.* 

For HA: ILl >IL2. ift;::= 'a(I).". then reject Ho.t 

As indicated in Section 6.3. the null and alternate hypotheses are to be decided upon 
before the data are collected. 

Also. Ho: ILl ~ IL2 and HA: ILl > IL2 may be written as Ho: ILl - IL2 ~ 0 and 
HA: ILl - IL2 > O. respectively. The generalized hypotheses for this type of one-tailed 
test are Ho: ILl - IL2 ~ J.L<J and HA: ILl - IL2 > ILO. for which the 1 is 

XI - X2 - ILO t = • (8.10) 
SXI-X2 

and J.L<J may be any specified value of ILl - IL2. 
Lastly. Ho: ILl ;::= IL2 and H A: ILl < IL2 may be written as Ho: ILl - IL2 ;::= 0 

and HA: ILl - IL2 < O. and the generalized one-tailed hypotheses of this type are 
Ho: ILl - IL2 ;::= ILo and HA: ILl - IL2 < J.LQ. with the appropriate I statistic being that of 
Equation 8.10. For example. the gardener collecting the data of Example 8.2 may have 
decided, because the newer fertilizer is more expensive than the other, that it should 
be used only if the plants grown with it averaged at least 5.0 cm taller than plants grown 
with the present fertilizer. Then. /LO = ILl - IL2 = -5.0 cm and, by Equation 8.10. 
we would calculate t = (51.91 - 56.55 + 5.0)/1.55 = 0.36/1.55 = 0.232, which is 
not ;::= the critical value shown in Example 8.2; so Ho: ILl - IL2 ;::= -5.0 cm is not 
rejected. The following summary of procedures applies to these general hypotheses: 

For HA: ILl - IL2 #: /LO. if It I ;::= '«(2).", then reject Ho. 

For HA: ILl - IL2 < /L{). if I ~ -Ia(t ).IJ' then reject Ho. 

For H A: ILl - IL2 > ILl), if t ;::= ta( I ).1" then reject Ho. 

*For this one-tailed hypothesis test. probabilities of I up to 0.25 are indicated in Appendix 
Table 8.3. If I = O. then P = 0.50; so if -fU.2S( I ).11 < I < O. then 0.25 < P < 0.50; and if I > 0 
then P > 0.50. 

tFor this one-tailed hypothesis test, I = 0 indicates P = 0.50; therefore. if 0 < I < IO.2S( I ).11' 

then 0.25 < P < 0.50; and if I < O. then P > 0.50. 
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(b) Violations of the Two·Sample t·test Assumptions. The validity of two-sample 
t testing depends upon two basic assumptions: that the two samples came at random 
from normal populations and that the two populations had the same variance. 
Populations of biological data will not have distributions that are exactly normal or 
variances that are exactly the same. Therefore, it is fortunate that numerous studies. 
over 70 years, have shown that this t test is robust enough to withstand considerable 
nonnormality and some inequality of variances. This is especially so if the two sample 
sizes are equal or nearly equal, particularly when two-tailed hypotheses are tested 
(e.g., Boneau, 1960; Box, 1953; Cochran, 1947; Havlicek and Peterson, 1974; Posten, 
Yen, and Owen, 1982; Srivastava, 1958; Stonehouse and Forrester. 1998; Tan. 1982; 
WeIch, 1938) but also in one-tailed testing (Posten, 1992). 

In general, the larger and the more equal in size the samples are, the more robust 
the test will be; and sample sizes of at least 30 provide considerable resistance 
effects of violating the t-test assumptions when testing at a = 5% (i.e., the 0.05 level 
of signficance), regardless of the disparity between uf and u~ (Donaldson. 1968; 
Ramsey, 1980; Stonehouse and Forrester. 1998); larger sample sizes are needed for 
smaller a's, smaller n 's will suffice for larger significance levels, and larger samples 
are required for larger differences between UI and U2. 

Hsu (1938) reported remarkable robustness, even in the presence of very unequal 
variances and very small samples, if nl = n2 + 1 and CTT > CT~. SO, if it is believed 
(by inspecting sf and s~) that the population variances (uT and u~) are dissimilar. one 
might plan experiments that have samples that are unequal in size by 1. where the 
larger sample comes from the population with the larger variance. But the procedure 
of Section 8.1c, below, has received a far greater amount of study and is much more 
commonly employed. 

The two-sample t test is very robust to non normality if the population variances 
are the same (Kohr and Games, 1974; Posten, 1992; Posten, Yeh, and Owen, 1982; 
Ramsey. 1980; Stonehouse and Forrester. 1998; Tomarkin and Serlin, 1986). If the two 
populations have the same variance and the same shape. the test works well even if that 
shape is extremely nonnormal (Stonehouse and Forrester, 1998; Tan, 1982). Havlicek 
and Peterson (1974) specifically discuss the effect of skewness and leptokurtosis. 

If the population variances are unequal but the sample sizes are the same. then the 
probability of a Type I error will tend to be greater than the stated a (Havlicek and 
Peterson, 1974; Ramsey, 1980). and the test is said to be liberal. As seen in Table 8.1 a, 
this departure from a will be less for smaller differences between uT and u~ and for 
larger sample sizes. (The situation with the most heterogeneous variances is where 
uTi CT~ is zero (0) or infinity (00).) 

If the two variances are not equal and the two sample sizes are not equal, then 
the probability of a Type I error will differ from the stated a. If the larger u 2 is 
associated with the larger sample, this probability will be less than the stated a (and 
the test is called conservative) and this probability will be greater than the stated a 
(and the test is called liberal) if the smaller sample came from the population with 
the larger variance (Havlicek and Peterson. 1974; Ramsey, 1980; Stonehouse and 
Forrester, 1998; Zimmerman, 1987).* The greater the difference between variances, 
the greater will be the disparity between the probability of a Type I error and the 
specified a, larger differences will also result in greater departure from a. Table 8.1 b 

*The reason for this can be seen from Equations 8.4-8.7a: If the larger 4 is coupled with the 

larger nj. then the numerator of.\"~ (which is visi + V2S~) is greater than if the larger variance is 

associated with the smaller n. This makes s~ larger. which translates into a larger S~I -X2' which 

produces a smaller I. resulting in a probability of a Type I error lower than the stipulated a. 
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TABLE B.1a: Maximum Probabilities of Type I Error when Applying the Two-Tailed (or, 
One-Tailed) t Test to Two Samples of Various Equal Sizes (nl = n2 = n). Taken from Normal 
Populations Having Various Variance Ratios. (TV (T~ 

CTVCT~ n: 3 5 10 15 [16] 20 30 00 

For a = 0.05 

3.33 or 0.300 0.059 0.056 0.054 0.052 0.052 0.051 0.050 
5.00 or 0.200 0.064 0.061 0.056 0.054 0.053 0.052 0.050 
10.00 or 0.100 0.068 0.059 0.056 0.055 0.053 0.050 

ooorO 0.109 0.082 0.065 0.060 0.057 0.055 0.050 
ooorO (0.083) (0.068) (0.058) (0.055) (0.054) (0.053) (0.050) 

For a = 0.01 

3.33 or 0.300 0.013 0.013 0.012 [0.011 J O.otl 0.01 I 0.010 
5.00 or 0.200 0.015 0.015 0.013 lO.012] 0.011 0.D11 0.010 
10.00 or 0.100 0.020 OJ119 0.015 [0.013] 0.012 0.012 0.0) a 

ooorO OJ144 (1.028 0.Ql8 [0.015] 0.014 0.013 0.010 
ooorO (0.032) (0.022) (0.015) (0.014) (0.013) (0.012) (0.010) 

These probabilities arc gleaned from the extensive analysis of Ramsey (1980). and from Table I of 
Posten, Yeh. and Owen (1982). 

shows this for various sample sizes. For example, Table 8.1 a indicates that if 20 data 
are distributed as n I = n2 = 10 and the two-tailed t test is performed at the 0.05 
significance level, the probability of a Type I error approaches 0.065 for greatly 
divergent population variances. But in Table 8.1b we see that if a = 0.05 is used and 
20 data are distributed as nl = 9 and 112 = 11, then the probability of a Type I error 
can be as small as 0.042 (if the sample of 1] came from the population with the larger 
variance) or as large as 0.096 (if the sample of 9 came from the population with the 
smaller variance). 

Section 6.3b explained that a decrease in the probability of the Type I error (a) 
is associated with an increase in the probability of a Type II error ({3); and, because 
power is 1 - {3, an increase in {3 means a decrease in the power of the test (1 - f3). 
Therefore, for situations described above as conservative-that is, P(Type I error) 
<a-there will generally be less power than if the population variances were all equal; 
and when the test is liberal-that is, P(Type I error) >a-there will generally be more 
power than if the variances were equal. (See also Zimmerman and Zumbo, 1993.) 

The power of the two-tailed I test is affected very little by small or moderate 
skewness in the sampled populations, especially if the sample sizes are equal, but 
there can be a serious effect on one-tailed tests. As for kurtosis, the actual power of 
the test is less than that discussed in Section 8.4 when the populations are platykurtic 
and greater when they are leptokurtic. especially for small sample sizes (Boneau, 
1960; Glass, Peckham, and Sanders, 1972). The adverse effect of non normality is less 
with large sample sizes (Srivastava, 1958). 

(c) The Two-sample I Test with Unequal Variances. As indicated above, the 1 test 
for difference between two means is robust to some departure from its underlying 
assumptions: but it is not dependable when the two population variances are very 
different. The latter situation is known as the Behrens-Fisher problem, referring 
to the early work on it by Behrens (1929) and Fisher (e.g., 1939b), and numerous 



138 Chapter 8 Two-Sample Hypotheses 

TABLE 8.1b: Maximum Probabilities of Type I Error when Applying the 
Two-Tailed (or One-Tailed) t Test to Two Samples of Various Unequal Sizes, 
Taken from Normal Populations Having the Largest Possible Difference 
between Their Variances 

For a = 0.05 For a = 0.01 

nl n2 err large ur small u7 large "7 small 

11 9 0.042 0.096 0.0095 0.032 
(0.041) (0.079) (0.0088) (0.026) 

22 18 0.036 0.086 0.0068 0.026 
(0.038) (0.073) (0.0068) (0.021) 

33 27 0.034 0.082 0.0059 0.024 
(0.037) (0.072) (0.0062) (0.020) 

55 45 0.032 0.080 0.0053 0.022 
(0,036) (0.070) (0.0057) (0.019) 

12 8 0.025 0.13 0.0045 0.054 
(0.028) (0.098) (0.0046) (0.040) 

24 16 0.020 0.12 0.0029 0.044 
(0.025) (0.096) (0.0033) (0.034) 

36 24 (UI] 9 0.12 0.0024 0.04\ 
(0.023) (0.094) (0.0029) (0.032) 

60 40 0.018 0.11 0.0021 0.039 
(0.023) (0.092) (0.0026) (0.031 ) 

From Posten. Yeh. and Owen (1982) and Posten (1992). 

other studies of this problem have ensued (e.g., Best and Raynor, 1987; Dixon and 
Massey, 1969: 119; Fisher and Yates, 1963: 60-61;* Gill, 1971; Kim and Cohen,1998; 
Lee and Fineberg. 1991; Lee and Gurland, 1975: Satterthwaite, 1946; Schcffe, 1970; 
Zimmerman and Zumbo. 1993). Several solutions have been proffered. and they give 
very similar results except for very small samples. One of the easiest, yet reliable, 
of available procedures is that attributed to Smith (1936) and is often known as the 
"Welch approximate ,n·t (Davenport and Webster, 1975: Mehta and Srinivasan. 1971; 
Wang, 1971; Welch, 1936.1938. 1947). It has been shown to perform well with respect 
to Type I error. and it requires no special tables. 

The test statistic is that of Equation 8.1 or 8.9, but with SX,-X2 (the standard error 
of the difference between the means) calculated with the two separate variances 
instead of with a pooled variance; that is, 

(8.11a) 

instead of Equation 8.6. And, because sX; = s~ / ni (Equation 6.7), this can be written 
equivalently as 

*In Fisher and Vates (1963), s refers to the standard error, not the standard deviation. 
tBernard Lewis Welch (1911-1989), English statistician. (See Mardia. 1990.) 

(8.11 b) 
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Therefore, Equation S.l becomes 

I' XI X2 

J41 + S~2 
(S.11c) 

Equation S.11 becomes 

(S.l1d) 

and two-tailed and one-tailed hypotheses are tested as described earlier for I. 
Tables of critical values of I' have been published, but they are not extensive. 

Satterthwaite (1946) and Scheffe (1970) approximated the distribution of I' well by 
using I with degrees of freedom of 

., 
(s~ + s~ r 

v'= XI X2 (S.12) 
(s~J2 (s~J2 

+ 
n) - 1 nz - 1 

These degrees of freedom can be as small as nl - 1 or m - 1, whichever is 
smaller, and as large as n) + n2 - 2. However, v' is typically not an integer, 
so the critical value of I' often will not be found in Appendix Table B.3. If v' is 
not an integer, the needed critical value, la.v, can be obtained via some computer 
software; or these values can be interpolated from the fs in Table B.3 (the beginning 
of Appendix B explains interpolation, and at the end of Table B.3 there is an 
indication of the accuracy of interpolation for t); or, less accurately, the closest 
integer to v' (or, to be conservative, the nearest integer less than v') can be used 
as the degrees of freedom in Table B.3. The Behrens-Fisher test is demonstrated in 
Example 8.2a.* 

*In the highly unlikely situation where the variances (ui and (T~) of the two sampled populations 
are known, the test for difference betwcen means could be effected with 

(8.12a) 

and it can be recalled that Za = la.oo. If the variance (ui) of one of the two populations is known. 
this test statistic and degrees of freedom may be employed (Maity and Sherman. 2006): 

1= I X\ - Xz I -ILO . 

J(TT /"\ + .\'~/"z . 
(8.12b) 

(8.12c) 
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EXAMPLE S.2a The Behrens-Fisher Test for the Two-Tailed Hypotheses, 
Ho: 1'1 = 1'2 and HA: 1'1 * 1'2 

The data are the times for seven cockroach eggs to hatch at one laboratory 
temperature and for eight eggs to hatch at another temperature. 

Ho: ILl = ILz 
HA: ILI::f. IL2 

40 days 
38 
32 
37 
39 
41 
35 

nl = 7 

VI = 6 

n2 = 8 

V2 = 7 

36 days 
45 
32 
52 
59 
41 
48 
55 

XI = 37.4 days 

SSI = 57.71 daysZ 

si = 9.62 daysZ 

s~, = 1.37 days2 

X Z = 46.0 days 

SS2 = 612.00 days2 

s~ = 87.43 daysZ 

S~2 = to.93 days2 

SX1-X2 = J4, + S~2 = J1.37 + 10.83 = 3.51 days 

I' = XI - X2 = 37.4 - 46.00 = -2.450 
s~ 'i7 3.51 

10.05(2).8.7 = 2.274* 

Therefore, reject Ho. 

[P = 0.038.]* 

A,-A2 

V' = (S~, + 4J2 

(s~,Y + (s~J2 
VI V2 

(1.37 + 10.93)2 

(1.37)2 + (to.93 )2 

6 7 
= 8.7 

*These values were obtained by computer. 
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As with I, the robustness of I I is greater with large and with equal sample sizes. If 
O"T = O"~, then either t or t I can be used, but t will be the more powerful procedure 
(Ramsey, 1980). but generally with only a very slight advantage over I' (Best and 
Rayner, 1987). If n I = n2 and sT = s~, then I I = t and v I = v; but t I is not as powerful 
and not as robust to non normality as I is (Stonehouse and Forrester, 1998; Zimmerman 
and Zumbo, 1993). However, Best and Rayner (1987) found l'to be much better 
when the variances and the sample sizes are unequal. They, and Davenport and 
Webster (1975). reported that the probabilty of a Type 1 error in the t I test is related 
to the ratio (n2CTT)/(nJO"~) (let's call this ratio r for the present): When r > 1 and 
III > n2. then this error is near the ex specified for the significance test; when r > 1 
and /1[ < 112. then the error diverges from that ex to an extent reflecting the magnitude 
of r and the difference betwen n[ and n2. And. if r < 1, then the error is close to the 
stated ex if n[ < 112. and it departs from that ex if Il[ > 112 (differing to a greater extent 
as the difference between the sample sizes is larger and the size of r is greater). But. 
larger sample sizes result in less departure from the ex used in the hypothesis test. 

The effect of heterogeneous variances on the t test can be profound. For example. 
Best and Rayner (1987) estimated that a t test with 11[ = 5 and 112 = 15, and 
0"[/0"2 = 4. has a probabilty of a Type I error using I of about 0.16; and, for those 
sample sizes when CTt!0"2 = 0.25, P(Type I error) is about 0.01; but the probability 
of that error in those cases is near 0.05 if t I is employed. When the two variances 
are unequal. the Brown-Forsythe test mentioned in Section lO.1g could also be 
employed and would be expected to perform similarly to the Behrens-Fisher test, 
though generally not as well. 

If the Behrens-Fisher test concludes difference between the means, a confidence 
interval for that difference may be obtained in a manner analogous to that in Section 
8.2: The procedure is to substitute sX,_x~ for SX,-X2 and to use v' instead of v in 
Equation 8.14. 

Because the I test is adversely affected by heterogeneity of variances, some authors 
have recommended a two-step testing process: (1) The two sample variances are 
compared, and (2) only if the two population variances are concluded to be similar 
should the t test be employed. The similarity of variances may be tested by the 
procedures of Section 8.5. However, considering that the Behrens-Fisher t I test is so 
robust to variance inequality (and that the most common variance-comparison test 
performs very poorly when the distributions are non normal or asymmetrical), the 
routine test of variances is not recommended as a precursor to the testing of means 
by either t or t I (even though some statistical software packages perform such a test). 
Gans (1991) and Markowski and Markowski (1990) enlarge upon this conclusion; 
Moser and Stevens (1992) explain that there is no circumstance when the testing 
of means using either t or t I is improved by preliminary testing of variances; and 
Sawilowski (2002) and Wehrhahn and Ogawa (1978) state that the t test's probability 
of a Type 1 error may differ greatly from the stated ex if such two-step testing is 
employed. 

(d) Which Two-Sample Test to Use. It is very important to inform the reader of a 
research report specifically what statistical procedures were used in the presentation 
and analysis of data. It is also generally advisable to report the size (/1), the mean (X), 
and the variability (variance. standard deviation, or standard error) of each group 
of data; and confidence limits for each mean and for the difference between the 
means (Section 8.2) may be expressed if the mean came from a normalIy distributed 
population. Visualization of the relative magnitudes of means and measures of 
variability may be aided by tables or graphs such as described in Section 7.4. 
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Major choices of statistical methods for comparing two samples are as follows: 

• If the two sampled populations are normally distributed and have identical 
variances (or if they are only slightly to moderately nonnormal and have 
similar variances): The I test for difference between means is appropriate and 
preferable. (However. as samples nearly always come from distributions that are 
not exactly normal with exactly the same variances. conclusions to reject or not 
reject a null hypothesis should not be considered definitive when the probability 
associated with t is very near the specified a. For example. if testing at the 5% 
level of significance. it should not be emphatically declared that Hn is false if 
the probability of the calculated t is 0.048. The conclusion should be expressed 
with caution and. if feasible. the experiment should be repeated-perhaps with 
more data.) 

• If the two sampled populations are distributed normally (or are only 
slightly to moderately nonnormal), but they have very dissimilar variances: 
The Behrens-Fisher test of Section 8.1 c is appropriate and preferable to compare 
the two means. 

• If the two sampled populations are very different from normally dis­
tributed, but they have similar distribution shapes and variances: The 
Mann-Whitney test of Section 8.11 is appropriate and preferable. 

• If the two sampled populations have distributions greatly different from 
normal and do not have similar distributions and variances: (I) Consider 
the procedures of Chapter 13 for data that do not exhibit normality and variance 
equality but that can be transformed into data that are normal and homogeneous 
of variance; or (2) refer to the procedure mentioned at the end of Section 8.11. 
which modifies the Mann-Whitney test for Behrens-Fisher situations; or (3) 
report the mean and variability for each of the samples. perhaps also presenting 
them in tables andlor graphs (as in Section 7.4). and do not perform hypothesis 
testing.* 

(e) Replication of Data. It is important to usc data that are true replicates of 
the variable to be tested (and recall that a replicate is the smallest experimental 
unit to which a treatment is independently applied). Tn Example 8.1 the purpose 
of the experiment was to ask whether there is a difference in blood-clotting times 
between persons administered two different drugs. This necessitates obtaining a 
blood measurement on each of nl individuals in the first sample (receiving one of the 
drugs) and n2 individuals in the second sample (receiving the other drug). It would 
not be valid to use n I measurements from a single person and n2 measurements 
from another person. and to do so would be engaging in what Hurlbert (1984). and 
subsequently many others. discuss as pseudoreplicalion. 

8.2 CONFIDENCE LIMITS FOR POPULATION MEANS 

In Section 7.3. we defined the confidence interval for a population mean as X ± 
la(2 ).v,'ix. where Sx is the best estimate of Ux and is calculated as ~s2 / n. For the 

*Anothcr procedure. seldom encountered but highly recommended by Yuen (1974). is to 
perform the Behrens-Fisher test on trimmed mean.s (also known as "truncated means"). A trimmed 
mean is a sample mean calculated after deleting data from the extremes of the tails of the data 
distribution. There is no stipulated number of data to be deleted. but it is gen:!rally the same number 
for each tail. The degrees of freedom are those pertaining to the number of data remaining after 
the deletion. 
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two-sample situation where we assume that (TI = (T~, the confidence interval for 
either J.LI or J.L2 is calculated using s~ (rather than either si or s~) as the best estimate 
of (T2. and we use the two-tailed tabled I value with v = VI + V2 degrees of freedom. 
Thus, for J.Li (where i is either I or 2. referring to either of the two samples), the 1 - a 
confidence interval is 

(8.13) 

For the data of Example 8.1. Js~/n2 = ~0.5193 min2/7 = 0.27 min. Thus, the 95% 

confidence interval for J.L2 would be 9.74 min ± (2.201 )(0.27 min) = 9.74 min ± 
0.59 min, so that LI (the lower confidence limit) = 9.15 min and L2 (the upper 
confidence limit) = 10.33 min. and we can declare with 95% confidence that. for 
the population of blood-clotting times after treatment with drug G, the population 
mean, J.L2, is no smaller than 9.15 min and no larger than 10.33 min. This may 
be written as P(9.15 min :s; J.L2 :s; 10.33 min) = 0.95. The confidence interval 
for the population mean of data after treatment with drug B would be 8.75 min 
±(2.201 )~0.5193 min2/6 = 8.75 min ± 0.64 min; so LI = 8.11 min and L2 = 9.39 min. 
Further interpretation of the meaning of the confidence interval for each of these two 
population means is in Section 7.3. 

Confidence limits for the difference between the two population means can also 
be computed. The 1 - a confidence interval for J.LI - J.L2 is 

(8.14) 

Thus, for Example 8.1, the 95% confidence interval for J.LI J.L2 is (8.75 min -
9.74 min) ± (2.201 )(0.40 min) = -0.99 min ± 0.88 min. Thus. LI = -1.87 min and 
L2 = -0.11 min. and we can write P( -1.87 min :s; J.LI - J.L2 :s; -0.11 min) = 0.95. 

If Ho: J.LI = J.L2 is not rejected. then both samples are concluded to have come from 
populations having identical means, the common mean being denoted as J.L. The best 
estimate of J.L is the "pooled" or "weighted" mean: 

X - Il I X I + 1l2X2 
p- , 

III + 112 
(8.15) 

which is the mean of the combined data from the two samples. Then the I - a 
confidence interval for J.L is 

- f?S~ Xp ± to (2).v • 
III + 112 

(8.16) 

If Ho is not rejected. it is the confidence interval of Equation 8.16, rather than those 
of Equations 8.13 and 8.14, that one would calculate. 

As is the case with the t test, these confidence intervals are computed with the 
assumption that the two samples came from normal populations with the same 
variance. If the sampled distributions are far from meeting these conditions, then 
confidence intervals should be eschewed or, if they are reported, they should be 
presented with the caveat that they are only approximate. 

If a separate I - a confidence interval is calculated for J.LI and for J.L2. it may 
be tempting to draw a conclusion about Ho: J.LI = J.L2 by observing whether the 
two confidence intervals overlap. Overlap is the situation where LI for the larger 
mean is less than L2 for the smaller mean, and such conclusions are made visually 
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enticing if the confidence intervals are presented in a graph (such as in Figure 7.5) 
or in a table (e.g .• as in Table 7.3b). However, this is not a valid procedure for 
hypothesis testing (c.g .. Barr, t 969; Browne. 1979: Ryan and Leadbetter. 2002; 
Schenker and Gentleman. 2(01). If there is no overlap and the population means 
are consequently concluded to be different, this inference will be associated with a 
Type I error probability less than the specified a (very much less if the two standard 
errors are similar): and if there is overlap. resulting in failure to reject Ho. this 
conclusion will be associated with a probability of a Type n error greater than (i.e .• 
a power less than) if the appropriate testing method were used. As an illustration 
if this, the data of Example 8.1 yield L I = 8.11 min and L2 = 9.39 min for the 
mean of group Band LI = 9.15 min and L2 = 10.33 min for the mean of group 
G: and the two confidence intervals overlap even though the null hypothesis is 
rejected. 

(a) One-Tailed Confidence Limits for Difference between Means. If the two-sample 
t test is performed to assess one-tailed hypotheses (Section 7.2), then it is appropriate 
to determine a one-tailed confidence interval (as was done in Section 7.3a following 
a one-tailed one-sample t test). Using one-tailed critical values of I. the following 
confidence limits apply: 

For Ho: ILl :5 IL2 versus ILl > IL2. or ILl - IL2 :5 ILIl versus Ho: ILl - IL2 > J.LO: 

LI = X - (ta(I).,,)(."'X 1-X2) and L2 = 00. 

For Ho: ILl "2= IL2 versus ILl < IL2. or ILl - IL2 "2= IL() versus ILl - IL2 < J.LO: 

LI = -00 and L2 = X + (la (I).V)(SXI-X2)' 

In Example 8.2, one-tailed confidence limits would be LI = -00 and L2 = 
( 1.746)( 1.55) = 2.71 cm. 

(b) Confidence Limits for Means when Variances Are Unequal. If the population 
variances are judged to be different enough to warrant using the Behrens-Fisher test 
(Section 8.1e) for Ho: ILl = IL2, then the computation of confidence limits is altered 
from that shown above. If this test rejects the null hypothesis, a confidence interval 
for each of the two popUlation means (ILl and IL2) and a CI for the difference between 
the means (ILl - IL2) should be determined. The 1 - a confidence interval for ILi is 
obtained as 

l. - s· - 2 
Xi ± ta(2).v' ....!.., which is Xi ± la(2).II' ~, 

lli y"X; (8. t 7) 

rather than by Equation 8.13, where v I is from Equation 8. t 2. The confidence interval 
for the difference between the two population means is computed to be 

(8.18) 

rather than by Equation 8.14, where s-x' -x is from Equation 8.lla or 8.llb. 
1- 2 

One-tailed confidence intervals are obtained as shown in Section 8.2a above, but 
using s -x' -x instead of Sx _ x . A confidence interval (two-tailed or one-tailed) for 

1- 2 ( 2 

ILl - IL2 includes zero when the associated Ho is not rejected. 
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In Example S.2a, Hu is rejected, so it is appropriate to determine a 95% CI 
for ILl, which is 37.4 ± 2.274 Jf37 = 37.4 days ± 2.7 days; for IL2, which 
is 46.0 ± 2.274JlO.93 = 46.0 days ± 7.5 days: and for ILl - IL2, which is 
37.4 - 46.0 ± (2.274)(3.51) = -S.6days ± 7.98 days. 

If Ho: ILl = IL2 is not rejected, then a confidence interval for the common mean, 
Xp (Equation S.15), may be obtained by using the variance of the combined data 
from the two samples (call it s~) and the degrees of freedom for those combined data 
(v/ = 11) + 112 - 1): 

(S.19) 

(c) Prediction Limits. As introduced in Section 7.3b. we can predict statistical char­
acteristics of future sampling from populations from which samples have previously 
been analyzed. Such a desire might arise with data from an experiment such as in 
Example S.1. Data were obtained from six animals treated with one drug and from 
seven animals treated with a second drug: and the mean blood-clotting times were 
concluded to be different undcr these two treatments. Equations 8.14 and S.18 showed 
how confidence intervals can be obtained for the difference bctween means of two 
samples. It could also be asked what the difference between the means would be of 
an additional sample of m) animals treated with the first drug and a sample of an 
additional nl2 animals treated with the second. 

For those two additional samples the best prediction of the difference between the 
twosamplemeanswouldbeXt - X2,which in Example8.l is 8.75 min - 9.74min = 
-0.99 min; and there would be a 1 - a probability that the difference between the 
two means would be contained in this prediction interval: 

XI - N - X2 ± ta (2).v sC' (S.19a) 

where 
s2 2 s2 s2 

i =..J!... + 
Sp 

+ J!... + 1.. (S.19b) c m) 11) m2 112 

(Hahn, 1977). For example, if an additional sample of 10 data were to be obtained 
for treatment with the first drug and an additional sample of 12 were to be acquired 
for treatment with the second drug, the 95% prediction limits for the difference 
between means would employ sJ, = 0.5193 min2, III = 6,112 = 7, mt = to, nl2 = 12, 

to.05(2).v=2.201. and v = 11; and s~ = 0.51 min. so the 95% prediction limits would be 
L) = -2.11 min and L2 = 0.13 min. 

As the above procedure uses the pooled variance, s~, it assumes that the two 
sampled populations have equal variances. If the two variances are thought to be 
quite different (the Behrens-Fisher situation discussed in Section S.lc). then it is 
preferable to calculate the prediction interval as 

XI - N - X2 ± ta(2).v' s£"' (S.19c) 

where 
s2 2 s2 ? 

i=-I + ~ + -L + ''2 (8.l9d) (' 

ml III m2 112 
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2. Sample sizes not large enough to result in detection of a difference of biological 
importance can expend resources without yielding useful results, and sample 
sizes larger than needed to detect a difference of biological importance can 
result in unnecessary expenditure of resources. 

3. Sample sizes not large enough to detect a difference of biological importance can 
expose subjects in the study to potentially harmful factors without advancing 
knowledge, and sample sizes larger than needed to detect a difference of 
biological importance can expose more subjects than necessary to potentially 
harmful factors or deny them exposure to potentially beneficial ones. 

Assuming each sample comes from a normal population and the population 
variances are similar, we can estimate the minimum sample size to use to achieve 
desired test characteristics: 

2s2 
n ~ 5: (Ia.v + 1f3( I ),v)2 (8.22) 

(Cochran and Cox, 1957: 19-21).* Here,5 is the smallest population difference we 
wish to detect: 5 = ILl - 1L2 for the hypothesis test for which Equation 8.1 is used; 
5 = IILI - 1L21 - 1Li) when Equation 8.9 is appropriate; 5 = ILl - 1L2 - ILO when 
performing a test using Equation 8.10. In Equation 8.22, la.p may be either la( 1 ).v or 
ta (2).v, depending, respectively, on whether a one-tailed or two-tailed test is to be 
performed. 

Note that the required sample size depends on the following four quantities: 

• 5, the minimum detectable difference between population means.t If we desire 
to detect a very small difference between means, then we shall need a larger 
sample than if we wished to detect only large differences. 

• u 2, the population variance. If the variability within samples is great, then a 
larger sample size is required to achieve a given ability of the test to detect 
differences between means. We need to know the variability to expect among the 
data; assuming the variance is the same in each of the two populations sampled. 
u2 is estimated by the pooled variance, s;" obtained from similar studies. 

• The significance level, a. If we perform the I test at a Iowa, then the critical 
value, ta•v , will be large and a large n is required to achieve a given ability to 
detect differences between means. That is, if we desire a low probability of 
committing a Type I error (i.e., falsely rejecting HII)' then we need large sample 
sizes. 

• The power of the test, 1 - f3. If we desire a test with a high probability of 
detecting a difference between population means (i.e., a low probability of 
committing a Type II error), then f3( 1) will be small. lf3( I) will be large. and 
large sample sizes arc required. 

Example 8.4 shows how the needed sample size may be estimated. As la(2).v and 
lf3( 1 ).v depend on n. which is not yet known. Equation 8.22 must be solved iteratively. 
as we did with Equation 7.10. It matters little if the initial guess for n is inaccurate. 
Each iterative step will bring the estimate of 11 closer to the final result (which is 

*The method of Section 1 n.3 may also be used for estimation of sample size. but it offers no 
substantial advantage over the present procedure. 

t /j is lowercase Greek delta. If JLO in the statistical hypotheses is not zero (see discussion 
surrounding Equations 8.9 and 8. 10). then /j is the amount by which the absolute value of the 
difference between the population means differs from JLo. 
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declared when two successive iterations fail to change the value of n rounded to 
the next highest integer). In general, however, fewer iterations are required (i.e .• the 
process is quicker) if one guesses high instead of low. 

EXAMPLE 8.4 
Test 

Estimation of Required Sample Size for a Two-Sample t 

We desire to test for significant difference between the mean blood-clotting times 
of persons using two different drugs. We wish to test at the 0.05 level of significance. 
with a 90% chance of detecting a true difference between population means as 
small as 0.5 min. The within-population variability, based on a previous study of 
this type (Example 8.1). is estimated to be 0.52 min2. 

Let us guess that sample sizes of 100 will be required. Then, " = 2(n - 1) = 
2(100 - 1) = 198.to.05(2).I9!!:::; 1.972,{3 = 1 - 0.90 = 0.10,tO.IO(I).19!! = 1.286, 
and we calculate (by Equation 8.22): 

11 ~ 2( O.5~) (1.972 + 1.286)2 = 44.2. 
(0.5) 

Let us now use II = 45 to determine JI = 2(n - 1) = 88, lo.()5(2).88 1.987. 
to.IO( I ).88 = 1.291. and 

11 ~ 2(0.5~) {1.987 + 1.291)2 = 44.7. 
(0.5 ) 

Therefore. we conclude that each of the two samples should contain at least 45 
data. 

If nl were constrained to be 30, then, using Equation 8.21, the required 112 would 
be 

11 = (44.7)(30) = 88. 
2 2(30) - 44.7 

For a given total number of data (nl + n2), maximum test power and robustness 
occur when III = m (i.e., the sample sizes are equal). There are occasions, however, 
when equal sample sizes are impossible or impractical. If, for example. III were fixed. 
then we would first determine n by Equation 8.22 and then find the required size 
of the second sample by Equation 8.21. as shown in Example 8.4. Note. from this 
example. that a total of 45 + 45 = 90 data are required in the two equal-sized 
samples to achieve the desired power. whereas a total of 30 + 88 = 118 data are 
needed if the two samples are as unequal as in this example. If 2n - 1 ~ 0, then see 
the discussion following Equation 8.21. 

(b) Minimum Detectable Difference. Equation 8.22 can be rearranged to estimate 
how small a population difference (5, defined above) would be detectable with a 
given sample size: 

(8.23) 

The estimation of 5 is demonstrated in Example 8.5. 
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EXAMPLE 8.5 
Sample t Test 

Estimation of Minimum Detectable Difference in a Two-

In two-tailed testing for significant difference between mean blood-clotting times 
of persons using two different drugs, we desire to use the 0.05 level of significance 
and sample sizes of 20. What size difference between means do we have a 90% 
chance of detecting? 

Using Equation 8.23 and the sample variance of Example 8.1, we calculate: 

5= 2{ 0.5193 ) ( ) 
20 tu.US( 2 ).3X + to. I O( I ).3X 

= (0.2279)(2.024 + 1.304) = 0.76 min. 

I n a Behrens-Fisher situation (i.e., if we don't assume that uT = u~). Equation 8.23 

would employ JsV'" + s~/,., instead of J2s;'; n. 

(c) Power of the Test. Further rearrangement of Equation 8.22 results in 

5 
tf3( I )." ~ ~ - ta.", 

2'ip 

n 

(8.24) 

which is analogous to Equation 7.12 in Section 7.7. On computing tf3( I ).", one 
can consult Appendix Table B.3 to determine f3( I), whereupon 1 - f3( 1) is the 
power. But this generally will only result in declaring a range of power (e.g., 
0.75 < power < 0.90). Some computer programs can provide the exact probability 
of f3( 1 ), or we may, with only slight overestimation of power (as noted in the footnote 
in Section 7.7) consider tf3( I) to be approximated by a normal deviate and may thus 
employ Appendix Table B.2. 

If the two population variances are not assumed to be the same, then JST/11 + s~/n 
would be used in place of J2\';'; 11 in Equation 8.24. 

The above procedure for estimating power is demonstrated in Example 8.6. along 
with the following method (which will be expanded on in the chapters on analysis of 
variance). We calculate 

~~~:; (8.25) 

(derived from Kirk. 1995: 182) and cf> (lowercase Greek phi) is then located in 
Appendix Figure 8.1a, along the lower axis (taking care to distinguish between cP's 
for a = 0.01 and a = 0.(5). Along the top margin of the graph are indicated pooled 
degrees of freedom, v, for a of either 0.01 or 0.05 (although the symbol V2 is used 
on the graph for a reason that will be apparent in later chapters). By noting where 
cf> vertically intersects the curve for the appropriate v, one can read across to either 
the left or right axis to find the estimate of power. As noted in Section 7.7c. the 
calculated power is an estimate of the probability of rejecting a false null hypothesis 
in future statistical tests; it is not the probability of rejecting Hu in tests performed on 
the present set of data. 
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EXAMPLE 8.6 Estimation of the Power of a Two-Sample t Test 

What would be the probability of detecting a true difference of 1.0 min between 
mean blood-clotting times of persons using the two drugs of Example 8.1. if 
nl = n2 = 15. and a(2) = 0.05? 

For n = 15. v = 2(1l - 1) = 28 and to.IIS(2).2R = 2.048. Using Equation 8.24: 

1.0 
tp( I ).28 ~ ----,==== - 2.048 = 1.752. 

2(0.5193) 

15 

Consulting Appendix Table B.3. we see that. for one-tailed probabilities and 
v = 28: 0.025 < P{t ;:: 1.752) < 0.0.s. so 0.025 < f3 < 0.05. 

Power = 1 - f3. so 0.95 < power < 0.975. 

Or. by the normal approximation. we can estimate f3 by P( Z ~ 1.752) = 0.04. 
So power = 0.96. [The exact figures are f3 = 0.045 and power = 0.955.] 

To use Appendix Figure B.l. we calculate 

(15)( 1.0) = 2.69. 
4(0.5193 ) 

In the first page of Appendix Figure B.l. we find that 4J = 2.69 and v( = V2) = 28 
are associated with a power of about 0.96. 

(d) Unequal Sample Sizes. For a given total number of data. nl + n2. the two­
sample t test has maximum power and robustness when nl = n2. However. if nl =I- "2. 
the above procedure for determining minimum detectable difference (Equation 8.23) 
and power (Equations 8.24 and 8.25) can be performed using the harmonic mean of 
the two sample sizes (Cohen. 1988: 42): 

n = 2n)n2 . 
111 + n2 

Thus. for example. if nl = 6 and n2 = 7. then 

n = 2(6)(7) = 6.46. 
6 + 7 

~.5 TESTING FOR DIFFERENCE BETWEEN TWO VARIANCES 

(8.26) 

If we have two samples of measurements. each sample taken at random from a 
normal population, we might ask if the variances of the two populations are equal. 
Consider the data of Example 8.7, where sT. the estimate of aT. is 21.87 moths2• and 
s~, the estimate of O"~, is 12.90 moths2 . The two-tailed hypotheses can be stated as 
Ho: O"T = O"~ and HA : O"T 'i: O"~. and we can ask. What is the probability of taking two 
samples from two populations having identical variances and having the two sample 
variances be as different as are sy and s~? If this probability is rather low (say $ 0.05. 
as in previous chapters). then we reject the veracity of Ho and conclude that the two 
samples came from populations having unequal variances. If the probability is greater 
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than a, we conclude that there is insufficient evidence to conclude that the variances 
of the two populations are not the same. 

(a) Variance-Ratio Test. The hypotheses may be submitted to the two-sample 
variance-ratio test, for which one calculates 

2 
or F = s~, whichever is larger.* 

sl 
(8.27) 

That is, the larger variance is placed in the numerator and the smaller in the denomi­
nator. We then ask whether the calculated ratio of sample variances (i.e., F) deviates 
so far from 1.0 as to enable us to reject Ho at the a level of significance. For the data 
in Example 8.7. the calculated F is 1.70. The critical value, FO.05(2).10.9. is obtained 
from Appendix Table 8.4 and is found to be 3.59. As 1.70 < 3.59, we do not reject 
Hot. 

Note that we consider degrees of freedom associated with the variances in both 
the numerator and denominator of the variance ratio. Furthermore, it is important to 
realize that Fa ./1I./1l and Fa./1l./11 are not the same (unless, of course, VI = lI2), so the 
numerator and denominator degrees of freedom must be referred to in the correct 
order. 

If Ho: oi = (7'~ is not rejected, then sT and s~ are assumed to be estimates of 
the same population variance, (7'2. The best estimate of this (7'2 that underlies both 
samples is called the pooled variance (introduced as Equation 8.4): 

S2 = SSI + SS2 = vlsT + V2S~ 
P VI + "2 VI + V2 

(8.28) 

One-tailed hypotheses may also be submitted to the variance ratio test. For 
Ho: uT ~ oi and HA: (7'T < u~,s~ is always used as the numerator of the variance 
ratio; for Ho: oi $ u~ and HA: uT > u~,sT is always used as the numerator. (A look 
at the alternate hypothesis tells us which variance belongs in the numerator of F in 
order to make F > 1.) 

The critical value for a one-tailed test is Fa( I ),"1,v2 from Appendix Table B.4, where 
"I is the degrees of freedom associated with the numerator of F and V2 is the degrees 
of freedom associated with the denominator. Example 8.8 presents the data submitted 
to the hypothesis test for whether seeds planted in a greenhouse have less variability 
in germination time than seeds planted outside. 

The variance-ratio test is not a robust test, being severely and adversely affected by 
sampling non normal populations (e.g., Box. 1953; Church and Wike, 1976: Markowski 
and Markowski. 1990: Pearson. 1932: Tan, 1982), with deviations from mesokurto­
sis somewhat more important than asymmetry; and in cases of non normality the 
probability of a Type I error can be very much greater than a. 

·What we know as the F statistic is a ratio of the variances of two normal distributions and was 
first described by R. A. Fisher in 1924 (and published in 1928) (Lehmann. 1999): the statistic was 
named in his honor by G. W. Snedecor (1934: 15). 

tSome calculators and many computer programs have the capability of determining the 
probability of a given F. For the present example, we would thereby find that P( F ~ 1.70) = 0.44. 
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EXAMPLE 8.7 The Two-Tailed Variance Ratio Test for the Hypothesis 
Ho: oi = 01 and HA: oi :I: 01. The Data Are the Numbers of Moths Caught 
During the Night by 11 Traps of One Style and 10 Traps of a Second Style 

Ho: CT~ = CT~ 
H 2 ., 

A: CT,:F 02 

a = 0.05 

Trap type J 

n, = 11 

v, = 10 

41 
35 
33 
36 
40 
46 
31 
37 
34 
30 
38 

Trap type 2 

52 
57 
62 
55 
64 
57 
56 
55 
60 
59 

SS] = 218.73 moths2 SS2 = 116.10 moths2 

s~ = 21.87 moths2 

2 
F = s~ = 21.87 = 1.70 

s2 12.90 

FO.05(2).JO.9 = 3.96 

Therefore. do not reject Ho. 

s~ = 12.90 moths2 

P(0.20 < F < O.50)[P = 0.44] 

S2 = 218.73 moths2 + 116.10 moths2 = 17.62 moths2 
'p 10 + 9 

The conclusion is that the variance of numbers of moths caught is the same for the 
two kinds of traps. 

(b) Other Two-Sample Tests for Variances. A large number of statistical procedures 
to test differences between variances have been proposed and evaluated (e.g .• Brown 
and Forsythe. 1974c; Church and Wike. 1976; Draper and Hunter. 1969: Levene. 
1960; Miller. 1972: O'Neill and Mathews. 2000). often with the goal of avoiding the 
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EXAMPLE 8.8 A One-Tailed Variance-Ratio Test for the Hypothesis That 
the Germination Time for Pine Seeds Planted in a Greenhouse Is Less Variable 
Than for Pine Seeds Planted Outside 

Ho: 

a = 0.05 

1T2 > 1T2 
v I - "2 

crt < cr~ 

Germination Time (in Days) 
of Pine Seeds 

Greenhouse 

69.3 
75.5 
81.0 
74.7 
72.3 
78.7 
76.4 

111 = 7 

"I = 6 

SSI = 90.57 days2 

sT = 15.10 days2 

F = 87.62 = 5.80 
15.10 

FO.05( I ).8.6 = 4.15 

Therefore. reject Ho. 

112 = 9 

"2 = 8 

Outside 

69.5 
64.6 
74.0 
84.8 
76.0 
93.9 
81.2 
73.4 
88.0 

SS2 = 700.98 days2 

s~ = 87.62 days2 

0.01 < P(F ~ 5.80) < 0.025 [P = 0.023] 

The conclusion is that the variance in germination time is less in plants grown in 
the greenhouse than in those grown outside. 

lack of robustness of the variance-ratio test when samples come from nonnormal 
populations of data. A commonly encountered one is Levene's test, and its various 
modifications, which is typically less affected by non normal distributions than the 
variance-ratio test is. 

The concept is to perform a two-sample t test (two-tailed or one-tailed, as the 
situation warrants; see Section 8.1), not on the values of X in the two samples but 
on values of the data after conversion to other quantities. A common conversion 
is to employ the deviations of each X from its group mean or median; that is, the 
two-sample I test is performed on IXij - Xii or on IXij - median of group il. Other 
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data conversions. such as the square root or the logarithm of IXij - Xii. have also 
been examined (Brown and Forsythe. 1974c). 

Levene's test is demonstrated in Example 8.9 for two-tailed hypotheses. and X' is 
used to denote IXi - XI. This procedure may also be employed to test one-tailed 
hypotheses about variances, either Hu: uy ~ (T~ vs. HA : u1 < u~, or Ho: uy :5 u~ vs. 
HA: uT > u~. This would be done by the one-tailed I-testing described in Section 8.1, 
using u 2 in place of J.L in the hypothesis statements and using IXi - XI instead of Xi 
in the computations. 

EXAMPLE 8.9 The Two-Sample Levene Test for Ho: u~ = u~ and HA: 
u~ =I: u~. The Data Are Those of Example 8.7 

Ho: u1 = u~ 
H A : UT:¢: U~ 

a = 0.05 

For group 1: 2X = 401 moths, n = 11, v = 10, X = 36.45 moths. 

For group 2: 2X = 577 moths, n = 10. v = 9, X = 57.70 moths. 

Trap Type I 

Xi 

41 
35 
33 
36 
40 
46 
31 
37 
34 
30 
38 

2Xj 

= 401 moths 

X' = 

IXi - XI 

4.55 
1.45 
3.45 
0.45 
3.55 
9.55 
5.45 
0.55 
2.45 
6.45 
1.55 

2X; = 

21Xi - XI 

= 39.45 moths 

Trap Type 2 

Xi 

52 
57 
62 
55 
64 
57 
56 
55 
60 
59 

2Xi 

:;;;;: 577 moths 

X' = 
IXi - XI 

5.70 
0.70 
4.30 
2.70 
6.30 
0.70 
1.70 
2.70 
2.30 
1.30 

2X~= 
I 

21Xi - XI 

= 28.40 moths 

For the absolute values of the deviations from the mean: 

Xi = 39.45 moths/II 

= 3.59 moths 

SSj = 77.25 moths2 

X2 = 28.40 moths/1O 

= 2.84 moths 

SSi = 35.44 moths2 
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the calculated confidence intervals are only approximations. with the approximation 
poorer the further from normality the populations are. 

Meeker and Hahn (] 980) discuss calculation of prediction limits for the variance 
ratio and provide special tables for that purpose. 

8.7 SAMPLE SIZE AND POWER IN TESTS FOR DIFFERENCE BETWEEN TWO VARIANCES 

(a) Sample Size Required. In considering the variance-ratio test of Section 8.5. we 
may ask what minimum sample sizes are required to achieve specified test charac­
teristics. Using the normal approximation recommended by Desu and Raghavarao 
(1990: 35). the following number of data is needed in each sample to test at the a 
level of significance with power of 1 - (3: 

2 

n= 
Z" + Z/3( I) 

In(j,) 
+ 2. (8.32) 

For analysts who prefer performing calculations with "common logarithms" (those 
employing base 10) to using "natural logarithms" (those in base e).* Equation 8.32 
may be written equivalently as 

2 

n= 
Za + Z{3(I) + 2. (8.33) 

(2.30259) IOg(j,) 
This sample-size estimate assumes that the samples are to be equal in size. which is 
generally preferable. If. however. it is desired to have unequal sample sizes (which 
will typically require more total data to achieve a particular power), one may specify 
that VI is to be m times the size of V2; then (after Desu and Raghavarao. 1990: 35): 

m = nl • 
n2 - 1 

(8.34) 

112 = (m + 1 )(n - 2) + 2, (8.35) 
2m 

and 

.". 
nl = m( n2 - 1) + 1. (8.36) 

* In this book, 111 will denote the natural, or Naperian, logarithm, and log will denote the common, 
or Briggsian.logarithm. These are named for the Scottish mathematician John Napier (1550-1617), 
who devised and named logarithms. and the English mathematician Henry Briggs (1561-1630). who 
adapted this computational method to base 10: the German astronomer Johann Kepler (1550-1617) 
was the first to use the abbreviation "Log,"' in 1624, and Italian mathematician Bonaventura Cavalieri 
(1598-1647) was the first to use "log"' in 1632 (Cajori.1928/9, Vol. II: 105-106; Gul\ber, 1997: 152). 
Sometimes loge and logw will be seen instead of In and log. respectively. 
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As in Section 8.5. determination of whether sf or s~ is placed in the numerator 
of the variance ratio in Equation 8.32 depends upon the hypothesis test. and Za is 
either a one-tailed or two-tailed normal deviate depending upon the hypothesis to be 
tested; nl and 112 correspond to si and s~, respectively. This procedure is applicable if 
the variance ratio is > I. 

(b) Power of the Test. We may also estimate what the power of the variance ratio 
test would be if specified sample sizes were used. If the two sample sizes are the same 
(Le .• n = nl = 112). then Equations 8.32 and 8.33 may be rearranged, respectively. as 
follows: 

(8.37) 

ZP( I) ~ oj. - 2(2.30259) log ( 1,) - Z •. (8.38) 

After ZP( I ) is calculated. f3( I ) is determined from the last line of Appendix Table B.3, 
or from Appendix Table B.2, or from a calculator or computer that gives probability 
of a normal deviate; and power = 1 - f3( I ). If the two sample sizes are not the same. 
then the estimation of power may employ 

Z/3( I) = 2m(n2 - 2) In(si) _ Za 
m + I s~ 

(8.39) 

or 

Z/3(I) = /2111(112 - 2)(2.30259)IOg(S!) - Za. 
\j 111 + 1 s2 

(8.40) 

where 111 is as in Equation 8.34. 

L8 TESTING FOR DIFFERENCE BETWEEN TWO COEFFICIENTS OF VARIATION 

A very useful property of coefficients of variation is that they have no units of 
measurement. Thus. V's may be compared even if they are calculated from data 
having different units. as is the case in Example 8.10. And it may be desired to test the 
null hypothesis that two samples came from populations with the same coefficients of 
variation. 

EXAMPLE 8.10 A Two-Tailed Test for Difference Between Two Coeffi-
cients of Variation 

Ho: The intrinsic variability of male weights is the same as the intrinsic variability 
of male heights (Le .• the population coefficients of variation of weight and 
height are the same, namely Ho: all ILl = a21 IL2). 

Ho: The intrinsic variability of male weight is not the same as the intrinsic 
variability of male heights (i.e., the population coefficients of variation of 
weight and height are not the same, namely Hu: at! ILl #:- a21 IL2)' 
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(a) The variance-ratio test. 

Weight (kg) Log o/weight Height (cm) Log o/height 

72.5 
71.7 
60.8 
63.2 
71.4 
73.1 
77.9 
75.7 
72.0 
69.0 

nl = 10 

VI = 9 

XI = 70.73 kg 

1.86034 
1.85552 
1.78390 
1.80072 
1.85370 
1.86392 
1.89154 
1.87910 
1.85733 
1.83885 

SSI = 246.1610 kg2 

Sf = 27.3512 kg2 

SI = 5.23 kg 

Vi = 0.0739 

(SSlog)1 = 0.00987026 

(sfog») = 0.0010967 

F = 0.0010967 = 2.74 
0.00040019 

FO.05(2),9.10 = 3.78 

Therefore, do not reject Ho. 

183.0 
172.3 
180.1 
190.2 
191.4 
169.6 
166.4 
177.6 
184.7 
187.5 
179.8 

n2 = 11 

V2 = 10 

2.26245 
2.23629 
2.25551 
2.27921 
2.28194 
2.22943 
2.22115 
2.24944 
2.26647 
2.27300 
2.25479 

X 2 = 180.24 cm 

SS2 = 678.9455 cm2 

s~ = 67.8946 cm2 

S2 = 8.24cm 

V2 = 0.0457 

(SSlogh = 0.00400188 

(Sfogh = 0.00040019 

0.10 < P < 0.20 [P = 0.13] 

It is concluded that the coefficient of variation is the same for the population 
of weights as it is for the population of heights. 

(b) The Z test. 

Vp = VI VI + Jl2 V2 = 9(0.0739) + 10(0.0457) = 1.1221 = 0.0591 
VI + V2 9 + 10 19 

V~ = 0.003493 

Z = r====V=1=-=V=2==== 

(
Vp2 V2) + .J!. (0.5 + V~) 
VI V2 
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0.0739 - 0.0457 
= -r========================= 

(0.00;493 + 0.~~493) (0.5 + 0.003493) 

= 0.0282 = 1.46 
0.0193 

ZO.05(2) = 10.05(2).00 = 1.960 

Do not reject Ho. 
0.10 < P < 0.20 [P = 0.14] 

It is concluded that the coefficient of variation is the same for the population 
of weights as it is for the population of heights. 

Lewontin (1966) showed that 

(8.41) 

may be used for a variance-ratio test, analogously to Equation 8.27. In Equation 

8.41, (stag); refers to the variance of the logarithms of the data in Sample i, where 
logarithms to any base may be employed. This procedure is applicable only if all 
of the data are positive (i.e., > 0), and it is demonstrated in Example 8.10a. Either 
two-tailed or one-tailed hypotheses may be tested. as shown in Section 8.5. 

This variance-ratio test requires that the logarithms of the data in each sample 
come from a normal distribution. A procedure advanced by Miller (1991) allows 
testing when the data, not their logarithms, are from normal distributions (that have 
positive means and variances). The test statistic, as demonstrated in Example 8.1 Ob, is 

where 

VI - V2 
Z = r================ 

+ V~)(O.5 
V2 

V - VI VI + V2 V2 
p-

VI + V2 

(8.42) 

(8.43) 

is referred to as the "pooled coefficient of variation," which is the best estimate of 
the population coefficient of variation, u/ J.L, that is common to both populations if 
the null hypothesis of no difference is true. 

This procedure is shown, as a two-tailed test, in Example 8.10b. Recall that critical 
values of Z may be read from the last line ofthe table of critical values of I (Appendix 
Table B.3), so Za(2) = ta(2).oo. One-tailed testing is also possible, in which case the 
alternate hypothesis would declare a specific direction of difference and one-tailed 
critical values (too( I ).a) would be consulted. This test works best if there are at least 
10 data in each sample and each population's coefficient of variation is no larger than 
0.33. An estimate of the power of the test is given by Miller and Feltz (1997). 
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8.9 CONFIDENCE LIMITS FOR THE DIFFERENCE BETWEEN TWO COEFFICIENTS OF VARIATION 

Miller and Feltz (1997) have provided this 1 - a confidence interval for uJ/ ILl -
u2/ IL2. where the two sampled populations are normally distributed: 

) vr 2 Vi 2 
VI - V2 ± Zo(2) -(0.5 + Vd + -(0.5 + V2 )· 

VI VI 
(8.44) 

8.10 NONPARAMETRIC STATISTICAL METHODS 

There is a large body of statistical methods that do not require the estimation of 
population parameters (such as IL and u) and that test hypotheses that are not 
statements about population parameters. These statistical procedures are termed 
nonparametric tests. * These are in contrast to procedures such as t tests. which are 
called parametric tests and which do rely upon estimates of population parameters 
and upon the statement of parameters in the statistical hypotheses. Although they 
may assume that the sampled populations have the same dispersion or shape, 
nonparametric methods typically do not make assumptions about the nature of the 
populations' distributions (e.g., there is no assumption of normality)~ thus they are 
sometimes referred to as distribution-free tests.t Both parametric and nonparametric 
tests require that the data have come at random from the sampled populations. 

Nonparametric tests (such as the two-sample testing procedure described in 
Section 8.11) generally may be applied to any situation where we would be justified 
in employing a parametric test (such as the two-sample I test), as well as in some 
instances where the assumptions of the latter are untenable. If either the parametric 
or non parametric approach is applicable. then the former will generally be more 
powerful than the latter (i.e .• the parametric method will typically have a lower 
probability of committing a Type II error). However, often the difference in power 
is not great and can be compensated by a small increase in sample size for the 
nonparametric test. When the underlying assumptions of a parametric test are 
seriously violated, then the non parametric counterpart may be decidedly more 
powerful. 

Most non parametric statistical techniques convert observed data to the ranks of 
the data (i.e., their numerical order). For example. measurements of 2.1, 2.3. 2.9, 
3.6, and 4.0 kg would be analyzed via their ranks of 1, 2. 3. 4, and 5. A possible 
disadvantage of this rank transformation of data is that some information is lost (for 
example, the same ranks would result from measurements of 1.1, 1.3. 2.9, 4.6, and 
5.0 kg). A possible advantage is that outliers (see Section 2.5) will have much less 
influence (for example, the same ranks would result from measurements of 2.1.2.3, 
2.9,3.6, and 25.0 kg). 

It is sometimes counseled that only nonparametric testing may be employed 
when dealing with ordinal-scale data, but such advice is based upon what Gaito 
(1980) calls "an old misconception"; this issue is also discussed by Anderson (1961), 
Gaito (1960), Savage (1957), and Stevens (1968). Interval-scale or ratio-scale mea­
surements are not intrinsically required for the application of parametric testing 
procedures. Thus parametric techniques may be considered for ordinal-scale data if 
the assumptions of such methods are met - typically, random sampling from normally 
distributed populations with homogeneity of variances. But ordinal data often come 

*The term nonparametric was first used by Jacob Wolfowitz in 1942 (David. 1995: Noether. 
1(84). 

tThe terms nonparametric: and (/istril>lttion-/ree are commonly used interchangeably. but they 
do not both define exactly the same set of statistical techniques (Noether. 1(84). 
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from nonnormal populations. in which case properly subjecting them to parametric 
analysis depends upon the robustness of the test to the extent of nonnormality 
present. 

8.11 TWO-SAMPLE RANK TESTING 

Several nonparametric procedures, with various characteristics and assumptions, have 
been proposed for testing differences between the dispersions, or variabilities, of two 
populations (e.g., see Hettmansperger and McKean. 1998: 118-127: Hollander and 
Wolfe, 1999: 141-188; Sprent and Smeeton, 2001: 175-185). A far more common 
desire for nonparametric testing is to compare two populations' central tendencies 
(i.e .. locations on the measurement scale) when underlying assumptions of the t test 
are not met. The most frequently employed such test is that originally proposed, for 
equal sample sizes. by Wilcoxon (1945)* and independently presented by Mann and 
Whitney (1947). for equal or unequal n's. It is called the Wilcoxon-Mann-Whitney 
test or, more commonly, the Mann-Whitney test. 

(a) The Mann-Whitney Test. For this test, as for many other nonparametric proce­
dures, the actual measurements are not employed, but we use instead the ranks of 
the measurements. The data may be ranked either from the highest to lowest or from 
the lowest to the highest values. Example 8.1 t ranks the measurements from highest 
to lowest: The greatest height in either of the two groups is given rank 1, the second 
greatest height is assigned rank 2, and so on, with the shortest height being assigned 
rank N, where 

N = n, + n2. (8.45) 

A Mann-Whitney statistic is then calculated as 

V + nl (nl + I) _ R" = n,n2 
2 

(8.46) 

where nil and nz are the number of observations in samples 1 and 2, respectively. 
and R, is the sum of the ranks in sample 1. The Mann-Whitney statistic can also be 
calculated as 

V , n2 (n2 + 1) R 
= n2n , + - 2 

2 
(8.47) 

(where R2 is the sum of the ranks of the observations in sample 2), because the 
labeling of the two samples as 1 and 2 is arbitrary.t If Equation 8.46 has been used to 
calculate V, then V' can be obtained quickly as 

(8.48) 

·Wilcoxon may have proposed this test primarily to avoid the drudgery of performing numerous 
t tests in a time before ubiquitous computer availability (Noether. 1984). Kruskal (1957) gives 
additional history. including identification of seven independent developments of the procedure 
Wilcoxon introduced. two of them prior to Wilcoxon. the earliest being by the German psychologist 
Gustav Deuchler in 1914. 

tThe Wilcoxon two-sample test (sometimes referred to as the Wilcoxon rank-sum test) uses a 
test statistic commonly called W. which is R\ or R2: the test is equivalent to the Mann-Whitney 
test. for V = Rz - n2(n2 + 1 )/2 and V' = R\ - nl (n\ + I )/2. V (or V') is also equal to 
the number of data in one sample that are exceeded by each datum in the othcr sample. Note in 
Example 8.11: For females. ranks 7 and H each exceed 6 male ranks and ranks 10. 11. and 12 each 
exceed all 7 males ranks. for a total of 6 + 6 + 7 + 7 + 7 = 33 = V: for males. rank 9 exceeds 2 
female ranks for a total of 2 = V'. 



164 Chapter 8 Two-Sample Hypotheses 

EXAMPLE 8.11 The Mann-Whitney Test for Nonparametric Testing of 
the Two-Tailed Null Hypothesis That There Is No Difference Between the 
Heights of Male and Female Students 

Ho: Male and female students are the same height. 

HA : Male and female students are not the same height. 

a = 0.05 

Ranks of Ranks of 
Heights of males Heights offemales male heights female heights 

193 em 
188 
185 
183 
180 
175 
170 

nl = 7 

178cm 
173 
168 
165 
163 

V I1I(n) + 1) + -'--'---''--~ - R) = nl1l2 
2 

= (7)(5) + (7)(8) 
2 

= 35 + 28 - 31 

= 32 

V' = 111112 - V 

= (7)(5) - 32 

=3 

VO.OS(2).75 = VO.OS(2).5.7 = 30 

As 32 > 30, Ho is rejected. 

31 

1 
2 
3 
4 
5 
7 
9 

RI = 31 

0.01 < P( V ~ 32 or V' :5 3) < 0.02 [P = 0.018]* 

6 
8 

10 
11 
12 

Therefore, we conclude that height is different for male and female students. 

and if Equation 8.47 has been used to compute V', then V can he ascertained as 

V = 111112 - V'. (8.49) 

*In many of the examples in this book. the exact probability of a statistic from a non parametric 
test (such as U) will be given within brackets. In some cases. this probability is obtainable from 
publishcd sources (e.g., Owen. 1962). It may also be given by computer software. in which case 
there are two cautions: The computer result may not be accurate to the number of decimal places 
given. and the computer may have used an approximation (such as the normal approximation in 
the case of U; sec Section 8.11d). which may result in a probability departing substantially from the 
exact probability. especially if the sample sizes are small. 
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For the two-tailed hypotheses. Ho: male and female students are the same height 
and HA: male and female students are not the same height. the calculated V or 
V' -whichever is larger-is compared with the two-tailed value of Va (2).III.n2 found 
in Appendix Table B.11. This table is set up assuming 11) ~ 112. so if 11) > 112, simply 
use Va (2) JI2J/I as the critical value. If either V or V'is as great as or greater than the 
critical value. Ho is rejected at the ex level of significance. A large V or V' will result 
when a preponderance of the large ranks occurs in one of the samples. As shown 
in Example 8.11, neither parameters nor parameter estimates are employed in the 
statistical hypotheses or in the calculations of V and V'. 

The values of V in the table are those for probabilities less than or equal to the 
column headings. Therefore. the V of 32 in Example 8.11 is seen to have a probability 
of 0.01 < P ~ 0.02. If the calculated V would have been 31. its probability would 
have been expressed as 0.02 < P < 0.05. 

We may assign ranks either from large to small data (as in Example 8.11). or from 
small to large. calling the smallest datum rank 1. the next largest rank 2, and so on. 
The value of V obtained using one ranking procedure will be the same as the value 
of V' using the other procedure. In a two-tailed test both V and V' are employed. so 
it makes no difference from which direction the ranks are assigned. 

In summary. we note that after ranking the combined data of the two samples, 
we calculate V and V' using either Equations 8.46 and 8.48. which requires the 
determination of R" or Equations 8.47 and 8.49. which requires R2. That is. the sum 
of the ranks for only one of the samples is needed. However. we may wish to compute 
both R, and R2 in order to perform the following check on the assignment of ranks 
(which is especially desirable in the somewhat more complex case of assigning ranks 
to tied data. as will be shown below): 

(8.50) 

Thus. in Example 8.11. 

R, + R2 = 30 + 48 = 78 

should equal 

N(N + 1) = 12(12 + 1) =78. 
2 2 

This provides a check on (although it does not guarantee the accuracy of) the 
assignment of ranks. 

Note that hypotheses for the Mann-Whitney test are not statements about param­
eters (e.g., means or medians) of the two populations. Instead. they address the more 
general. less specific question of whether the two population distributions of data are 
the same. Basically, the question asked is whether it is likely that the two samples 
came at random from the two populations described in the null hypothesis. If samples 
at least that different would occur with a probability that is small (i.e., less than the 
significance level, such as 0.05), then Ho is rejected. 

The Mann-Whitney procedure serves to test for difference between medians under 
certain circumstances (such as when the two sampled populations have symmetrical 
distributions), but in general it addresses the less specific hypothesis of similarity 
between the two populations' distributions. The Watson test of Section 26.6 may also 
be employed when the Mann-Whitney test is applicable, but the latter is easier to 
perform and is more often found in statistical software. 
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(b) The Mann-Whitney Test with Tied Ranks. Example 8.12 demonstrates an 
important consideration encountered in tests requiring the ranking of observations. 
When two or more observations have exactly the same value, they are said to be 
tied. The rank assigned to each of the tied ranks is the mean of the ranks that 
would have been assigned to these ranks had they not been tied. * For example, in 
the present set of data, which are ranked from low to high, the third and fourth 
lowest values are tied at 32 words per minute, so they are each assigned the rank 
of (3 + 4 )/2 = 3.5. The eighth, ninth, and tenth observations are tied at 44 words 
per minute, so each of them receives the rank of (8 + 9 + 10)/3 = 9. Once the 
ranks have been assigned by this procedure, V and V' are calculated as previously 
described. 

(c) The One-Tailed Mann-Whitney Test. For one-tailed hypotheses we need to 
declare which tail of the Mann-Whitney distribution is of interest, as this will 
determine whether V or V'is the appropriate test statistic. This consideration 
is presented in Table 8.2. In Example 8.12 we have data that were ranked from 
lowest to highest and the alternate hypothesis states that the data in group 1 
are greater in magnitude than those in group 2. Therefore, we need to compute 
V' and compare it to the one-tailed critical value, Va( 1 ),171 J 12' from Appendix 
Table B.l!. 

TABLE 8.2: The Appropriate Test Statistic for the One-Tailed Mann-Whitney Test 

Ranking done from 
low 10 high 

Ranking done from 
high to low 

Ho: Group 1 ~ Group 2 
HA : Group 1 < Group 2 

v 

V' 

Ho: Group 1 s Group 2 
HA : Group 1 > Group 2 

V' 

V 

(d) The Normal Approximation to the Mann-Whitney Test. Note that Appendix 
Table B.ll can be used only if the size of the smaller sample does not exceed twenty 
and the size of the larger sample does not exceed forty. Fortunately, the distribution 
of V approaches the normal distribution for larger samples. For large 111 and 112 we 
use the fact that the V distribution has a mean of 

111112 
{.Lv = -2-' 

which may be calculated, equivalently, as 

and a standard error of 

/LV = 
V + V' 

2 

uu = 
111112(N + 1) 

12 

(8.51) 

(8.51a) 

(8.52) 

* Although other procedures have been proposed to deal with lies, assigning the rank mean has 
predominated for a long time (e.g., Kendall, 1945). 
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EXAMPLE 8.12 The One-Tailed Mann-Whitney Test Used to Determine 
the Effectiveness of High School Training on the Typing Speed of College 
Students. This Example Also Demonstrates the Assignment of Ranks to Tied 
Data 

HI): Typing speed is not greater in college students having had high school typing 
training. 

H A: Typing speed is greater in college students having had high school typing 
training. 

a = 0.05 

Typing Speed (words per minute) 
With training Without training 

(rank in parentheses) (rank in parentheses) 

44 (9) 
48 (12) 
36 (6) 

32 (3.5) 
51 (13) 
45 (11) 
54 (14) 
56(15) 

32 (3.5) 
40 (7) 
44 (9) 
44 (9) 
34 (5) 
30 (2) 
26 (1) 

Because ranking was done from low to high and the alternate hypothesis states 
that the data of group one are larger than the data of group two, use V f as the test 
statistic (as indicated in Table 8.2). 

v, + n2(n2 + 1) - R2 = 1l2n l 
2 

= (7)(8) + (7)(8) - 36.5 
2 

= 56 + 28 - 36.5 

= 47.5 

VO.05( I ).8.7 = VO.05( I ).7.8 = 43 

As 47.5 > 43. reject Ho. 

0.01 < P < 0.025 [P = 0.012] 

Consequently, it is concluded that college-student typing speed is greater for 
students who had typing training in high school. 

where N = nl + n2. as used earlier. Thus. if a V. or a V f • is calculated from data 
where either nl or n2 is greater than that in Appendix Table B.ll, its significance can 
be determined by computing 

z = _V_---'-J.L~U (8.53) 
(TU 
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or, using a correction for continuity, by 

Z(, = I V - JLV I - 0.5. (8.54) 
(TV 

The continuity correction is included to account for the fact that Z is a continuous 
distribution. but V is a discrete distribution. However, it appears to be advisable 
only if the two-tailed P is about 0.05 or greater (as seen from an expansion of the 
presentation of Lehmann, 1975: 17). 

Recalling that the t distribution with v = 00 is identical to the normal distribution, 
the critical value, Zo, is equal to the critical value, 10 •00, The normal approximation is 
demonstrated in Example 8.13. When using the normal approximation for two-tailed 
testing, only V or V' (not both) need be calculated. If V'is computed instead of U, 
then V'is simply substituted for V in Equation 8.53 or 8.54, the rest of the testing 
procedure remaining the same. 

EXAMPLE 8.13 The Normal Approximation to a One-Tailed Mann-Whitney 
Test to Determine Whether Animals Raised on a Dietary Supplement Reach 
a Greater Body Weight Than Those Raised on an Unsupplemented Diet 

In the experiment, 22 animals (group 1) were raised on the supplemented diet, 
and 46 were raised on the unsupplemented diet (group 2). The body weights were 
ranked from 1 (for the smallest weight) to 68 (for the largest weight). and V was 
calculated to be 282. 

Ho: Body weight of animals on the supplemented diet are not greater than those 
on the unsupplemented diet. 

HA : Body weight of animals on the supplemented diet are greater than those on 
the unsupplemcntcd diet. 

n I = 22, n2 = 46, N = 68 

V = 282 

V' = nln2 - V = (22)(46) - 282 = 1012 - 282 = 730 

/J-V = n 1112 = (22)( 46) = 506 
2 2 

(TV = (22)( 46 )( 68 + 1) = 76.28 
12 

Z = V' - JLV = 224 = 2.94 
(TV 76.28 

For a one-tailed test at a = 0.05, tU.05( I ).00 = ZO.05( I) = 1.6449. 

As Z = 2.94 > 1.6449, reject Ho. [P = 0.0016] 

So we conclude that the supplemental diet results in greater body weight. 

• One-tailed testing may also be performed using the normal approximation. Here 
one computes either V or V', in accordance with Table 8.2. and uses it in either 
Equation 8.55 or 8.56, respectively, inserting the correction term (-0.5) if P is about 
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0.025 or greater: 

Z V - J.LU - 0.5 'f V . d c = • 1 IS use . or (8.55) 
uu 

Z V' - J.LU - 0.5 'f V' . d (' = ,liS use . (8.56) 
CJ'U 

The resultant Zc is then compared to the one-tailed critical value, Za( I), or. equiva­
lently, ta( 1 ).00; and if Z ~ the critical value, then Ho is rejected. * 

If tied ranks exist and the normal approximation is utilized. the computations are 
slightly modified as follows. One should calculate the quantity 

(8.57) 

where t; is the number of ties in a group of tied values, and the summation is performed 
over all groups of ties. Then. 

u = I 111112 • N3 - N - L t 
U 'J N2 - N 12 ' 

(8.58) 

and this value is used in place of that from Equation 8.52. (The computation of L t is 
demonstrated, in a similar context, in Example 10.11.) 

The normal approximation is best for a( 2) = 0.10 or 0.05 [or for a( 1) = 0.05 or 
0.025] and is also good for a( 2) = 0.20 or 0.02 [or for a( 1) = 0.10 or 0.01 J. with 
the approximation improving as sample sizes increase; for more extreme significance 
levels it is not as reliable, especially if nl and 112 are dissimilar. Fahoome (2002) 
determined that the normal approximation (Equation 8.53) performed well at the 
two-tailed 0.05 level of significance (i.e., the probability of a Type I error was between 
0.045 and 0.055) for sample sizes as small as 15. and at a(2) = 0.01 (for P(Type I 
error) between 0.009 and 0.011} for nl and n2 of at least 29. Indeed. in many cases 
with even smaller sample sizes. the normal approximation also yields Type I error 
probabilities very close to the exact probabilities of V obtained from specialized 
computer software (especially if there are few or no ties).t Further observations on 
the accuracy of this approximation are given at the end of Appendix Table B.l1. 

Buckle. Kraft. and van Eeden (1969) propose another distribution. which they refer 
to as the "uniform approximation." They show it to be more accurate for nl #: n2. 
especially when the difference between n1 and 112 is great. and especially for small a. 

Fix and Hodges (1955) describe an approximation to the Mann-Whitney distribu­
tion that is much more accurate than the normal approximation but requires very 
involved computation. Hodges. Ramsey, and Wechsler (1990) presented a simpler 
method for a modified normal approximation that provides very good results for 
probabilities of about 0.001 or greater. Also, the two-sample t test may be applied to 
the ranks of the data (what is known as using the rank transformation of the data). 
with the probability of the resultant t approaching the exact probability for very 
large n. But these procedures do not appear to be generally preferable to the normal 
approximation described above. at least for the probabilities most often of interest. 

*By this procedure. Z must be positive in order to reject Hu. If it is negative. then the probability 
of Ho being true is.P > O.SO. 

t As a demonstration of this. in Example 8.11 the exact probability is n.018 and the probability 
by the normal approximation is 0.019: and for Example 8.12. the exact probability and the normal 
approximalion are both 0.012. In Exercise 8,12. P for U is 0.53 and P for Z is 0.52: and in Exercise 
8.13. P for U is 0.41 and P for Zc is 0.41. 
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(e) The Mann-Whitney Test with Ordinal Data. The Mann-Whitney test may also 
be used for ordinal data. Example 8.14 demonstrates this procedure. In this example, 
25 undergraduate students were enrolled in an invertebratc zoology course. Each 
student was guided through the course by one of two teaching assistants. but the same 
examinations and grading criteria were applied to all students. On the basis of the 
students' final grades in the course. we wish to test the null hypothesis that students 
(students in general. not just these 25) perform equally well under both teaching 
assistants. The variable measured (i.e .• the final grade) results in ordinal data. and the 
hypothesis is amenable to examination by the Mann-Whitney test. 

(f) Mann-Whitney Hypotheses Employing a Specified Difference Other Than Zero. 
Using the two-sample r test. one can examine hypotheses such as Ho: Jl.1 - Jl.2 = ILO. 
where ILO is not zero. Similarly. the Mann-Whitney test can be applied to hypotheses 
such as HII: males are at least 5 em taller than females (a one-tailed hypothesis with 
data such as those in Example 8.11) or Ho: the letter grades of students in one course 
are at least one grade higher that those of students in a second course (a one-tailed 
hypothesis with data such as those in Example 8.14). In the first hypothesis. one would 
list all the male heights but list all the female heights after increasing each of them 
by 5 cm. Then these listed heights would be ranked and the Mann-Whitney analysis 
would proceed as usual. For testing the second hypothesis. the letter grades for the 
students in the first course would be listed unchanged. with the grades for the second 
course increased by onc letter grade before listing. Then all the listed grades would 
be ranked and subjected to the Mann-Whitney test. * 

When dealing with ratio- or interval-scale data. it is also possible to propose 
hypotheses employing a multiplication. rather than an addition. constant. Consider 
the two-tailed hypothesis Hu: the wings of one species of insect are two times the 
length of the wings of a second species. We could test this by listing the wing lengths 
of the first species, listing the wing lengths of the second species after multiplying 
each length by two, and then ranking the members of the combined two lists and 
subjecting the ranks to the Mann-Whitney test. The parametric r testing procedure. 
which assumes equal population variance. ordinarily would be inapplicable for such 
a hypothesis. because mUltiplying the data by a constant changes the variance of the 
data by the square of the constan t. 

(g) Violations of the Mann-Whitney Test Assumptions. If the underlying assump­
tions of the parametric analog of a non parametric test are met. then either procedure 
may be employed but the parametric test will be the more powerful. The Mann­
Whitney test is one of the most powerful of nonparametric tests. When the I-test 
assumptions are met. the power of the Mann-Whitney test approaches 95.5% (i.e .• 
3/11') of the power of the t test as sample size increases (Mood. 1954).t And 

"To increase these grades by one leiter each. a grade of "B" would be changed to an "A." a 
"C" changed to a "B." and so on: a grade of" A" would have to be increased to a grade not on the 
original scale (e.g., call it a .. Z") and. when ranking. we simply have to keep in mind that this new 
grade is higher than an "A." 

• t Mood (1954) credits an earlier statement of this to 1948 lecture notes of E. J. G. Pitman and 
to a 1950 Dutch publication by H. R. Van der Vaart. The statement that statistical test A is 0.955 
as powerful as test B means that the power of lest A with sample size of n tends (as 1/ increases) 
toward having the same power as test B with sample size of 0.95511: and this is referred to as the 
a.~ymplOti(" reltllive efficiel/cy (ARE) of lest A compared to test B. Because of its development 
by Australian statistician Edwin James George Pitman (IS97-1993). ARE is often called Pitman 
efficiel/cy. which distinguishes it from a less commonly encountered definition of asymptotic relative 
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EXAMPLE 8.14 The Mann-Whitney Test for Ordinal Data 

Ho: The performance of students is the same under the two teaching assistants. 
HA : Students do not perform equally well under the two teaching assistants. 

a = 0.05 

Teaching Assistant A Teaching Assistant 8 

Grade Rank of grade Grade 

A 3 
A 3 
A 3 
A- 6 
B 10 
B 10 
c+ 13.5 
c+ 13.5 
C 16.5 
C 16.5 
c- 19.5 

n) = 11 
Rl = 114.5 

V + nl(nl + 1) _ R) 
= n)n2 

2 

= (11)(14) + (11)(12) - 114.5 
2 

= 154 + 66 - 114.5 

= 105.5 

V' = n)n2 - V 
= (11)(14) - 105.5 

= 48.5 

VO.05(2).I1.)4 = 114 

As 105.5 < 114. do not reject Ho. 

A 
A 
B+ 
B+ 
B 
B-
C 
C 
c-
D 
D 
D 
D 
D-

Rank of grade 

3 
3 
7.5 
7.5 
10 
12 
16.5 
16.5 
19.5 
22.5 
22.5 
22.5 
22.5 
25 

• 0.10 < P( V ~ 105.5 or V ::s; 48.5) < 0.20 

Thus, the conclusion is that student performance is the same under both teaching 
assistants. 

efficiency by Bahadur (1967: Blair and Higgins, 1985). Although Pitman efficiency is defined in 
terms of very large n. it is generally a good expression of relative efficiency of two tests even with 
small" (Conover. 1999: 112). 
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for some extremely nonnormal distributions, the Mann-Whitney test is immensely 
more powerful (Blair and Higgins, 1980a, 1980b; Blair, Higgins, and Smitley, 1980; 
Hodges and Lehman, 1956). The power of the Mann-Whitney test will never be less 
than 86.4% of the power of the I test (Conover, 1997: 297; Hodges and Lehman. 
1956). 

The Mann-Whitney test does not assume normality of the sampled populations 
as the ( test does, but the calculated U is affected not only by the difference 
between the locations of the two populations along the measurement scale but also 
by difference between the shapes or dispersons of the two populations' distributions 
(Boneau. 1962). However, the test is typically employed with the desire to conclude 
only whether there are differences between measurement locations. in which case it 
must be assumed that the two sampled populations have the same dispersion and 
shape, a premise that is often ignored, probably in the belief that the test is more 
robust to unequal dispersion than is the I test. But the Mann-Whitney test is, indeed. 
adversely affected by sizable differences in the variances or the shapes of the sampled 
populations, in that the probability of a Type I error is not the specified a (Fligner 
and Policello, 1981).* As with the two-sample I test, if the two sample sizes are not 
equal, and if the larger (7'2 is associated with the larger sample, then the probability of 
a Type I error will be less than a (and the test is called conservalive); and if the smaller 
sample came from the population with the larger variance, then this probability will 
be greater than a (and the test is called liberal) (Zimmerman. 1987). The greater 
the difference between the variances, the greater the departure from a. In situations 
where the Mann-Whitney test is conservative, it has more power than the I test 
(Zimmerman, 1987). The power of the Mann-Whitney test may also be decreased, 
especially in the presence of outliers, to an extent to which the variances differ; but 
this decrease is far less than it is with ( testing (Zimmerman. 1994, 1996, 1998, 20(0). 
But in some cases unequal variances affect the probability of a Type I error using U 
more severely than if tor (' were employed (Zimmerman. 1998). 

The Mann-Whitney test is included in the guidelines (described in Section 8.1d) 
for when various two-sample statistical procedures are appropriate. 

8.12 TESTING FOR DIFFERENCE BETWEEN TWO MEDIANS 

The null hypothesis that two samples came from populations having the same median 
can be tested by the median leSI described by Mood (1950: 394-395). The procedure 
is to determine the grand median for all the data in both samples and then to tabulate 
the numbers of data above and below the grand median in a 2 x 2 contingency 
table, as shown in Example 8.15. This contingency table can then be analyzed by the 
chi-square test of Section 23.3b or G test of Section 23.7. 

Example 8.15 demonstrates the median test for the data of Example 8.14. In 
many cases, such as this one, one or more of the data will be equal to the grand 
median (in this instance a grade of C +) and. therefore, the number of data above 

*F1igncr and Policello (19Rl: Hollander and Wolfe. 1999: 135-139) addrcssed situations where 
the sampled populations hC!Ve dissimilar variances (the "Behrens-Fisher problem" discussed in 
Section 8,1 c). in addition to being nonnormal. They presented a modified Mann-Whitney procedure. 
requiring that the underlying distributions be symmetrical. along with tables of critical values for 
use with sample sizes :s; 12 and with a normal approximation good when the /l's are much larger 
than 12. 
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EXAMPLE 8.15 
Example 8.14 

The Two-Sample Median Test, Using the Data of 

Ho: The two samples came from populations with identical medians (i.e., the 
median performance is the same under the two teaching assistants). 

HA: The medians of the two sampled populations are not equal. 

a = 0.05 

The median of a1l25 measurements in Example 8.14 is X(25+ 1)2 = Xl3 = grade 
of C+. The following 2 X 2 contingency table is then produced: 

Number Sample 1 Sample 2 Total 

Above median 6 6 12 
Not above median 3 8 11 

Total 9 14 23 

Analyzing this contingency table (Section 23.3): 

( n2)Z X2 = n 1f11l22 - flzf211 -

c (Ct}(Cz)(Rt}(R2) 
(8.59) 

= 0.473. 

X Z = 3.841 O.OS.I 

Therefore, do not reject Ho. 

0.25 < P < 0.50 [P = 0.49] 

So it is concluded that the two samples did not come from populations with 
different medians. 

and below the median will be less than the number of original data. Some authors 
and computer programs have preferred to tabulate the row categories as "above 
median" and "not above median" (that is. "at or below the median") instead of 
"above median" and "below median." This will retain in the analysis the original 
number of data, but it does not test the median-comparison hypothesis as well, and 
it can produce conclusions very different from those resulting from analyzing the 
same data categorized as "below median" and "not below median" (Le., "at or above 
median "). Others have suggested deleting from the analysis any data that are tied 
at the grand median. This, too, will give results that may be quite different from the 
other procedures. If there are many data at the grand median, a good option is to 
place al1 data in a contingency table with three. instead of two, rows: "above median." 
"at median," and "below median." 
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The median test is about 64% as powerful as the two-sample t test when used on 
data to which the latter is applicable (Mood, 1954). and about 67% as powerful as the 
Mann-Whitney test of the preceding section.· 

If the two sampled populations have equal variances and shapes, then the Mann­
Whitney test (Section B.11) is a test for difference between medians (Fligner and 
Policello, 1981). 

One can also test whether the difference between two population medians is of 
a specified magnitude. This would be done in a fashion similar to that indicated in 
Section B.l1 f for the Mann-Whitney test. For example, to hypothesize that the median 
of population 1 is X units greater than the median of population 2, X would be added 
to each datum in sample 2 (or X would be subtracted from each datum in sample 1) 
prior to performing the median test. 

8.13 TWO-SAMPLE TESTING OF NOMINAL-SCALE DATA 

We may compare two samples of nominal data simply by arranging the data in a 
2 x C contingency table and proceeding as described in Chapter 23. 

8.14 TESTING FOR DIFFERENCE BETWEEN TWO DIVERSITY INDICES 

If the Shannon index of diversity, H' (Section 4.7), is obtained for each of two samples, 
it may be desired to test the null hypothesis that the diversities of the two sampled 
populations are equal. Hutcheson (1970) proposed a t test for this purpose: 

t = Hi - H2• 

where 
s H' - H' = Js2H , + s2H,· 

J 2 I 2 

The variance of each H' may be approximated by 

2 _};. /; log2 /; - (};. /; log/; )2/ n 
Sfl' -

n2 

(B.60) 

(B.61) 

(B.62) 

(Basharin. 1959: LIold, Zar. and Karr. 196B).t where SJI. and n are as defined in 
Section 4.7, and log f signifies (log f)2. Logarithms to any base may be used for 
this calculation, but those to base 10 are most commonly employed. The degrees of 
freedom associated with the preceding t are approximated by 

(B.63) 

(Hutcheson. 1970). 

• As the median test refers to a population parameter in hypothesis testing. it is not a 
non parametric test: but it is a distribution-free procedure. Although it does not assume a specific 
underlying distribution (e.g .• normal). it does assume that the two populations have the same shape 
(a characteristic that is addressed by Schlittgen. 1979). 

tBowman et al. (1971) give an approximation [their Equation (lib)] that is more accurate for 
•• ~_. n_nll •• 
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Example 8.16 demonstrates these computations. If one is faced with many calcu­
lations of 5~;, the tables of f; log2 f; provided by Lloyd, Zar, and Karr (1968) will be 
helpful. One:tailed as well as two-tailed hypotheses may be tested by this procedure. 
Also, the population diversity indices may be hypothesized to differ by some value, 
/LQ, other than zero, in which case the numerator of t would be IH; - Hzl - /L(). 

EXAMPLE 8.16 Comparing Two Indices of Diversity 

Ho: The diversity of plant food items in the diet of Michigan blue jays is the same 
as the diversity of plant food items in the diet of Louisiana blue jays. 

H A: The diversity of plant food items in the diet of Michigan blue jays is not the 
same as in the diet of Louisiana blue jays. 

ex = 0.05 

Michigan Bille Jays 

Diet item f; f; logf; f;log2f; 

Oak 47 78.5886 131.4078 
Corn 35 54.0424 83.4452 
Blackberry 7 5.9157 4.9994 
Beech 5 3.4949 2.4429 
Cherry 3 1.4314 0.6830 
Other 2 0.6021 0.1812 

51 = 6 nl = ~f; ~f; logf; ~f; loi f; 
=99 = 144.0751 = 223.1595 

H' = n log" - ~f; logf; = 197.5679 - 144.0751 
I n 99 

= 0.5403 

2 = ~f; log2 f; - ~~f; logf;)2 In = 0.00137602 5H , 
I n-

Louisiana Blue Jays 

Diet item f; f; logf; f;log2f; 

Oak 48 80.6996 135.6755 
Pine 23 31.3197 42.6489 
Grape 11 11.4553 11.9294 
Corn 13 14.4813 16.1313 
Blueberry 8 7.2247 6.5246 
Other 2 0.6021 0.1812 

52 = 6 n2 = ~f; ~f; logf; ~f; log2 f; 
= 105 = 145.7827 = 213.0909 
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, nlogn - '2Ji log/; = 212.2249 - 145.7827 = 0.6328 
H2 = n 105 

SH; -112 = J!i~; + s~i = JO.OO137602 + 0.00096918 = 0.0484 

JI = 

t = Hi - H2 = -0.0925 = -1.911 
SH; -IIi 0.0484 

(0.00137602 + 0.00096918)2 

(0.00137602 )2 + (0.00096918 )2 

99 105 

= 0.000005499963 = 196 
0.000000028071 

to.05(2).1% = 1.972 

Therefore. do not reject Ho. 

0.05 < P < 0.10 [P = 0.057] 

The conclusion is that the diversity of food items is the same in birds from Michigan 
and Louisiana. 

8.15 CODING DATA 

As explained in Section 3.5, coding raw data can sometimes simplify computations. 
Coding will affect the sample statistics of this chapter (i.e., measures of central 
tendency and of variability, and their confidence limits) as described in Appendix 
C. The test statistics and hypothesis-test conclusions in Sections 8.1-8.7 will not be 
altered by coding. except that coding may not be used in performing the Levene 
test (Section 8.5b). Neither may coding be used in testing for difference between 
two coefficients of variation (Section 8.8). except that it is permissible if using the 
F test and coding by addition (or subtraction, but not multiplication or division). 
There is no effect of coding on the Mann-Whitney test (Section 8.11) or median 
test (Section 8.12). And. for testing difference between two diversity indices (Section 
8.14). coding by multiplication (or division, but not addition or subtraction) may be 
employed. 

Regarding the topics of Chapters 7 and 9, coding affects the sample statistics (and 
their confidence limits) as indicated in Appendix C. Coding may be employed for any 
of the hypothesis tests in those chapters, except that only coding by multiplication (or 
division, but not addition or subtraction) may be used for testing or coefficients of 
variation (Section 7.14). 
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EXERCISES 

&,1. Using the following data. test the null hypothesis 
that male and female turtles have the same mean 
serum cholesterol concentrations. 

Serum Cholesterol (mgll00 ml) 

Male Female 

220.1 223.4 
218.6 221.5 
229.6 230.2 
228.8 224.3 
222.0 223.8 
224.1 230.8 
226.5 

&.2. It is proposed that animals with a northerly dis­
tribution have shorter appendages than animals 
from a southerly distribution. Test an appropriate 
hypothesis (by computing I). using the following 
wing-length data for birds (data are in millimeters). 

Norlhern Southern 

120 116 
113 117 
125 121 
118 114 
116 116 
114 118 
119 123 

120 

8J. Two populations of animal body weights are ran­
domly sampled. and X I = 4.6 kg. sf = 11.02 kg2• 
nl = 18,X2 = 6.0kg,~ = 4.35 kg2, and n2 = 26. 
Testthe hypotheses Ho: III 2: 112 and HA: III < 112 
using the Behrens-Fisher test. 

8.4. If XI = 334.6~. X2 = 349.8g, SSI = 364.34g2, 

SS2 = 286.78g . nl = 19, and n2 = 24. test the 
hypothesis that the mean weight of population 2 
is more than \0 g greater than the mean weight of 
population I. 

8.S. For the data of Exercise 8.1 : 

(a) If the null hypothesis is rejected. compute 
the 95% confidence limits for Ill. 1l2. and 
III - 1l2· If Ho is not rejected. compute 
the 95% confidence limits for the common 
population mean. IIp. 

(b) Calculate the 95% prediction interval for 
the difference between the mean or an addi­
tional 25 data from the male population and 
an additional 20 data from the female popu­
lation. 

8.6. A sample is to be taken from each of two pop­
ulations from which previous samples of size 
14 have had SSI = 244.66 (km/hr)2 and SS2 = 
289.18 (km/hr)2. What size sample should be taken 
from each population in order to estimate III - 112 
to within 2.0 km/hr. with 95% confidence? 

8.7. Consider the populations described in Exercise 8.6. 

(a) How large a sample should we take from 
each popUlation if we wish to detect a differ­
ence between III and 112 of at least 5.0 km/hr. 
using a 5% significance level and a 1 test with 
90% power? 

(b) If we take a sample of20 from one population 
and 22 from the other. what is the smallest 
difference between III and 112 that we have 
a 90% probability of detecting with a 1 test 
using a = 0.05? 

(c) If nl = n2 = 50. and a = 0.05. what is the 
probability of rejecting Ho: III = 112 when 
III - 112 is as small as 2.0 kmlhr? 

8.8. The experimental data of Exercise 8.1 might have 
been collected to determine whether serum choles­
terol concentrations varied as much in male turtles 
as in female turtles. With those data. use the 
variance-ratio test to assess Ho: O"f = O"~ versus 

2 ') 
0'1 :f:; O'i. 

8.9. Let us propose that wings of a particular bird 
species vary in length more in the northern part 
of the species' range than in the southern portion. 
Use the variance ratio test for Ho: 0'1 $ 0'2 versus 
HA : 0'1 > 0"2 with the data of Exercise 8.2. 

8.10. A sample of 21 data from one population has a 
variance of 38.71 g2. and a sample of 20 data from 
a second popUlation has a variance of 21.35 g2. 

(a) Calculate the 95% two-tailed confidence 
interval for the ratio of O'I/O'~' 

(b) How large a sample must be taken from each 
population if we wish to have a 90% chance 
ofrejecting Ho: 0'1 $ O"~ when HA : O'I > O'~ 
is true and we apply the variance-ratio test at 
the 5% level of significance? 

(c) What would be the power of a variance-ratio 
test of this Ho. with a = 0.05. if sample sizes 
of 20 were used? 

8.11. A sample of twenty-nine plant heights of mem­
bers of a certain species had XI = 10.74 em and 
s2 = 14.62 cm2. and the heights of a sample of 
twenty-five from a second species had X2 = 14.32 
cm and s2 = 8.45 cm2. Test the null hypothesis 
that the coefficients of variat ion of the two sampled 
populations are the same. 
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8.12. Using the Mann-Whitney test, test the appropriate 
hypotheses for the data in Exercise 8.1. 

8.13. Using the Mann-Whitney procedure. test the 
appropriate hypotheses for the data in Exer­
cise 8.2. 

8.14. The following data are volumes (in cubic microns) 
of avian erythrocytes taken from normal (diploid) 
and intersex (triploid) individuals. Test the hypoth­
esis (using the Mann-Whitney test) that the volume 
of intersex cells is 1.5 times the volume of normal 
cells. 

Normal Intersex 

248 380 
236 391 
269 377 
254 392 
249 398 
251 374 
260 
245 
239 
255 



CHAPTER 9 

Paired-Sample Hypotheses 

9.1 TESTING MEAN DIFFERENCE BETWEEN PAIRED SAMPLES 
9l CONFIDENCE LIMITS FOR THE POPULATION MEAN DIFFERENCE 
9.3 POWER, DETECTABLE DIFFERENCE AND SAMPLE SIZE IN PAIRED-SAMPLE 

TESTING OF MEANS 
9.4 TESTING FOR DIFFERENCE BETWEEN VARIANCES FROM TWO CORRELATED POPULATIONS 
9.5 PAIRED-SAMPLE TESTING BY RANKS 
9.6 CONFIDENCE LIMITS FOR THE POPULATION MEDIAN DIFFERENCE 

The two-sample testing procedures discussed in Chapter H apply when the two 
samples arc independent. independence implying that each datum in one sample is 
in no way associated with any specific datum in the other sample. However. there 
arc instances when each ohservation in Sample I is in some way physically associated 
with an ohservation in Sample 2. so that the data may he sakI to occur in pairs. 

For example. we might wish to test the null hypothesis that the left foreleg 
and left hind leg lengths of deer arc equal. We could make these two measurc­
ments on a numher of deer. hut we would have to rememher that the variation 
among the data might he owing to two possihle factors. First. the null hypothe­
sis might he false. there heing. in fact. a difference hetween foreleg and hindleg 
length. Second. deer arc of different sizes. and for each deer the hindleg length 
is correlated with the forelcg length (i.e .. a deer with a large front leg is likely to 
have a large hind leg). Thus. as Example Y.I shows. the data can he tahulated in 
pairs. one pair (i.e .. one hindleg measurement and one foreleg measurement) pcr 
animal. 

9.1 TESTING MEAN DIFFERENCE BETWEEN PAIRED SAMPLES 

The two-tailed hypotheses implied hy Example Y.I are 110: f-LI - f-L2 = () and 
II,,: f-L I - f-L2 *" () (which. as pointed out in Section H.1. could also he stated 
110: f-LI = f-L2 and H,,: Jl.1 *" Jl.2). However. we can dcline a mean popUlation dif­
ference. f-Ld. as Jl.1 - Jl.2. and write the hypotheses as 110: Jl.tl = 0 and II,,: f-Ltl *" O. 
Although the usc of either f-Ltf or Jl.1 - f-L2 is correcl. the former will he used here 
when it implies the paired-sample situation. 

The test statistic for the null hypothesis is 

(i 
1=-. (Y.I) 

Therefore. we do not usc the original measurements for the two samples. hut only 
the difference within each pair of measurements. One deals. then. with a sample of 
tlJ values. whose mean is (i and whose variance. standard deviation. and standard 
error arc denoted as .'i~. S,f. and sil respectively. Thus. the pairetj-stIIllple 11('51. as this 
procedure may he called. is essentially a one-sample I test. analogous to that descrihed 

179 
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EXAMPLE 9.1 The Two-Tailed Paired-Sample t Test 

Ho: J.Ld = 0 

HA: J.Ld *- 0 

a = 0.05 

Deer Hindleg length (cm) Foreleg length (cm) 
(j) (Xlj) 

1 142 
2 140 
3 144 
4 144 
5 142 
6 146 
7 149 
8 150 
9 142 

10 148 

n = 10 

s3 = 9.3444 cm2 

v=I1-1=9 

IO.05( 2 ).9 = 2.262 

(X2j) 

138 
136 
147 
139 
143 
141 
143 
145 
136 
146 

d = 3.3 cm 

SJ == 0.97 cm 

d 3.3 
I :=: - :=: - = 3.402 

SCi 0.97 
Therefore, reject H(). 

Difference (cm) 
(dj = Xlj - X2j) 

4 
4 

-3 
5 

-1 
5 
6 
5 
6 
2 

0.005 < P( It I 2: 3.402) < 0.01 [P = 0.008] 

in Sections 7.1 and 7.2. In the paired-sample I test, 11 is the number of differences 
(i.e., the number of pairs of data), and the degrees of freedom are v == n - 1. Note 
that the hypotheses used in Example 9.1 are special cases of the general hypotheses 
Ho: J.LtI :=: J.Lo and H;\: J.LtI *- J.LO, where J.LO is usually, but not always, zero. 

For one-tailed hypotheses with paired samples, one can test either Ho: J.Ld 2: J.LO 
and H;\: J.Ld < J.LO, or Ho: J.Ld :::;; J.Li,) and HA: J.Ld > J.Li,), depending on the question to 
be asked. Example 9.2 presents data from an experiment designed to test whether 
a new fertilizer results in an increase of more than 250 kglha in crop yield over 
the old fertilizer. For testing this hypothesis, 18 test plots of the crop were set up. 
It is probably unlikely to find 18 field plots having exactly the same conditions 
of soil, moisture, wind, and so on, but it should be possible to set up two plots 
with similar environmental conditions. If so, then the experimenter would be wise 
to set up nine pairs of plots, applying the new fertilizer .randomly to one plot 
of each pair and the old fertilizer to the other plot of that pair. As Example 9.2 
shows, the statistical hypotheses to be tested are Ho: J.Ld :::;; 250 kglha and HA: J.Ld > 
250 kglha. 

Paired-sample I-testing assumes that each datum in one sample is associated with 
one, but only one, datum in the other sample. So, in the last example, each yield using 
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EXAMPLE 9.2 A One-Tailed Paired-Sample t Test 

Ho: fJ.d $; 250 kglha 

/I A: fJ.d > 250 kg/ha 

a = 0.05 

Crop Yield (kg/ha) 
Piol Wilh new ferlilizer Will! old ferlilizer 
(j) 

I 
2 
3 
4 
5 
6 
7 
8 
9 

n=9 

s~ = 6502.78 (kg/ha)2 

v=n-I=X 

IO.O:'i( I ).X = I.X60 

(Xlj) 

2250 
2410 
2260 
2200 
2360 
2320 
2240 
2300 
2090 

li = 295.6 kg/ha 

.\",/ = 26.9 kg/ha 

(X2j) 

1920 
2020 
2060 
1960 
1960 
2140 
19XO 
1940 
1790 

I "= li - 250 = 1.695 
s/i 

Therefore, do not reject Ho. 

0.05 < P < 0.10 [P = 0'()641 

dj 

:UO 
3l)O 
200 
240 
400 
IXO 
260 
360 
300 

new fertilizer is paired with only one yield using old fertilizer: and it would have heen 
inappropriate to have some tracts of land large enough to collect two or more crop 
yields using each of the fertilizers. 

The paired-sample I test does not have the normality and equality of varianoes 
assumptions of the two-sample I test. hut it does assume that the differences. 
dj, come from a normally distrihuted population of differences. If a nonnormal 
distribution of differences is douhted. the nonparametric test of Section 9.5 should he 
considered. 

If there is, in fact. pairwise association of data from the two samples, then analysis 
hy the two-sample I test will often he less powerful than if the paired-sample I test 
was employed. and the two-sample test will not have a prohahility of a Type I error 
equal to the specified significance level. a. It appears that the lalter probahility will he 
increasingly less than a for increasingly large correlation hetween the pairwise data 
(and. in the less common situation where there is a negative correlation hetween the 
data. the prohahility will he greater than a): and only a small relationship is needed 
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to make the paired-sample test advantageous (Hines. 1996; Pollak and Cohen. 1981; 
Zimmerman, t 997). If the data from Example 9. t were subjected (inappropriately) 
to the two-sample t test, rather than to the paired-sample t test. a difference would 
not have been concluded. and a Type II error would have been committed. 

9.2 CONFIDENCE LIMITS FOR THE POPULATION MEAN DIFFERENCE 

In paired-sample testing we deal with a sample of differences, dj, so confidence limits 
for the mean of a population of differences, /Ld, may be determined as in Section 7.3. 
In the manner of Equation 7.6, the 1 - a confidence interval for /Lei is 

(9.2) 

For example, for the data in Example 9.1. we can compute the 95% confidence 
interval for /Ld to be 3.3 cm ± (2.262)( 0.97 cm) = 3.3 cm ± 2.2 cm; the 95% 
confidence limits are LI = I. t cm and Lz = 5.5 cm. 

Furthermore. we may ask. as in Section 7.5. how large a sample is required to be 
I - a confident in estimating /LIt to within ± d (using Equation 7.7). 

9.3 POWER, DETECTABLE DIFFERENCE AND SAMPLE SIZE IN PAIRED-SAMPLE 
TESTING OF MEANS 

By considering the paired-sample test to be a one-sample t test for a sample of 
differences, we may employ the procedures of Section 7.7 to acquire estimates of 
required sample size (n). minimum detectable difference (5), and power (l - (3), 
using Equations 7. to, 7. t 1. and 7. t 2. respectively. 

9.4 TESTING FOR DIFFERENCE BETWEEN VARIANCES FROM TWO CORRELATED POPULATIONS 

The tests of Section 8.5 address hypotheses comparing (J"T to (J"~ when the two samples 
of data are independent. For example, if we wanted to compare the variance of the 
lengths of deer forelegs with the variance of deer hindlegs. we could measure a sample 
of foreleg lengths of several deer and a sample of hindleg lengths from a different 
group of deer. As these are independent samples, the variance of the foreleg sample 
could be compared to the variance of the hindleg sample by the procedures of Section 
8.5. However. just as the paired-sample comparison of means is more powerful than 
independent-sample comparison of means when the data are paired (i.e .. when there 
is an association between each member of one sample and a member of the other sam­
pIe). there is a variance-comparison test more powerful than those of Section 8.5 if the 
data are paired (as they are in Example 9. t). This test takes into account the amount 
of association between the members of the pairs of data, as presented by Snedecor 
and Cochran (1989: 192-193) based upon a procedure of Pitman (1939). We compute: 

(F - 1) In - 2· 
I = -'---:"~rF::::::::;(=l =-===:;rz:=) - • (9.3) 

Here, n is the sample size common to both samples, r is the correlation coefficient 
described in Section 19.1 (Equation t 9.1). and the degrees of freedom associated 
with tare" = It - 2. For a two-tailed test (Ho: O"T = O"~ vs. HA : O"T ::1= O"~), either 
F = sTls~ or F = .\"~j.~T may be used. as indicated in Equation 8.29. and Ho is rejected 
if III ~ la(Z).". This is demonstrated in Example 9.3. For the one-tailed hypotheses, 
Ho: (J"T ~ (J"~ versus HA : uT > (T~. use F = sTj.~·~; for Ho: O"T ~ O"~ versus HA : uT < CT~. 
use F = s~/sT; and a one-tailed test rejects Hn if t ~ t(r( I ).1" 
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McCulloch (1987) showed that this t test is adversely affected if the two sampled 
populations do not have a normal distribution. in that the probability of a Type 
I error can depart greatly from the stated a. He demonstrated a testing proce­
dure that is very little affected by nonnormality and is only slightly less powerful 
than t when the underlying populations are normal. It utilizes the differences and 
the sums of the members of the pairs. just as described in the preceding para­
graph; but. instead of the parametric correlation coefficient (r) referred to above. it 
employs the nonparametric correlation coefficient (rs) and the associated significance 
testing of Section 19.9. This technique may be used for two-tailed or one-tailed 
testing. 

EXAMPLE 9.3 Testing for Difference Between the Variances of Two 
Paired Samples 

Ho: 

HA : 

a = 0.05 

,..2 _ ,..2 
"I - V2 

Using the paired-sample data of Example 9.1: 

11 = 10; 1/ = 8 

L x2 = 104.10; L y2 = 146.40 

LXY = 83.20 

sT = 11.57 cm2; s~ = 16.27 cm2 

F = 11.57 cm2/ 16.27 cm2 = 0.7111 

Using Equation 19.1. r = 0.6739. 

Using Equation 9.3: 

t = -0.656 and to.05(2).X = 2.306. so Ho is not rejected . 
• 

P > 0.50 [P = 0.54] 

9.5 PAIRED·SAMPLE TESTING BY RANKS 

The Wilcoxon paired-sample lest (Wilcoxon. 1945; Wilcoxon and Wilcox. 1964: 9) is a 
nonparametric analogue to the paired-sample I test. just as the Mann-Whitney test is 
a nonparametric procedure analogous to the two-sample t test. The literature refers 
to the test by a variety of names, but usually in conjunction with Wilcoxon's name* 
and some wording such as "paired sample" or "matched pairs," sometimes together 
with a phrase like "rank sum" or "signed rank." 

Whenever the paired-sample I test is applicable. the Wilcoxon paired-sample test 
is also applicable. Section 7.9 introduced the Wilcoxon procedure as a nonparametric 

*Frank Wilcoxon (1892-1965), American (born in Ireland) chemist and statistician. a major 
developer of statistical methods based on ranks (Bradley and Hollander. 1978). 
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one-sample test, but it is also very useful for paired-sample testing, just as the 
one-sample 1 and the paired-sample 1 test are basically the same. If the dj values 
are from a normal distribution, then the Wilcoxon test has 3/1T (i.e., 95.5 %) of the 
power in detecting differences as the I test has (Conover. 1999: 363; Mood. 1954). But 
when the d;'s cannot be assumed to be from a normal distribution. the parametric 
paired-sample 1 test should be avoided, for with nonnormality, the Wilcoxon paired­
sample test will be more powerful. sometimes much more powerful (Blair and 
Higgins, 1985). However, the Wilcoxon test assumes the population of differences is 
symmetrical (which the 1 test also does. for the normal distribution is symmetrical). 
The sign test of Section 24.6 could also be used for one-sample testing of the d;'s. 
It has only 2/1T (64%) of the power of the 1 test, and only 67% of the power of the 
Wilcoxon test, when the normality assumption of the 1 test is met (Conover, 1999: 
164). But the sign test does not assume symmetry and is therefore preferable to the 
Wilcoxon test when the differences come from a very asymmetric population. 

Example 9.4 demonstrates the use of the Wilcoxon paired-sample test with the 
ratio-scale data of Example 9.1. and it is best applied to ratio- or interval-scale data. 
The testing procedure involves the calculation of differences. as does the paired­
sample t test. Then one ranks the absolute values of those differences. from low to 
high, and affixes the sign of each difference to the corresponding rank. As introduced 
in Section 8.11, the rank assigned to tied observations is the mean of the ranks that 
would have been assigned to the observations had they not been tied. Differences of 
zero are ignored in this test. 

Then we sum the ranks having a plus sign (calling this sum T +) and the ranks with 
a minus sign (labeling this sum T_). For a two-tailed test (as in Example 9.4), we 
reject Hn if either T + or T _ is less Ihan or equal 10 the critical value, Ta (2),n, from 
Appendix Table B.12. In doing so. n is the number of differences that are not zero. 

or 

Having calculated either T + or T _ , the other can be determined as 

• T _ = n(n + 1) _ T + 
2 

T + = n(n + 1) _ T _ . 
2 

(9.4) 

(9.5) 

A different value of T + (call it T~) or T _ (call it T~ ) will be obtained if rank 1 is 
assigned to the largest. rather than the smallest, d; (i.e., the absolute values of the d;'s 
are ranked from high to low). If this is done, the test statistics are obtainable as 

T + = men + 1) - T'+ (9.6) 

and 
T _ = m(n + 1) - T~, (9.7) 

where m is the number of ranks with the sign being considered. 
Pratt (1959) recommended maintaining differences of zero until after ranking, and 

thereafter ignoring the ranks assigned to the zeros. This procedure may yield slightly 
better results in some circumstances, though worse results in others (Conover, 1973). 
If used, then the critical values of Rahe (1974) should be consulted or the normal 
approximation employed (see the following section) instead of using critical values 
of T from Appendix Table B.12. 
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If data are paired, the undesirable use of the Mann-Whitney test, instead of 
the Wilcoxon paired-sample test, may lead to a greater Type 11 error, with the 
concomitant inability to detect actual population differences. 

EXAMPLE 9.4 
Example 9.1 

The Wilcoxon Paired-Sample Test Applied to the Data of 

Ho: Deer hindleg length is the same as foreleg length. 

HA : Deer hind leg length is not the same as foreleg length. 

a = 0.05 

Hindleg Foreleg 
Deer length (cm) length (cm) Difference Rank of 
(j) (Xlj) (X2j) (dj = Xlj - X2j) Idjl 

1 142 13R 4 4.5 
2 140 136 4 4.5 
3 144 147 -3 3 
4 144 139 5 7 
5 142 143 -1 1 
6 146 141 5 7 
7 149 143 6 9.5 
8 150 145 5 7 
9 142 136 6 9.5 

10 148 146 2 2 

n = 10 

T + = 4.5 + 4.5 + 7 + 7.+ 9.5 + 7 + 9.5 + 2 = 51 

T_ = 3 + 1 = 4 

TO.05(2).IO = 8 

Since T - < TO.05(2).((). Ho is rejected. 

0.01 < P(T_ or T+ :::; 4) < 0.02 [P = 0.014] 

Signed rank of 
Idjl 

4.5 
4.5 

-3 
7 

-1 
7 
9.5 
7 
9.5 
2 

The Wilcoxon paired-sample test has an underlying assumption that the sampled 
population of d/s is symmetrical about the median. Another nonparametric test for 
paired samples is the sign test (described in Section 24.6), which does not have this 
assumption but is less powerful if the assumption is met. 

Section 8.11 f discussed the Mann-Whitney test for hypotheses dealing with dif­
ferences of specified magnitude. The Wilcoxon paired-sample test can be used in a 
similar fashion. For instance, it can be asked whether the hind legs in the population 
sampled in Example 9.4 are 3 cm longer than the lengths of the forelegs. This can be 
done by applying the Wilcoxon paired-sample test after subtracting 3 cm from each 
hindleg length in the sample (or adding 3 cm to each foreleg length). 
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(a) The One-Tailed Wilcoxon Paired-Sample Test. For one-tailed testing we use 
one-tailed critical values from Appendix Table B.12 and either T + or T _ as follows. 
For the hypotheses 

Ho: Measurements in population I $ measurements in population 2 
and HA : Measurements in population 1 > measurements in population 2. 

Ho is rejected if T - $ Ta( I ).tI. For the opposite hypotheses: 

Ho: Measurements in population 1 ~ measurements in population 2 
and H A: Measurements in population 1 < measurements in population 2. 

reject Ho if T + $ Ta( I )JI' 

(b) The Normal Approximation to the Wilcoxon Paired·Sample Test. For data 
consisting of more than 100 pairs* (the limit of Appendix Table B.12). the significance 
of T (where either T + or T _ may be used for T) may be determined by considering 
that for such large samples the distribution of T is closely approximated by a normal 
distribution with a mean of 

and a standard error of 

aT = 

Thus, we can calculate 

, 

n(n + 1) 
JLT = 

4 

n(n + 1)(2n + 1) 

24 

IT - JLTI Z= . 
aT 

(9.8) 

(9.9) 

(9.10) 

where for T we may usc. with identical results, either T + or T _. Then, for a two-tailed 
test, Z is compared to the critical value, Za(2). or, equivalently, ta (2).oo (which for 
a = 0.05 is 1.9600); if Z is greater than or equal to Za(2), then Ho is rejected. 

A normal approximation with a correction for continuity employs 

_ IT - JL TI - 0.5 Zc - . (9.11) 
"T 

As shown at the end of Appendix Table B.12, the normal approximation is better 
using Z for 0'(2) from 0.001 to 0.05 and is better using Zc for 0'(2) from 0.10 to 0.50. 

If there are tied ranks. then use 

where 

n(n + 1)(211 + 1) _ l:t 
2 

24 
(9.12) 

(9.13) 

is the correction for ties introduced in using the normal approximation to the 
Mann-Whitney test (Equation 8.57). applied here to ties of nonzero differences. 

*Fahoome (2002) concludcd that the normal approximation also works well for sample sizes 
smaller than 100. She found that the probability of a Type I error is between 0.045 and 0.055 for 
two-tailed tcsting at the O.OSleveJ of significance with n as small as 10 and is hctwecn 0.009 and 0.011 
when testing at a( 2) = 0.0\ with n as small as 22. Additional information regarding the accuracy of 
this approximation is given at the end of Appendix Table 8.12. 
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If we employ the Pratt procedure for handling differences of zero (described 
above). then the normal approximation is 

IT - n(n + 1) -4 m'(m' + 1) I - 0.5 

Z=r======================= LI 
2 

(9.14) 
n( n + 1)( 2n + 1) - m' (m' + 1)( 2m + 1) 

24 

(Cureton, 1967), where n is the total number of differences (including zero differ­
ences), and m' is the number of zero differences: ~ I is as in Equation 9.13. applied 
to ties other than those of zero differences. We calculate T + or T _ by including the 
zero differences in the ranking and then deleting from considerations both the zero 
d/s and the ranks assigned to them. For T in Equation 9.14, either T + or T _ may 
be used. If neither tied ranks nor zero d/s are present, then Equation 9.14 becomes 
Equation 9.11. 

One-tailed testing may also be performed using the normal approximation (Equa­
tion 9.10 or 9.11) or Cureton's procedure (Equation 9.14). The calculated Z is 
compared to Za( I) (which is the same as la( I ).00)' and the direction of the arrow in the 
alternate hypothesis must be examined. If the arrow points to the left (" <"). then Ho 
is rejected if Z ~ Zlf(l) and T+ < T _: if it points to the right (">"), then reject Ho 
if Z ~ Zu( I ) and T + > T - . 

Iman (1974a) presents an approximation hased on Student's I: 

T - J-LT 
t= -r~==========~========~ 

n2~n + 1)(2n + 1) (T - J-Lr)2 
(9.15) 

2(n - 1) n - 1 

with n - 1 degrees of freedom. As shown at the end of Appendix Table B.12. this 
performs slightly better than the normal approximation (Equation 9.10). The test 
with a correction for continuity is performed by subtracting 0.5 from IT - J-LTI in 
both the numerator and denominator of Equation 9.15. This improves the test for 
a( 2) from 0.001 to 0.10. but the uncorrected I is better for a( 2) from 0.20 to 0.50. 
One-tailed I-testing is effected in a fashion similar to that described for Z in the 
preceding paragraph. * 

Fellingham and Stoker (1964) discuss a more accurate approximation, but it 
requires more computation. and for sample sizes beyond those in Table B.12 the 
increased accuracy is of no great consequence. 

(c) The Wilcoxon Paired-Sample Test for Ordinal Data. The Wilcoxon test nonpara­
metrically examines differences between paired samples when the samples consist of 
interval-scale or ratio-scale data (such as in Example 9.4). which is legitimate because 
the paired differences can be meaningfully ordered. However. it may not work well 
with samples comprising ordinal-scale data because the differences between ordinal 
scores may not have a meaningful ordinal relationship to each other. For example. 
each of several frogs could have the intensity of its green skin color recorded on a scale 
of I (very pale green) to 10 (very deep green). Those data would represent an ordinal 
scale of measurement because a score of 10 indicates a more intense green than a 
score of9. a 9 represents an intensity greater than an 8, and so on. Then the skin-color 

*When Appendix Tahle 8.12 cannot he used. a slightly improved approximation is effected by 
comparing the mean of I and Z to the mean of the critical values of I and Z Oman. 1974a). 
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intensity could be recorded for these frogs after they were administered hormones 
for a period of time, and those data would also be ordinal. Howcver, the differences 
between skin-color intensities before and after the hormonal treatment would not nec­
essarily be ordinal data because. for example. the difference between a score of 5 and a 
score of 2 (a difference of 3) cannot be said to represent a difference in skin color that 
is greater than the difference between a score of 10 and a score of 8 (a difference of2). 

To deal with such a situation. Kornbrot (1990) presented a modification of the 
Wilcoxon paired-sample test (which she called the "rank difference test"), along with 
tables to determine statistical significance of its results. 

(d) Wilcoxon Paired.Sample Test Hypotheses about a Specified Difference Other 
Than Zero. As indicated in Section 9.1. the paired-sample t test can be used for 
hypotheses proposing that the mean difference is something other than zero. Similarly, 
the Wilcoxon paired-sample test can examine whether paired differences arc centcred 
around a quantity other than zero. Thus, for data such as in Example 9.2. the non­
parametric hypotheses could be stated as Ho: crop yield does not increase more than 
250 kg/ha with the new fertilizer. versus HA: crop yield increases more than 250 kglha 
with the new fertilizer. In that case, each datum for the old-fertilizer treatment would 
be increased by 250 kg/ha (resulting in nine data of 1920.2020.2060 kg/ha. etc.) to be 
paired with the nine new-fertilizer data of 2250. 2410. 2260 kg/ha, and so on. Then, 
the Wilcoxon paired-sample test would be performed on those nine pairs of data. 

With ratio- or interval-scale data, it is also possible to propose hypotheses consid­
ering a multiplication, rather than an addition, constant. This concept is introduced 
at the end of Section 8.11 f. 

9.6 CONFIDENCE LIMITS FOR THE POPULATIQN MEDIAN DIFFERENCE 

In Section 9.2, confidence limits were obtained for the mean of a population of 
differences. Given a population of differences, one can also determine confidence 
limits for the population median. This is done exactly as indicated in Section 7.10; 
simply consider the observed differences between members of pairs (dj) as a sample 
from a population of such differences. 

EXERCISES 

9.1. Concentrations of nitrogen oxides and of hydro­
carbons (recorded in ILg/m3) were determined in 
a certain urban area. 

(b) Calculate the 95% confidence interval for ILlt. 
9.2. Using the data of Exercise 9.1. test the appropriate 

hypotheses with Wilcoxon's paired-sample test. 
9.3. Using the data of Exercise 9.1, test for equality of 

the variances of the two kinds of air pollutants. 
(a) Test the hypothesis that both classes of air 

pollutants were present in the same concen­
tration. 

Day Nitrogen oxides Hydrocarhons 

I 104 108 
2 116 118 
3 84 89 
4 77 71 
5 61 66 
6 84 83 
7 81 88 
8 72 76 
9 61 68 

10 97 96 
11 8L 81 
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Multisample Hypotheses and the Analysis 
of Variance 

10.1 SINGLE-FACTOR ANALYSIS OF VARIANCE 
10.2 CONFIDENCE LIMITS FOR POPULATION MEANS 
10.3 SAMPLE SIZE, DETECTABLE DIFFERENCE, AND POWER 
10.4 NONPARAMETRIC ANALYSIS OF VARIANCE 
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10.6 HOMOGENEITY OF VARIANCES 
10.7 HOMOGENEITY OF COEFFICIENTS OF VARIATION 
10.8 CODING DATA 
10.9 MULTISAMPLE TESTING FOR NOMINAL-SCALE DATA 

When measurements of a varia hie arc ohtained for each of two independently 
collected samples, hypotheses such as those descrihed in Chapter 8 arc appropriate. 
However, biologists often obtain data in the form of three or more samples, which 
are from three or more popUlations, a situation calling for multisample analyses, as 
introduced in this chapter. 

It is tempting to some to test multisample hypotheses hy applying two-sample tests 
to all possihle pairs of samplt!s. In this manner, for example, one might proceed to test 
the null hypothesis Ho: J.LI = J.L2 = J.L?t hy testing each of the following hypotheses hy 
the two-sample f test: 110: J.LI = J.L2, Ho: ILl = J.L3, Ho: 1L2 = 1L3. But such a procedure, 
employing a series of two-sample tests to address a multisample hypothesis, is invalid. 

The calculated test statistic, t, and the critical values we find in the t tahle are 
designed to test whether the two sample statistics, XI and X2, are likely to have come 
from the same population (or from two populations with identical means). In properly 
employing the two-sample test, Wt! could randomly draw two sample means from 
the same population and wrongly concludt! that they are estimates of two different 
populations' means; hut we know that the prohahility of this error (the Type I error) 
will he no greater than a. However, consider that three random samples were taken 
from a single population. In performing the three possihle two-sample f tests indicated 
ahove, with ex = O.OS, the prohahility of wrongly concluding that two of the means 
estimate different parameters is 14'Yc •• considerably greater than lr. Similarly. if a is 
set at S% and four means are tested. two at a time. hy the two-sample f test. there are 
six pairwise Ilo's to he tested in this fashion, and there is a 26% chance of wrongly 
concluding a difference between one or more of the means. Why is this'? 

For each two-sample t test performed at the S% level of significance, there is a 95% 
prohahility that we shall correctly conclude not to reject I/o when the two population 
means are equal. For the set of three hypotheses. the prohahility of ('()rrect/y declining 
to reject all of them is only 0.953 = 0.86. This means that the probability of inCOr,.e('f~\' 
rejl:cting at least one of the Hu's is I - (1 - a)C = I - (0.95).1 = 0.14. where C 

• 
189 
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is the number of possible different pairwise combinations of k samples (see footnote 
to Table to.1). As the number of means increases, it becomes almost certain that 
performing all possible two-sample t tests will conclude that some of the sample 
means estimate different values of J-L. even if all of the samples came from the same 
population or from populations with identical means. Table 10.1 shows the probability 
of committing a Type I error if multiple t tests are employed to assess differences 
among more than two means. If. for example. there are 10 sample means. then 
k = to, C = 45, and 1 - 0.9545 = 1 - 0.10 = 0.90 is the probability of at least one 
Type I error when testing at the 0.05 level of significance. Two-sample tests, it must 
be emphasized, should not be applied to multisample hypotheses. The appropriate 
procedures are introduced in the following sections. 

TABLE 10.1: Probability of Committing at Least 
One Type I Error by Using Two-Sample t Tests 
for All C Pairwise Comparisons of k Means* 

Level of Significance. a. 
Used in the I Tests 

k C 0.10 0.05 0.01 0.005 O'{)()I 

2 I 0.10 0.05 0.01 0.005 O.{){)) 

3 3 0.27 0.14 0.03 0.015 0.003 
4 6 0.47 0.26 0.06 0.030 0.006 
5 10 0.65 0.40 n.1O 0.049 0.010 
6 15 0.79 0.54 0.14 0.072 0.015 

10 45 0.99 0.90 0.36 0.202 0.044 
00 1.00 1.00 1.00 1.000 1.000 

*There are C = k( k - I )/2 pairwise comparisons 
of k means. This is the number of combinations of k 
items taken two at a time: see Equation 5.10. 

10.1 SINGLE-FACTOR ANALYSIS OF VARIANCE 

To test the null hypothesis Ho: J-LI = J-L2 = ... = J-Lk, where k is the number 
of experimental groups, or samples, we need to become familiar with the topic of 
analysis of variance, often abbreviated ANOVA (or less commonly. ANOVor AOV). 
Analysis of variance is a large area of statistical methods. owing its name and much of 
its early development to R. A. Fisher;* in fact, the F statistic was named in his honor 
by G. W. Snedecort (1934: 15). There are many ramifications of analysis of variance 
considerations, the most common of which will be discussed in this and subsequent 
chapters. More complex applications and greater theoretical coverage are found in 
the many books devoted specifically to analysis of variance and experimental design. 
At this point. it may appear strange that a procedure used for testing the equality of 
means should be named analysis of variance, but the reason for this terminology soon 
will become apparent. 

*Sir Ronald Aylmer Fisher (1890-1962). British statistician and geneticist. who introduced 
the name and basic concept of the technique in 1918 (David. 1995: Street. 19(0) and stressed the 
importance of randomness as discussed in this section. When he introduced analysis of variance. he 
did so by way of intraclass correlation (Box. 1978: 101). to which it is related (Section 19.12). 

tOeorge W. Snedecor (1881-1974). American statistician. 
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Let us assume that we wish to test whether four different feeds result in different 
body weights in pigs. Since we are to test for the effect of only one factor (feed 
type) on the variable in question (body weight), the appropriate analysis is termed a 
single-factor (or "single-criterion" or "single-classification" or "one-way") analysis 
of variance.* Furthermore, each type of feed is said to be a level of the factor. The 
design of this experiment should have each experimental animal being assigned at 
random to receive one of the four feeds, with approximately equal numbers of pigs 
receiving each feed. 

As with other statistical testing, it is of fundamental importance that each sample is 
composed of a random set of data from a population of interest. In Example 10.1, each 
of four populations consists of body weights of pigs on one of four experimental diets, 
and 19 pigs were assigned, at random, to the four diets. In other instances, researchers 
do not actually perform an experiment but, instead. collect data from populations 
defined other than by the investigator. For example. the interest might be in comparing 
body weights of four strains of pigs. If that were the case, the strain to which each 
animal belonged would not have been under the control of the researcher. Instead, 
he or she would measure a sample of weights for each strain, and the important 
consideration would be having each of the four samples consist of data assumed to 
have come at random from one of the four populations of data being studied. 

EXAMPLE 10.1 A Single-Factor Analysis of Variance (Modell) 

Nineteen pigs are assigned at random among four experimental groups. Each 
group is fed a different diet. The data are pig body weights. in kilograms. after 
being raised on these diets. We wish to ask whether pig weights are the same for 
all four diets. 

Ho: ILl = IL2 = IL3 = IL4· 

HA: The mean weights of pigs on the four diets are not all equal. 

a = 0.05 

Feed J Feed 2 Feed 3 Feed 4 

60.8 68.7 69.6 61.9 
67.0 67.7 77.1 64.2 
65.0 75.0 75.2 63.1 
68.6 73.3 71.5 66.7 
61.7 71.8 60.3 

i I 2 3 4 

ni 5 5 4 5 
nj 

~Xii 323.1 356.5 293.4 316.2 
;=1 

Xi 64.62 71.30 73.35 63.24 

Because the pigs are assigned to the feed groups at random (as with the aid of 
a random-number table. such as Appendix Table B.4t. described in Section 2.3). 

*Some authors would here refer to the feed as the "independent variable" and to the weight as 
the "dependent variable." 
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the single factor ANOV A is said to represent a completely randomized experimen­
tal design. or "completely randomized design" (sometimes abbreviated "eRD"). 
In general. statistical comparison of groups of data works best if each group has the 
same number of data (a situation referred to as being a balanced. or orthogonal. 
experimental design), and the power of the test is heightened by having sample 
sizes as nearly equal as possible. The present hypothetical data might represent a 
situation where there were, in fact. five experimental animals in each of four groups, 
but the body weight of one of the animals (in group 3) was not used in the analysis 
for some appropriate reason. (Perhaps the animal died. or perhaps it became ill 
or was discovered to be pregnant. thus introducing a factor other than feed into 
the experiment.) The performance of the test is also enhanced by having all pigs 
as similar as possible in all respects except for the experimental factor. diet (i.e., 
the animals should be of the same breed, sex, and age. should be kept at the same 
temperature. etc.). 

Example 10.1 shows the weights of 19 pigs subjected to this feed experiment, and 
the null hypothesis to be tested would be Ho: J.LI = J.L2 = J.L3 = J.L4. Each datum 
in the experiment may be uniquely represented by the double subscript notation, 
where Xij denotes datum j in experimental group i. For example, X23 denotes the 
third pig weight in feed group 2, that is, X23 = 74.0 kg. Similarly. X34 = 96.5 kg, 
X41 = 87.9 kg, and so on. We shall let the mean of group i be denoted by Xi. and 
the grand mean of all observations will be designated by X. Furthermore. ni will 
represent the size of sample i, and N = L~= I ni will be the total number of data in the 
experiment. The alternate hypothesis for this experiment is HA: The mean weight of 
pigs is not the same on these four diets. Note that HA is not J.LI =I' J.L2 =I' J.L3 =I' J.L4 nor 
J.LI =I' J.L2 = J.L3 = J.L4 nor any other specification of which means are different from 
which; we can only say that. if Ho is rejected, then there is at least one difference 
among the four means. * 

The four groups in this example (namely, types of feed) represent a nominal-scale 
variable (see Section l.ld) in that the groups could be arranged in any sequence. 
However, in some situations the groups represent a measurement made on a ratio or 
interval scale (Sections 1.1 a and 1.1 b). For example, the animal weights of Example 
10.1 might have been measured at each of four environmental temperatures or, 
instead of the groups being different types of feed, the groups might have been 
different daily amounts of the same kind of feed. In other situations the groups might 
be expressed on an ordinal scale (Section t.1c); for example, body weights could be 
measured at four environmental temperatures defined as cold, medium, warm. and 
hot, or as quantities of feed defined as very low, low, medium, and high. The analysis 
of variance of this section is appropriate when the groups are defined on a nominal or 
ordinal scale. If they represent a ratio or interval scale, the regression procedures of 
Section J 7.7 may be more appropriate, but the latter methods require more levels of 
the factor than are generally present in an analysis-of-variance experimental design. 

(a) Sources of Variation. The statistical technique widely known as analysis of 
variance (ANOVA) examines the several sources of variation among all of the data 

*There may be situations where the desired hypothesis is not whether k means are equal to 
each other. but whether they are all equal to some particular value. Mee, Shah. and Lefante (1987) 
proposed a procedure for testing Ho: III = IL2 = ... = ILk = JL(), where JLO is the specified mean to 
which all of the other means are to be compared. The alternate hypothesis would be that at least 
one of the means is different from JL() (i.e .. H A: ILi :#: JL() for at least one i). 
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in an experiment. by determining a sum of squares (meaning "sum of squares of 
deviations from the mean," a concept introduced in Section 4.4) for each source. 
Those sums of squares are as shown below. 

In an experimental design with k groups. there are nj data in group i; that is, III 
designates the number of data in group 1. n2 the number in group 2, and so on. The 
total number of data in all k groups will be called N; that is, 

k 

N = ~ni' 
i= I 

(10.1) 

which in Example 10.1 is N = 5 + 5 + 4 + 5 = 19. The sum of squares for all N 
data is 

k 1/, 

total SS = ~ ~(Xij - X)2, 
i= 1 j= 1 

where Xij is datum j in group i and X is the mean of all N data: 

k ni 

~~Xij 
X = 1_'=_I_i=_I_ 

N 

(10.2) 

(1O.2a) 

This is the same as considering the N data in all the groups to compose a single group 
for which the sum of squares is as shown in Equation 4.12. For the data in Example 
10.1. these calculations are demonstrated in Example 1O.1a. 

EXAMPLE 10.1a Sums of Squares and Degrees of Freedom for the Data 
of Example 10.1. 

Feed I Feed 2 

IIi 

~Xij 323.1 356.5 
j=1 

Xi 64.62 71.30 
k ni 

~ ~ Xij = 60.8 + 67.0 + 65.0 + 
i= 1 j= 1 

X = 1289.2 = 67.8526 
19 

k 1/; 

Total SS = ~ ~(Xij - X)2 
i=1 j= 1 

Feed 3 Feed 4 

293.4 316.2 

73.35 63.24 

+ 63.1 + 66.7 + 60.3 = 1289.2 

= (60.8 - 67.8526)2 + (67.0 - 67.8526)2 

+ ... + (66.7 - 67.8526)2 + (60.3 - 6.8526)2 

= 49.7372 + 0.7269 + ... + 1.3285 + 57.0418 = 479.6874. 



total DF = N - 1 = 19 - 1 = 18 
k 

groups SS = ~ni(Xi - X)2 
i= 1 

= 5(64.62 - 67.8526)2 + 5(71.30 - 67.8526)2 

+ 4(73.35 - 67.8526)2 + 5(63.24 - 67.8526)2 

= 52.2485 + 59.4228 + 120.8856 + 106.3804 = 338.9372 

groups DF = k - 1 

k [II; 1 within-groups (error) SS = ~ j~ (Xij - Xi)2 

= (60.8 - 64.62)2 + (67.0 - 64.62)2 

+ ... + (66.7 - 63.24)2 + (60.3 - 63.24)2 

= 14.5924 + 5.6644 + ... + 11.9716 + 8.6436 

= 140.7500 

or, alternatively, 

within-groups (error) SS = Total SS - Groups SS 

= 479.6874 - 338.9373 = 140.7501. 

k 
within-groups (error) DF = ~(ni - 1) 

i= 1 

=(5 - 1) + (5 - 1) + (4 - 1) + (5 - 1)=15 

or within-groups (error) OF = N - k = 19 - 4 = 15 
or within-groups (error) DF = Total DF - Groups DF = 18 - 3 = 15. 

Note: The quantities involved in the sum-of-squares calculations are carried to 
several decimal places (as computers typically do) to avoid rounding errors. All 
of these sums of squares (and the subsequent mean squares) have (kg)2 as units. 
However, for typographic convenience and ease in reading, the units for ANOV A 
computations are ordinarily not printed. 

The degrees of freedom associated with the total sum of squares are 

total D F = N - I, (10.3) 

which for the data in Example 10.1 are 19 - 1 = 18. 
A portion of this total amount of variability of the N data is attributable to 

differences among the means of the k groups; this is referred to as the among-groups 
sum of squares or, simply, as the groups slim of squares: 

k 
groups SS = ~ni(Xi - X)2, 

i=1 
(10.4) 
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where Xi is the mean of the ni data in sample i and X is the mean of all N data. 
Example 10.1 a shows this computation for the data in Example 10.1. Associated with 
this sum of squares are these degrees of freedom: 

groups OF = k - 1, (10.5) 

which for Example 10.1 are 4 - I = 3. 
Furthermore. the portion of the total sum of squares that is not explainable by 

differences among the group means is the variability within the groups: 

k ["; 1 within-groups SS = ~ j~ (Xij - Xi)2 (to.6) 

and is commonly called the error slim of sqllares. Within the brackets Equation 4.12 is 
applied to the data in each one of the k groups. and the within-groups sum of squares 
is the sum of all k of these applications of Equation 4.12. For the data of Example 
10.1, this is shown in Example 10.1 a. 

The degrees of freedom associated with the within-groups sum of squares are 

k 
within-groups OF = L(ni - 1) = N - k. (10.7) 

i= I 

also called the error DF. which for Example 10.1 are 4 + 4 + 3 + 4 = 15 or, 
equivalently. 19 - 4 = 15. 

The within-groups SS and OF may also be obtained by realizing that they represent 
the difference between the total variability among the data and the variability among 
groups: 

within-groups SS = total SS - groups SS (to.8) 

and 
within-groups OF = total OF - groups DF. (1O.8a) 

In summary. each deviation of an observed datum from the grand mean of all data 
is attributable to a deviation of that datum from its group mean plus the deviation of 
that group mean from the grand mean: that is. 

(Xij - X) = (Xij - X;) + (Xi - X). (10.9) 

Furthermore. sums of squares and degrees of freedom are additive, so 

total SS = groups SS + error SS (10.10) 

and 
total OF = groups OF + error OF. (10.11) 

(b) "Machine Formulas." The total sum of squares (Equation 10.2) may be calcu­
lated readily by a "machine formula" analogous to Equation 4.16: 

k II; 

total SS = L L X~ - C. 
i=lj=1 

(10.12) 
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where* 

c = (~~Xii)2 
N 

Example 10.1 b demonstrates these calculations. 

(10.13) 

EXAMPLE 10.1b Sums of Squares and Degrees of Freedom for the Data 
of Example 10.1, Using Machine Formulas 

Feed I Feed 2 Feed 3 Feed 4 

1 2 3 4 
ni 5 5 4 5 

II; 

~Xii 323.1 356.5 293.4 316.2 

/I' 

~Xii ( 
i=1 )2 

)=1 
20878.7220 25418.4500 21520.8900 19996.4480 

ni 

~~Xii = 1289.2 
i i 

total OF = N - 1 = 19 - 1 = 18 

~~X~ = 87955.30 groups OF = k - 1 = 4 - 1 = 3 
i i 

error OF = N - k = 19 - 4 = 15 

C= 
( ~~J' Xii)2 

= (1289.2f = 87475.6126 
N 19 

( 
/I' ) 

, iXii ± ---,--i =_1_.:.-

i= 1 l1i 

= 87814.5500 

total SS = ~ ~ Xi} - C = 87955.3000 - 87475.6]26 = 479.6874 
i i 

(±)2 
k j_1 

groups SS = ~ - - C = 87814.5500 - 87475.6126 = 338.9374 
i= 1 ni 

error SS = total SS - groups SS = 479.68747 - 338.9374 = 140.7500 

A machine formula for the groups sum of squares (Equation 10.4) is 

(± Xii) 
2 

k i-I 
groupsSS = ~ - - C. 

i=1 nj 
(10.14) 

where Lj'~ 1 Xji is the sum of the nj data from group i. 

"The term "machine formula" derives from the formula's utility when using calculating 
machines. The quantity C is often referred to as a "correction tcrm"-an unfortunate expression. 
for it implies that some miscalculation needs to be rectified. 
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The error SS may be calculated as 

( )

2 
ni 

~Xij 
k IIi k i-I 

error SS = L L X3 - L - . 
;=lj=1 ;=1 n; 

(10.15) 

which is the machine formula for Equation 10.6. 
As shown in Example 1O.1b. machine formulas such as these can be very convenient 

when using simple calculators: but they are of less importance if the statistical 
computations are performed by computer. As demonstrated in Examples 10.1 a and 
lO.1b, the sums of squares are the same using the two computational formulas. 

(c) Testing the Null Hypothesis. Dividing the groups SS or the error SS by the 
respective degrees of freedom results in a variance, referred to in ANOV A terminol­
ogy as a mean square (abbreviated MS and short for mean squared deviation from the 
mean). Thus, 

and 

groups SS 
groups MS = =------'--­

groups OF 

MS errorSS error = , 
error DF 

(10.16) 

(10.17) 

and the latter quantity, which may also be called the within-groups mean square, 
is occasionally abbreviated as MSE (for "mean square error"). As will be seen 
below, testing the null hypothesis of equality among population means involves the 
examination of the groups mean square and the error mean square. Because a mean 
square is a kind of variance. this procedure is named analysis of variance. A total 
mean square could also be calculated, as (total SS)/(total OF), but it is not used in the 
ANOVA. 

Statistical theory informs us that if the null hypothesis is a true statement about the 
populations, then the groups MS and the error MS will each be an estimate of u 2, the 
variance common to all k populations. But if the k population means are not equal, 
then the groups MS in the population will be greater than the population's error 
MS.* Therefore, the test for the equality of means is a one-tailed variance ratio test 
(introduced in Section 8.5), where the groups MS is always placed in the numerator 
so as to ask whether it is significantly larger than the error MS: t 

F = groups MS. 
error MS 

(10.18) 

*Two decades before R. A. Fisher developed analysis of variance techniques. the Danish 
applied mathematician. Thorvald Nicolai Thiele (IR3R-1910) presented the concept of comparing 
the variance among groups to the variance within groups (Thiele. 1897: 41-44). Stigler (1986: 244) 
reported that an 1860 book by Gustav Thcodor Fechner included the most extensive discussion of 
the concepts of experimental design prior to R. A. Fisher. 

t An equivalent computation of F is 

F = ( error DF)( (groups SS)/(total SS) ) 
groups DF I - (groups SS)/(total SS) • 

(1O.18a) 

and Levin. Serlin. and Webne-Behrman (1989) show how ANOV A can be performed by considering 
the correlation (the topic of Section 19.1) between observations and their group means. 
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This quantity expresses how the variability of data among groups compares to the 
variability of data within groups. 

The critical value for this test is Fa( I ).(k-I ).(N-k). which is the value of F at the 
one-tailed significance level a and with numerator degrees of freedom (VI = groups 
OF) of k - I and denominator degrees of freedom (V2 = error OF) of N - k. If the 
calculated F is as l<lrge as. or larger than. the critical value (see Appendix Table B.4), 
then we reject Ho: and a rejection indicates that the probability is:5 a that the observed 
data came from populations described by Ho. But remember that all we conclude in 
such <l case is that all the k population means are not equal. To conclude between which 
means the equalities or inequalities lie. we must turn to the procedures of Chapter 11. 

Example IO.lc shows the conclusion of the <lnalysis of variance performed on 
the data and hypotheses of Example 10.1. Table 10.2 summarizes the single-factor 
ANOYA calculations.* 

EXAMPLE 10.1c The Conclusion of the ANOVA of Example 10.1, Using 
the Results of Either Example 10.1a or 10.1b 

Summary of the Analysis of Variance 

SOl/rce of varialio" 5S 

Total 479.6H74 
Groups 33K9374 
Error 140.7500 

F = groups MS = 112.9791 =: 12.04 
error MS 9.3833 

FO.05( I U.l5 = 3.29. so reject 110. 

P < 0.0005 I P = O.()()029] 

DF 

IH 
3 

15 

M5 

112.9791 
9.3H33 

(d) The Case where k = 2. If k =: 2. then Ho: J..q =: J.l.2. and either the two-sample 
1 test (Section 8.1) or the single-factor ANOYA may be applied: the conclusions 
obtained from these two procedures will he identical. The error MS will. in fact. be 
identical to the pooled variance. s~. in the 1 test; the groups OF will be k - 1 = 1; 
the F value determined hy the analysis of variance will be the square of the 1 value 
from the 1 test: and Fu ( I ). \.( N. 2) = (1,,(2 ).( N _ 2) )2. If a one-tailed test between means 
is required. or if the hypothesis Ho: J.LI - J.L2 =: J.Lo is desired for a J.Lo not equal to 
zero. then the 1 test is applicahle. whereas the ANOYA is not. 

*Occasionally the following quantity (or its square root) is called the correlatio/l ratio: 

2 _ groups SS 
11 - ---

total SS 
(1O.IXb) 

This is also called ('ta .w/llt/red. for it is represented using the lowercasc Greek leiter eta. It is always 
between fl and I. it has no units of measurement. and it expresses the proportion of Ihe total 
variability of X that is accounted for hy the effect of differcnces among the groups (and is. therefore. 
reminiscent or the coefficient of determination introduced in Section 17.3a). For Example 10.1. 
112 = 33K.9374/479.6X74 = n.71. or 71 %. 
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TABLE 10.2: Summary of the Calculations for a Single-Factor Analysis of Variance 

Source of variation 

Total (Xi; - Xl 

Groups (i.e .. among 
groups) [Xi - Xl 

Error (i.c .. within 
groups) [Xi; - Xi] 

Sum of 
squares (SS) 

Equation 10.2 
or 10.12 

Oegreesof 
freedom (OF) 

N - 1 

Equation 10.4 k - I 
or 10.14 

Equation 10.6 N - k or Equation 10.8a 
or 10.8 

Mean 
square (MS) 

groups SS 
groups OF 

error SS 
error OF 

Note: For each source of variation. the brackcted quantity indicates the variation bcing assessed: 
k is thc numbcr of groups: Xi; is datum j in group i: Xi is the mean of the datil in group i: X 
is the mean of all N datu. 

(e) ANOVA Using Means and Variances. The above discussion assumes that all 
the data from the experiment to be analyzed are in hand. It may occur. however. that 
all we have for each of the k groups is the mean and some measure of variability 
based on the variances of each group. That is. we may have Xi and either SSi. s; . .'ii. 
or SXi for each group. rather than all the individual values of Xij. For example. we 
might encounter presentations such as Tables 7.1. 7.2. or 7.3a. If the sample sizes. Ili. 
are also known. then the single-factor analysis of variance may still be performed. in 
the following manner. 

First. determine the sum of squares or sample variance for each group: recall that 

Then calculate 

and 

k k 

error SS = ~ SSi = ~(Ili - 1 )s; 
i= I i= I 

k 
~ -2 groups SS = ~ lliXi 
i= I 

(± lliXi)2 
,=1 

k 

~ni 
i= I 

( 10.19) 

( 10.20) 

(10.21 ) 

Knowing the groups SS and error SS, the ANOV A can proceed in the usual fashion. 

(I) Fixed-ERects amd Random-ERects ANOV A. I n Example 10.1. the biologist 
designing the experiment was interested in whether all of these particular four feeds 
have the same effect on pig weight. That is. these four feeds were not randomly 
selected from a feed catalog but were specifically chosen. When the levels of a factor 
are specifically chosen one is said to have designed a fixed-effects model. or a Model 
I. ANOV A. In such a case. the null hypothesis Ho: 1-'1 = /-L2 = /-L3 = ... = /-Lk is 
appropriate. 

However. there are instances where the levels of a factor to be tested are indeed 
chosen at random. For example. we might have been interested in the effect of 
geographic location of the pigs. rather than the effect of their feed. It is possible 
that our concern might be with certain specific locations. in which case we would 
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be employing a fixed-effects mode ANOV A. But we might, instead, be interested in 
testing the statement that in general there is a difference in pig weights in animals 
from different locations. That is, instead of being concerned with only the particular 
locations used in the study, the intent might be to generalize, considering the locations 
in our study to be a random sample from all possible locations. In this random-effects 
model, or Model II. ANOV A,* all the calculations are identical to those for the fixed­
effects model, but the null hypothesis is better stated as HII: there is no difference 
in pig weight among geographic locations (or Ho: there is no variability in weights 
among locations). Examination of Equation 10.18 shows that what the analysis asks is 
whether the variability among locations is greater than the variability within locations. 
Example 10.2 demonstrates the ANOV A for a random-effects model. The relevant 
sums of squares could be computed as in Section 10.1 a or 10.1 b; the machine formulas 
of Section lO.1b are used in this example. Most biologists will encounter Model I 
analyses more commonly than Model II situations. When dealing with more than 
one experimental factor (as in Chapters 12 and 14), the distinction between the two 
models becomes essential, as it will determine the calculation of F. 

(g) Violation of Underlying Assumptions. Recall from Section 8.1 b that to test 
HII: ILl = IL2 by the two-sample t test, we assume that uT = u~ and that each of the 
two samples came at random from a normal population. Similarly, in order to appl~ 
the analysis of variance to ILl = IL2 = ... = ILk. we assume that uT = u~ = ... = Uk 
and that each of the k samples came at random from a normal population. 

However, these conditions are never exactly met, so the question becomes how 
serious the consequences are when there are departures from these underlying 
assumptions. Fortunately. under many circumstances the analysis of variance is a 
robust test, meaning that its Type I and Type II error probabilities are not always 
seriously altered by violation of the test's assumptions. Reports over several decades 
of research have not agreed on every aspect of this issue, but the following general 
statements can be made about fixed-effects (Le .. Model I) ANOV A: 

As with the two-sample t test (Section 8.1 b). the adverse effect of non normality 
is greater with greater departures from normality, but the effect is relatively small if 
samples sizes are equal. or if the n/s are unequal but large (with the test less affected 
by nonnormality as the Il/S increase), or if the variances are equal; and asymmetric 
distributions have a greater adverse effect than do symmetric distributions (Box and 
Anderson, 1955; BUning, 1997; Donaldson, 1968; Glass, Peckham, and Sanders, 1972; 
Harwell et aI., 1992; Lix, Keselman, and Keselman.1996; Srivastava, 1959; Tiku, 1971). 

If the variances of the k populations are not equal, the analysis of variance is 
generally liberal for equal sample sizes. and the extent to which the test is liberal 
(i.e., the probability of a Type I error exceeds a) increases with greater variance 
heterogeneity (BUning. 1997: Clinch and Keselman. 1982; Rogan and Keselman, 
1977) and decreases with increased sample size (Rogan and Keselman. 1977). Myers 
and Well (2003: 221) report that this inflation of P(Type I error) is usually less than 
0.02 at the 0.05 significance level and less than 0.005 when using a = 0.01. when n is 
at least 5 and the largest variance is no more than four times the smallest variance. 

If the group variances are not equal and the ni's also are unequal. then there can 
be very serious effects on P(Type I error). The effect will be greater for greater 
variance heterogeneity (Box. 1954), and if the larger variances are associated with the 
larger sample sizes (what we shall call a "direct" relationship), the test is conservative 

* Also referred to as a components of variance model. The terms components of vttritmce.ji;ced 
effects. random effects. Class I. and Class /I for analysis of variance were introduced by Eisenhart 
(1947). 
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EXAMPLE 10.2 A Single-Factor Analysis of Variance for a Random-Effects 
Model (i.e., Model II) Experimental Design 

A laboratory employs a technique for determining the phosphorus content of hay. 
The question arises: "00 phosphorus determinations differ among the technicians 
performing the analysis?" To answer this question, each of four randomly selected 
technicians was given five samples from the same batch of hay. The results of the 
20 phosphorus determinations (in mg phosphorus/g of hay) are shown. 

Hu: Determinations of phosphorus content do not differ among technicians. 
HA: Determinations of phosphorus content do differ among technicians. 

a = 0.05 

N = 20 

1 

34 
36 
34 
35 
34 

Group sums: 173 

LLXjj = 710 
j j 

LLXV = 25234 
j j 

C = (710)2 = 25205.00 
20 

total SS = 25234 - 25205.00 = 29.00 

Technician 
2 3 4 

37 34 36 
36 37 34 
35 35 37 
37 37 34 
37 36 35 

182 179 176 

(173)2 a(182)2 
groups (i.e .• technicians) SS = -- + 

5 5 

+ (179 )2 + (176 )2 _ 25205.00 
5 5 

= 25214.00 - 25205.00 = 9.00 
error SS = 29.00 - 9.00 = 20.00 

Source of variation 

Total 

F = 3.00 = 2.40 
1.25 

FO.05( I ).3.16 = 3.24 
Do not reject Ho. 

Groups (technicians) 
Error 

SS 

29.00 
9.00 

20.00 

OF MS 

19 
3 3.00 

16 1.25 

0.10 < P < 0.25 [P = 0.11] 
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(i.e., the probability of a Type I error is less than a), while larger variances affiliated 
with smaller samples (what we'll call an "inverse" relationship) cause the test to 
be liberal-that is. P(Type I error) > a (Brown and Forsythe, 1974a: Btining, 1997; 
Clinch and Keselman. 1982; Donaldson, 1968: Glass, Peckham. and Sanders. 1972; 
Harwell et al.. 1992: Kohr and Games. 1974: Maxwell and Delancy. 2004: 131; 
Stonehouse and Forrester, 1998: Tomarkin and Serlin, 1986). For example. if testing 
at a = 0.05 and the largest n is twice the size of the smallest. the probability of a Type 
I error can be as small as 0.006 for a direct relationship between variances and sample 
sizes and as large as 0.17 for an inverse relationship; if the ratio between the largest 
and smallest variances is 5, P(Type I error) can be as small as 0.00001 or as large 
as 0.38. depending upon whether the relationship is direct or inverse, respectively 
(Scheffe. 1959: 340). This huge distortion of P(Type I error) may be reason to avoid 
employing the analysis of variance when there is an inverse relationship (if the 
researcher is primarily concerned about avoiding a Type I error) or when there is a 
direct relationship (if the principal concern is to evade a Type II error). The adverse 
effect of heterogeneous variances appears to increase as k increases (Tomarkin and 
Serlin, 1986). 

Recall (Section 6.3b) that a decrease in the probability of the Type I error (a) 
is associated with an increase in the Type II error «(3), and an increase in (3 means 
a decrease in the power of the test (I - (3). Therefore. for situations described 
above as conservative li.e., P(Type I error) < a], there will generally be less power 
than if the population variances were all equal: and when the test is liberal [i.e., 
P(Type I error) > a], there will generally be more power than if the variances were 
equal. 

If the sample sizes arc all equal, non normality generally affects the power of 
the analysis of variance to only a small extent (Clinch and Keselman. 1982: Glass, 
Peckham, and Sanders, 1972: Harwell et aI., 1992; Tan. 1982), and the effect decreases 
with increased n (Donaldson, 1968). However, extreme skewness or kurtosis can 
severely alter (and reduce) the power (Games and Lucas, 1(66), and nonnormal 
kurtosis generally has a more adverse effect than skewness (Sahai and Agee!. 2000: 
85). With small samplcs, for example. very pronounced platykurtosis in the sampled 
populations will decrease the test's power, and strong lcptokurtosis will increase it 
(Glass. Peckham, and Sanders, 1972). When sample sizes are not equal, the power 
is much reduced, especially when the large samples have small means (Boehnke, 
1984). 

The robustness of random-effects (i.e .. Model II) analysis of variance (Section 
lO.lf) has not been studied as much as that of the fixed-effects (Model I) ANOV A. 
However, the test appears to be robust to departures of normality within the k 
populations, though not as robust as Model I ANOVA (Sahai, 2000: 86). provided 
the k groups (levels) of data can be considered to have been selected at random 
from all possible groups and that the effect of each group on the variable can be 
considered to be from a normally distributed set of group effects. When the procedure 
is nonrobust. power appears to be affected more than the probability of a Type I 
error; and the lack of robustness is not very different if sample sizes are equal or 
unequal (Tan, 1982; Tan and Wong, 1(80). The Model II analysis of variance (as is 
the case with the Model I ANOV A) also assumes that the k sampled popUlations 
have equal variances. 

(h) Testing of Multiple Means when Variances Are Unequal. Although testing 
hypotheses about means via analysis of variance is tolerant to small departures from 
the assumption of variance homogeneity when the sample sizes are equal. it can yield 
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very misleading results in the presence of more serious heterogeneity of variances 
and/or unequal sample sizes. Having unequal variances represents a mUltisample 
Behrens-Fisher problem (i.e., an extension of the two-sample Behrens-Fisher situation 
discussed in Section S.lc). 

Several approaches to this analysis have been proposed (e.g., see Keselman et a\., 
2000; Lix, Keselman, and Keselman, 1996). A very good one is that described by 
Welch (1951), which employs 

where 

k 
:Lc;(Xj - Xw)2 

F' = ____ j_=_I~----~~--~ 
1 ) [1 + 2A (k - 2)]' 

k2 - 1 
(k 

n· 
C. - I ,- "2 

Sj 

k 

C=:Lc; 
j= I 

k 
:L CjXj 

- j=1 XIV = '---....:._-
C 

k (I c/C)2 
A = :L - I • where Vj = nj - 1 

j== I Vj 

and F' is associated with degrees of freedom of VI = k - 1 and 

k2 - 1 
V2 = 

3A 

(10.22) 

(10.23) 

(10.24) 

(10.25) 

(10.26) 

(10.27) 

which should be rounded to the next lower integer when using Appendix Table B.4. 
This procedure is demonstrated in Example 10.3. 

A modified ANOV A advanced by Brown and Forsythe (1974a, b) also works well: 

F" = groups SS 
B ' 

(10.28) 

EXAMPLE 10.3 Welch's Test for an Analysis-of-Variance Experimental 
Design with Dissimilar Group Variances 

The potassium content (mg of potassium per 100 mg of plant tissue) was measured 
in five seedlings of each of three varieties of wheat. 

Ho: JL 1 = JL2 = JL3· 

H A: The mean potassium content is not the same for seedlings of all three 
wheat varieties. 

a = 0.05 
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Variety G Variety A Variety L 

27.9 24.2 29.1 
27.0 24.7 27.7 
26.0 25.6 29.9 
26.5 26.0 30.7 
27.0 27.4 28.8 
27.5 26.1 31.1 

i 1 2 3 
ni 6 6 6 
IIi 5 5 5 

Xi 26.98 25.67 29.55 

sf 0.4617 1.2787 1.6070 

Ci = ni/s~ 12.9955 4.6923 3.7337 C = ~ Ci = 21.4215 
i 

CiXi 350.6186 120.4513 110.3308 ~ C;Xi = 581.4007 
i 

(1 -~y A =L (1 Y 
Ci 

0.0309 0.1220 0.1364 C = 0.2893 
IIi i IIi 

~CiXi 
581.4007 

Xw = i = 27.14 = c 21.4215 

F' = ~Ci(Xi - Xw)2 

(k _ 1)[1 + 2A(k - 2)] 
k2 - 1 

12.9955(26.98 - 27.14)2 + 4.6923(25.67 - 27.14)2 
= _____ --;;-_--:-_+ __ 3-.7 __ 3-:-37.....!(-29-.5 __ 5...,..--2-7.-14~) 

(3 - 1) [1 + 2(0.2893)(3 - 2)] 
32 - 1 

= 0.3327 + 10.1396 + 21.6857 = 32.4144 = 17.5 
2(0.9268) 1.8536 

For critical value of F: 

111 = k - 1 = 3 - 1 = 2 

112 = k2 - 1 = 32 - 1 = _8 _ = 9.22 
3A 3( 0.2893 ) 0.8679 

By harmonic interpolation in Appendix Table B.4 or by computer program: 

FO.05( 1 ).2.9.22 = 4.22. So, reject Ho· 

0.0005 < P < 0.001 [P = 0.0073] 
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where 

and 
k 

B = Lb;. 
;= I 

F" has degrees of freedom of"l = k - 1 and 

8 2 
"2 = ---;:--z. 

Lb; 
;= I "; 

(1O.28a) 

(10.29) 

(10.30) 

If k = 2, both the F' and F" procedures are equivalent to the t' test. The Welch 
method (F') has been shown (by Brown and Forsythe, 1974a; BOning, 1997; Dijkstra 
and Werter, 1981; Harwell et aI., 1992; Kohr and Games, 1974; Levy, 1978a; Lix, 
Keselman, and Keselman, 1996) to generally perform better than F or F" when 
population variances are unequal, especially when 11;'S are equal. However, the 
Welch test is liberal if the data come from highly skewed distributions (Clinch and 
Keselman. 1992; Lix, Keselman, and Keselman, 1996). 

Browne and Forsythe (1974a) reported that when variances are equal, the power 
of F is a little greater than the power of F', and that of F' is a little less than that 
of F". But if variances are not equal. F' has greater power than F" in cases where 
extremely low and high means are associated with low variances, and the power of 
F" is greater than that of F' when extreme means are associated with large variances. 
Also, in general, F' and F" are good if all 11; ~ 10 and F' is reasonably good if all 
It; ~ 5. 

(i) Which Multisample Test to Use. As with all research reports. the reader should 
be informed of explicitly what procedures were used for any statistical analysis. And, 
when results involve the examination of means, that reporting should include the size 
(11), mean (X), and variability (e.g., standard deviation or standard error) of each 
sample. If the samples came from populations having close to normal distributions, 
then presentation of each sample's confidence limits (Section 10.2) might also be 
included. Additional interpretation of the results could include displaying the means 
and measures of variability via tables or graphs such as those described in Section 7.4. 

Although it not possible to generalize to all possible situations that might be 
encountered, the major approaches to comparing the means of k samples, where k is 
more than two, are as follows: 

• If the k sampled populations are normally distributed and have identi­
cal variances (or if they are only slightly to moderately nonnormal and 
have similar variances): The analysis of variance, using F, is appropriate and 
preferable to test for difference among the means. (However, samples nearly 
always come from distributions that are not exactly normal with exactly the same 
variances, so conclusions to reject or not reject a null hypothesis should not be 
considered definitive when the probability associated with F is very near the 
a specified for the hypothesis test: in such a situation the statistical conclusion 
should be expressed with some caution and, if feasible, the experiment should 
be repeated (perhaps with more data). 
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• If the k sampled populations are distributed normally (or are only slightly 
to moderately nonnormal), but they have very dissimilar variances: The 
Behrens-Fisher testing of Section 10.1 h is appropriate and preferable to compare 
the k means. If extremely high and low means are associated with small variances. 
F' is preferable; but if extreme means are associated with large variances, then 
F" works better. 

• If the k sampled populations are very different from normally distributed, 
but they have similar distributions and variances: The Kruskal-Wallis test of 
Section 10.4 is appropriate and preferable. 

• If the k sampled populations have distributions greatly different from 
normal and do not have similar distributions and variances: (1) Consider 
the procedures of Chapter 13 for data that do not exhibit normality and variance 
equality but that can be transformed into data that are normal and homogeneous 
of variance: or (2) report the mean and variability for each of the k samples, 
perhaps also presenting them in tables and/or graphs (as in Section 7.4). but do 
not perform hypothesis testing. 

(j) Outliers. A small number of data that are much more extreme than the rest 
of the measurements are called outliers (introduced in Section 2.5), and they may 
cause a sample to depart seriously from the assumptions of normality and variance 
equality. If, in the experiment of Example 10.1, a pig weight of 652 kg, or 7.12 kg, 
or 149 kg was reported. the researcher would likely suspect an error. Perhaps the 
first two of these measurements were the result of the careless reporting of weights 
of 65.2 kg and 71.2 kg, respectively: and perhaps the third was a weight measured 
in pounds and incorrectly reported as kilograms. If there is a convincingly explained 
error such as this. then an offending datum might be readily corrected. Or. if it is 
believed that a greatly disparate datum is the result of erroneous data collection (e.g., 
an errant technician. a contaminated reagent, or an instrumentation malfunction). 
then it might be discarded or replaced. In other cases outliers might be valid data, 
and their presence may indicate that one should not employ statistical analyses that 
require population normality and variance equality. There are statistical methods that 
are sometimes used to detect outliers, some of which are discussed by Barnett and 
Lewis (1994: Chapter 6). Snedecor and Cochran (1989: 280-281). and Thode (2002: 
Chapter 6). 

True outliers typically will have little or no influence on analyses employ­
ing nonparametric two-sample tests (Sections 8.11 and 8.12) or muItisample tests 
(Section 10.4). 

10.2 CONFIDENCE LIMITS FOR POPULATION MEANS 

When k > 2, confidence limits for each of the k population means may be computed 
in a fashion analogous to that for the case where k = 2 (Section 8.2. Equation 8.13), 
under the same assumptions of normality and homogeneity of variances applicable 
to the ANOV A. The I - a confidence interval for /Li is 

_ $,~2 
Xi ± ta(2).v -. 

ni 
(10.31) 

where s2 is the error mean square and " is the error degrees of freedom from the 
analysis of variance. For example, let us consider the 95% confidence interval for JL4 
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in Example 10.1. Here, X 4 = 63.24 kg. s2 = 9.383 kg2• n4 = 5. and (0.05(2).15 = 2.131. 

Therefore. the lower 95% confidence limit. LI. is 63.24 kg - 2.131J9.383 kg2j5 = 

63.24 kg - 3.999 kg = 59.24 kg. and L2 is 63.24 kg + 2. 131J9.383 kg2j5 = 
63.24 kg + 3.999 kg = 67.24 kg. 

Computing a confidence interval for ILi would only be warranted if that population 
mean was concluded to be different from each other population mean. And calculation 
of a confidence interval for each of the k IL'S may be performed only if it is concluded 
that ILl * IL2 #: ... #: ILk· However, the analysis of variance does not enable conclusions 
as to which population means are different from which. Therefore, we must first 
perform multiple comparison testing (Chapter 11), after which confidence intervals 
may be determined for each different population mean. Confidence intervals for 
differences between means may be calculated as shown in Section 11.2. 

U SAMPLE SIZE, DETECTABLE DIFFERENCE, AND POWER IN ANALYSIS OF VARIANCE 

t, 
i 

In Section 8.3, dealing with the difference between two means. we saw how to estimate 
the sample size required to predict a population difference with a specified level of 
confidence. When dealing with more than two means. we may also wish to determine 
the sample size necessary to estimate difference between any two population means. 
and the appropriate procedure will be found in Section 11.2. 

In Section 8.4, methods were presented for estimating the power of the two­
sample t test, the minimum sample size required for such a test. and the minimum 
difference between population means that is detectable by such a test. There are also 
procedures for analysis-of-variance situations. namely for dealing with more than two 
means. (The following discussion begins with consideration of Model I -fixed-effects 
model-analyses of variance.) 

If Ho is true for an analysis of variance. then the variance ratio of Equation 10.18 
follows the F distribution. this distribution being characterized by the numerator 
and denominator degrees of freedom (VI and "2. respectively). If. however. Ho is 
false. then the ratio of Groups MS to error MS follows instead what is known as the 
noncentral F distribution. which is defined by "1, "2, and a third quantity known as 
the noncentrality parameter. As power refers to probabilities of detecting a false null 
hypothesis, statistical discussions of the power of ANOV A testing depend upon the 
noncentral F distribution. 

A number of authors have described procedures for estimating the power of an 
ANOV A. or the required sample size. or the detectable difference among means 
(e.g .• BauseH and Li. 2002; Cohen, 1988: Ch. 8; Tiku. 1967. 1972). but the charts 
prepared by Pearson and Hartley (1951) provide one of the best of the methods and 
will be described below. 

(a) Power of the Test. Prior to performing an experiment and collecting data from 
it. it is appropriate and desirable to estimate the power of the proposed test. (Indeed, 
it is possible that on doing so one would conclude that the power likely will be so low 
that the experiment needs to be run with many more data or with fewer groups or. 
perhaps, not run at all.) 

Let us specify that an ANOV A involving k groups will be performed at the a 
significance level, with n data (i.e., replications) per group. We can then estimate the 
power of the test if we have an estimate of 0-2• the variability within the k populations 
(e.g., this estimate typically is s2 from similar experiments. where s2 is the error MS). 
and an estimate of the variability among the populations. From this information we 
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may calculate a quantity called cP (lowercase Greek phi). which is related to the 
noncentrality parameter. 

The variability among populations might be expressed in terms of deviations of 
the k population means, JLi. from the overall mean of all populations. JL. in which 
case 

k 
n:2 (JLi - JL)2 

cP= i= L (10.32) 

(e.g .• Guenther, 1964: 47: Kirk. 1995: 182). The grand population mean is 

k 

LJLi 
i=1 

JL= --
k 

(10.33) 

if all the samples are the same size. In practice, we employ the best available estimates 
of these population means. 

Once cP has been obtained, we consult Appendix Figure B.I. This figure consists of 
several pages, each with a different VI (Le .. groups DF) indicated at the upper left of 
the graph. Values of cP are indicated on the lower axis of the graph for both a = 0.01 
and a = 0.05. Each of the curves on a graph is for a different V2 (Le., error DF). for 
a = 0.01 or 0.05. identified on the top margin of a graph. After turning to the graph 
for the VI at hand. one locates the point at which the calculated cP intersects the curve 
for the given V2 and reads horizontally to either the right or left axis to determine the 
power of the test. This procedure is demonstrated in Example 10.4. 

EXAMPLE 10.4 Estimating the Power of an Analysis of Variance When 
Variability among Population Means Is Specified 

A proposed analysis of variance of plant root elongations is to comprise ten roots 
at each of four chemical treatments. From previous experiments. we estimate 0'2 

to be 7.5888 mm2 and estimate that two of the population means are 8.0 mm. one 
is 9.0 mm, and one is 12.0 mm. What will be the power of the ANOYA if we test 
at the 0.05 level of significance? 

cP= 

= 

k=4 
n = 10 
VI = k - 1 = 3 
V2 = k(n - 1) = 4(9) = 36 
JL = 8.0 + 8.0 + 9.0 + 12.0 = 9.25 

4 

10[(8.0 - 9.25)2 + (8.0 - 9.25)2 + (9.0 - 9.25)2 + (12.0 - 9.25)2] 

4(7.5888) 
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10(10.75) 

4(7.5888) 

= J3.5414 

= 1.88 

In Appendix Figure B.lc, we enter the graph for VI = 3 with cP = 1.88,0' = 0.05. 
and V2 = 36 and read a power of about 0.88. Thus. there will be a 12% chance of 
committing a Type II error in the proposed analysis. 

An alternative. and common, way to estimate power is to specify the smallest 
difference we wish to detect between the two most different population means. 
Calling this minimum detectable difference S, we compute 

(10.34) 

and proceed to consult Appendix Figure 8.1 as above. and as demonstrated in 
Example 10.5. This procedure leads us to the statement that the power will be at least 
that determined from Appendix Figure B.l (and. indeed. it typically is greater). 

EXAMPLE 10.5 Estimating the Power of an Analysis of Variance When 
Minimum Detectable Difference Is Specified 

For the ANOV A proposed in Example 10.3. we do not estimate the popUlation 
means, but rather specify that, using ten data per sample, we wish to detect a 
difference between population means of at least 4.0 mm. 

k=4 

VI = 3 

n = 10 

V2 = 36 

S = 4.0mm 

s2 = 7.5888 mm2 

= 
1O( 4.0)2 

2( 4 )(7.5888) 

= J2.6355 

= 1.62 

In Appendix Figure B.1. we enter the graph for VI = 3 with cP = 1.62, a = 0.05. 
and "2 = 36 and read a power of about 0.72. That is. there will be a 28% chance 
of committing a Type II error in the proposed analysis. 

It can be seen in Appendix Figure B.l that power increases rapidly as cP increases, 
and Equations 10.32 and 10.34 show that the power is affected in the following 
ways: 

• Power is greater for greater differences among group means (as expressed by 
-:£(J-Li - J-L)2 or by the minimum detectable difference, S) . 

• Power is greater for larger sample sizes. ni (and it is greater when the sample 
sizes are equal). 
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• Power is greater for fewer groups, k. 
• Power is greater for smaller within-group variability, c?- (as estimated by s2, 

which is the error mean square). 
• Power is greater for larger significance levels, a. 

These relationships are further demonstrated in Table lO.3a (which shows that for 
a given total number of data, N, power increases with increased 5 and decreases with 
increased k) and Table 10.3b (in which, for a given sample size, nj, power is greater 
for larger 5's and is less for larger k's). 

The desirable power in performing a hypothesis test is arbitrary, just as the 
significance level (a) is arbitrary. A goal of power between 0.75 and 0.90 is often used, 
with power of 0.80 being common. 

TABLE 10.3a: Estimated Power of Analysis of Variance Comparison 
of Means, with k Samples, with Each Sample of Size n; = 20, with 

k 
N = L nj Total Data, and with a Pooled Variance (sl) of 2.00, for 

;=1 
Several Different Minimum Detectable Differences (S) 

k: 2 3 4 5 6 

5 N: 40 60 80 100 120 

1.0 0.59 0.48 0.42 0.38 0.35 
1.2 0.74 0.64 0.58 0.53 0.49 
1.4 0.86 0.78 0.73 0.68 0.64 
1.6 0.94 0.89 0.84 0.81 0.78 

1.8 0.97 0.95 0.92 0.90 0.88 
2.0 0.99 0.98 0.97 0.95 0.94 
2.2 >0.99 0.99 0.99 0.98 0.98 
2.4 >0.99 >0.99 >0.99 0.99 0.99 

The values of power were obtained from UN 1ST A T (2003: 473-474). 

TABLE 10.3b: Estimated Power of Analysis of Variance Comparison 
of Means, with k Samples, with the k Sample Sizes (nj) Totaling 

k 
N = L nj = 60 Data, and with a Pooled Variance (52) of 2.00, for 

j=l 
Several Different Minimum Detectable Differences (S) 

k: 2 3 4 5 6 

5 ni: 30 20 15 12 10 

1.0 0.77 0.48 0.32 0.23 0.17 
1.2 0.90 0.64 0.44 0.32 0.24 
1.4 0.96 0.78 0.58 0.43 0.32 
1.6 0.99 0.89 0.71 0.54 0.42 

1.8 >0.99 0.95 0.82 0.66 0.52 
2.0 >0.99 0.98 0.90 0.76 0.63 
2.2 >0.99 0.99 0.95 0.85 0.72 
2.4 >0.99 >0.99 0.98 0.91 0.81 

The values of power were obtained from UNIST AT (2003: 473-474). 
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Estimating the power of a proposed ANOV A may effect considerable savings in 
time, effort, and expense. For example. such an estimation might conclude that the 
power is so very low that the experiment, as planned. ought not to be performed. 
The proposed experimental design might be revised, perhaps by increasing n, or 
decreasing k, so as to render the results more likely to be conclusive. One may also 
strive to increase power by decreasing s2 , which may be possible by using experimental 
subjects that are more homogeneous. For instance, if the 19 pigs in Example 10.1 were 
not all of the same age and breed and not all maintained at the same temperature. 
there might well be more weight variability within the four dietary groups than if all 
19 were the same in all respects except diet. 

As noted for one-sample (Section 7.7) and two-sample (Section 8.4) testing, 
calculations of power (and of minimum required sample size and minimum detectable 
difference) and estimates apply to future samples, not to the samples already subjected 
to the ANOV A. There are both theoretical and practical reasons for this (Hoenig 
and Heisey, 2001). 

(b) Sample Size Required. Prior to performing an analysis of variance, we might 
ask how many data need to be obtained in order to achieve a desired power. We 
can specify the power with which we wish to detect a particular difference (say, a 
difference of biological significance) among the population means and then ask how 
large the sample from each population must be. This is done, with Equation 10.34. 
by iteration (i.e .• by making an initial guess and repeatedly refining that estimate), as 
shown in Example 10.6. 

How well Equation 10.34 performs depends upon how good an estimate ~.2 is of 
the population variance common to all groups. As the excellence of s2 as an estimate 
improves with increased sample size, one should strive to calculate this statistic 
from a sample with a size that is not a very small fraction of the n estimated from 
Equation 10.34. 

EXAMPLE 10.6 Estimation of Required Sample Size for a One-Way Anal-
ysis of Variance 

Let us propose an experiment such as that described in Example 10.1. How many 
replicate data should be collected in each of the four samples so as to have an 80% 
probability of detecting a difference between popUlation means as small as 3.5 kg. 
testing at the 0.05 level of significance? 

In this situation, k = 4, VI = k - 1 = 3. l) = 3.5 kg. and we shall assume 
(from the previous experiment in Example 10.1) that s2 = 9.383 kg2 is a good 
estimate of 0'2. 

We could begin by guessing that n = 15 is required. Then. V2 = 4( 15 - 1) = 56. 
and by Equation 10.34, 

15(3.5)2 

2( 4 )(9.383) 
= 1.56. 

Consulting Appendix Figure B.l. the power for the above VI, V2. a. and cf> is 
approximately 0.73. This is a lower power than we desire. so we guess again with a 
larger n. say n = 20: 

cf>= 
20( 3.5 )2 

2( 4)( 9.383) 
= 1.81. 
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Appendix Figure B1 indicates that this cP, for "2 = 4(20 - 1) = 76, is associated 
with a power of about 0.84. This power is somewhat higher than we specified, so 
we could recalculate power using n = 18: 

cP = I 18(3.5)2 = 1.71 
'V 2( 4)( 9.383) 

and. for "2 = 4( 18 - 1) = 68, Appendix Figure B.1 indicates a power slightly 
above 0.80. 

Thus, we have estimated that using sample sizes of at least 18 will result in an 
ANOY A of about 80% for the described experiment. (It will be seen that the 
use of Appendix Figure B.l allows only approximate determinations of power; 
therefore, we may feel more comfortable in specifying that n should be at least 19 
for each of the four samples.) 

(c) Minimum Detectable Difference. If we specify the significance level and sample 
size for an ANOY A and the power that we desire the test to have, and if we have 
an estimate of u2• then we can ask what the smallest detectable difference between 
population means will be. This is sometimes called the "effect size." By entering on 
Appendix Figure 8.1 the specified a. "I. and power. we can read a value of cP on 
the bottom axis. Then. by rearrangement of Equation 10.34. the minimum detectable 
difference is 

a ~ ~2~4? (10.35) 

Example 10.7 demonstrates this estimation procedure. 

EXAMPLE 10.1 Estimation of Minimum Detectable Difference in a One-
Way Analysis of Variance 

In an experiment similar to that in Example 10.1. assuming that s2 = 9.3833 (kg)2 
is a good estimate of u 2• how small a difference between p..'s can we have 90% 
confidence of detecting if n = 10 and a = 0.05 are used? 

Ask = 4andn = to,1I2 = 4(tO - 1) = 36. For II) = 3,"2 = 36.1 - f3 = 0.90, 
and a = 0.05, Appendix Figure B.l c gives a cP of about 2.0, from which we compute 
an estimate of 

2( 4 )(9.3833 )(2.0)2 = 5.5 kg. 
to 

(d) Maximum Number of Groups Testable. For a given a. n. S. and u 2, power 
will decrease as k increases. It may occur that the total number of observa­
tions, N, will be limited, and for given ANOYA specifications the number of 
experimental groups, k, may have to be limited. As Example 10.8 illustrates, the 
maximum k can be determined by trial-and-error estimation of power, using Equa­
tion 10.34. 
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EXAMPLE 10.8 Determination of Maximum Number of Groups to be 
Used in a One-Way Analysis of Variance 

Consider an experiment such as that in Example 10.1. Perhaps we have six feeds 
that might be tested. but we have only space and equipment to examine a total of 
50 pigs. Let us specify that we wish to test, with ex = 0.05 and f3 ::; 0.20 (Le .• power 
of at least 80%). and to detect a difference as small as 4.5 kg between population 
means. 

If k = 6 were used, then n = 50/6 = 8.3 (call it 8), v\ = 5.V2 = 6( 8 - 1) = 42, 
and (by Equation 10.34) 

c/J= 
(8)(4.5)2 

-----'---'--'-------'- = 1.20. 
2(6)(9.3833) 

for which Appendix Figure B.I e indicates a power of about 0.55. 
lfk = 5wereused.n = 50/5 = lO.v\ = 4,V2 = 5(10 - 1) = 45. and 

c/J= (10)(4.5)2 = 1.47. 
2(5)(9.3833) 

for which Appendix Figure B.l d indicates a power of about 0.70. 
If k = 4 were used. n = 50/4 = 12.5 (call it 12). v\ = 3.V2 = 4( 12 - 1) = 44. 

and 

c/J= (12)( 4.5)2 = 1.80. 
2( 4 )(9.3833) 

for which Appendix Figure B.Ic indicates a power of about 0.84. 
Therefore, we conclude that no more than four of the feeds should be tested in 

an analysis of variance if we are limited to a total of 50 experimental pigs. 

(e) Random-Effects Analysis of Variance. If the analysis of variance is a random­
effects model (described in Section 1O.lf). the power, 1 - f3. may be determined 
from 

V2,<;2 F a( \ ) "I ." F = . '" 
(\-{3)'''1,''2 ( 2)( MS) V2 - groups 

(10.36) 

(after Scheffe. 1959: 227; Winer, Brown, and Michels. 1979: 246). This is shown in 
Example 10.9. As with the fixed-effects ANOV A. power is greater with larger n, 
larger differences among groups, larger ex. and smaller .~. 

EXAMPLE 10.9 Estimating the Power of the Random-Effects Analysis of 
Variance of Example 10.2 

Groups MS = 3.00: s2 = 1.25: V\ = 3, V2 = 16 

F = F, = 324 a( 1 )'''1'''2 I>.OS( 1 ),3,16 • 
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F(I-(3)./lI./12 = ("2 - 2)(groupsMS) 

(16 )(1.25)(3.24) = 1.54 
(14)(3.00) 

By consulting Appendix Table B.4. it is seen that an F of 1.54, with degrees of 
freedom of 3 and 16, is associated with a one-tailed probability between 0.10 and 
0.25. (The exact probability is 0.24.) This probability is the power. 

To determine required sample size in a random-effects analysis, one can specify 
values of 0:', groups MS, .')2. and k. Then,"1 = k - 1 and "2 = k( n - 1): and, 
by iterative trial and error, one can apply Equation 10.36 until the desired power 
(namely, 1 - /3) is obtained. 

10.4 NONPARAMETRIC ANALYSIS OF VARIANCE 

If a set of data is collected according to a completely randomized design where k > 2, 
it is possible to test nonparametrically for difference among groups. This may be 
done by the Kruskal-Wallis test· (Kruskal and Wallis, 1952), often called an "analysis 
of variance by ranks. ,·t This test may be used in any situation where the parametric 
single-factor ANOV A (using F) of Section 10.1 is applicable, and it will be 3/7r (Le., 
95.5%) as powerful as the latter; and in other situations its power. relative to F, is 
never less than 86.4% (Andrews, 1954; Conover 1999: 297). It may also be employed 
in instances where the latter is not applicable, in which case it may in fact be the 
more powerful test. The nonparametric analysis is especially desirable when the k 
samples do not come from normal populations (Keselman, Rogan, and Feir-Walsh, 
1977: Krutchkoff, 1998). It also performs acceptably if the populations have no more 
than slightly different dispersions and shapes: but if the k variances are not the same, 
then (as with the Mann-Whitney test) the probability of a Type J error departs from 
the specified 0:' in accordance with the magnitude of those differences (Zimmerman, 
2000).t 

As with the parametric analysis of variance (Section 10.1), the Kruskal-Wallis test 
tends to be more powerful with larger sample sizes, and the power is less when the 
n;'s are not equal, especially if the large means are associated with the small n/s 
(Boehnke, 1984): and it tends to be conservative if the groups with large nj's have 
high within-groups variability and liberal if the large samples have low variability 
(Keselman, Rogan, and Feir-Walsh, 1997). Boehnke (1984) advises against using the 
Kruskal-Wallis test unless N > 20. 

If k = 2, then the Kruskal-Wallis test is equivalent to the Mann-Whitney test 
of Section 8.11. Like the Mann-Whitney test, the Kruskal-Wallis procedure does 

·William Henry Kruskal (b. 1919). American statistician, and Wilson Allen Wallis (b. 1912), 
American statistician and econometrician. 

t As will be seen. this procedure does not involve variances, but the term nonpartlmetric analysis 
of variance is commonly applied to it in recognition that the test is a nonparametric analog to the 
parametric ANDV A. 

*Modifications or the Kruskal-Wallis test have been proposed for nonparametric situations 
where the k variances arc not equal (the "Behrens-Fisher problem" addressed parametrically 
in Section to.th) but the k populations are symmetrical (Rust and Fligner, 1984; Conover 1999: 
223-224). 
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not test whether means (or medians or other parameters) may be concluded to be 
different from each other. but instead addresses the more general question of whether 
the sampled populations have different distrubutions. However. if the shapes of the 
distributions are very similar. then the test does become a test for central tendency 
(and is a test for means if the distributions are symmetric). 

The Type I error rate with heterogeneous variances is affected less with the 
Kruskal-Wallis test than with the parametric analysis of variance if the groups with 
large variances have small sample sizes (Keselman. Rogan. and Feir-Walsh. 1977: 
Tomarkin and Serlin. 1986). 

Example to.1O demonstrates the Kruskal-Wallis test procedure. As in other non­
parametric tests. we do not use population parameters in statements of hypotheses, 
and neither parameters nor sample statistics are used in the test calculations. The 
Kruskal-Wallis test statistic. H. is calculated as 

12 k R? 
H= L-' - 3(N + I). 

N(N + 1);=1 n; 
( 10.37) 

where n; is the number of observations in group i. N = Lf= 1 n; (the total number of 
observations in all k groups). and Ri is the sum of the ranks of the ni observations 
in group i. * The procedure for ranking data is as presented in Section 8.11 for the 
Mann-Whitney test. A good check (but not a guarantee) of whether ranks have been 
assigned correctly is to see whether the sum of all the ranks equals N(N + 1)/2. 

Critical values of H for small sample sizes where k S 5 are given in Appendix 
Table B.13. For larger samples and/or for k > 5. H may be considered to be 
approximated by X2 with k - 1 degrees of freedom. Chi-square, X2, is a statistical 
distribution that is shown in Appendix Table B.l, where probabilities are indicated 
as column headings and degrees of freedom (v) designate the rows. 

If there are tied ranks. as in Example to.1 1. H is a little lower than it should be, 
and a correction factor may be computed as 

c = I _ Ll 
N3 N' 

and the corrected value of H is 
H 

H("= -. 
C 

*Inlerestingly. H (or He of Equation 111.41) could also be computed as 

If = groups SS. 
total MS 

(10.40) 

(10.41) 

(10.38) 

applying the procedures of Section 10.1 10 the ranks of the data in order to obtain the Groups SS 
and Total MS. And. because the Total MS is the variance of all N ranks. if there are no ties Ihe 
Total MS is the variance of the integers from 1 to N. which is 

N(N + I )(2N + 1 )/6 - N2(N + 1)2/4N 

N - 1 
(IO.3Ma) 

The following alternate formula (Pearson and Hartley. 1976: 49) shows that H is expressing the 
differcnces among the K groups' mean ranks (R; = Ri/ ni) and the mean of all N ranks. which is 
R = N(N - 1)/2: 

12 f ni(Ri - R)2 
H = ---,i_"'..:....1 ___ _ 

N(N - I) 
( 10.39) 
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EXAMPLE 10.10 
Ranks 

The Kruskal-Wallis Single-Factor Analysis of Variance by 

An entomologist is studying the vertical distribution of a fly species in a deciduous 
forest and obtains five collections of the flies from each of three different vegetation 
layers: herb. shrub. and tree. 

Ho: The abundance of the flies is the same in all three vegetation layers. 
H A: The abundance of the flies is not the same in all three vegetation layers. 

a = 0.05 
The data are as follows (with ranks of the data in parentheses):* 

HO.05.5.5.5 = 5.780 

Reject Ho. 

Numbers of Flieslm3 of Foliage 
Herbs Shrubs Trees 

14.0(15) 
12.1 (14) 
9.6 (12) 
8.2 (10) 

10.2 (13) 

n) = 5 
R, = 64 

8.4 (11) 
5.1 (2) 
5.5 (4) 
6.6 (7) 
6.3 (6) 

n2 = 5 
R2 = 30 

N = 5 + 5 + 5 = 15 

6.9 (8) 
7.3 (9) 
5.8 (5) 
4.1 (1) 
5.4 (3) 

n3 = 5 
R3 = 26 

12 k R2 
H = ~ _i - 3(N + 1) 

N(N + t );~, n, 

= 12 [642 + 302 + 262]_ 3(16) 
15(16) 5 5 5 

= 2~0[1134.400] - 48 

= 56.720 - 48 

= 8.720 

0.005 < P < 0.01 

*To check whether ranks were assigned correctly. the sum of the ranks (or sum of the rank 
sums: 64 + 30 + 26= 120)iscomparedtoN(N + 1)/2= 15(16)/2= 120. This check will 
not guarantee that the ranks were assigned properly. but it will often catch errors of doing so. 
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EXAMPLE 10.11 The Kruskal-Wallis Test with Tied Ranks 

A limnologist obtained eight containers of water from each of four ponds. The 
pH of each water sample was measured. The data are arranged in ascending order 
within each pond. (One of the containers from pond 3 was lost, so n3 = 7, instead 
of 8; but the test procedure does not require equal numbers of data in each group.) 
The rank of each datum is shown parenthetically. 

Ho: pH is the same in all four ponds. 
HA : pH is not the same in all four ponds. 

(X = 0.05 

Pond I Pond 2 Pond 3 Pond 4 

7.68 (1) 7.71 (6*) 7.74 (13.5*) 7.71 (6*) 
7.69 (2) 7.73 (10*) 7.75 (16) 7.71 (6*) 
7.70 (3.5*) 7.74 (13.5*) 7.77 (18) 7.74 (13.5*) 
7.70 (3.5*) 7.74 (13.5*) 7.78 (20*) 7.79 (22) 
7.72 (8) 7.78 (20*) 7.80 (23.5*) 7.81 (26*) 
7.73 (10*) 7.78 (20*) 7.81 (26*) 7.85 (29) 
7.73 (10*) 7.80 (23.5*) 7.84 (28) 7.87 (30) 
7.76 (17) 7.81 (26*) 7.91 (31) 
*Tied ranks. 

n) = 8 n2 = 8 n3 = 7 n4 = 8 
Rl = 55 R2 = 132.5 R3 = 145 R4 = 163.5 

N = 8 + 8 + 7 + 8 = 31 

H = 12 ± R~ _ 3(N + 1) 
N(N + 1) ;=1 n; 

= 12 [552 + 132.52 + 1452 + 163.52]_ 3(32) 
31(32) 8 8 7 8 

= 11.876 

Number of groups of tied ranks = m = 7. 

~t = ~(ljl - Ii) 

= (23 - 2) + (33 - 3) + (33 - 3) + (43 - 4) 
+(33 - 3) + (23 - 2) + (33 - 3) 

= 168 

c = 1 - ~ I = 1 _ 168 = 1 - ~ = 0.9944 
N3 - N 31 3 - 31 29760 

He = H = 11.876 = 11.943 
C 0.9944 

v=k-l=3 
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Xfi.OS.3 = 7.815 

Reject Ho. 
0.005 < P < 0.01 [P = 0.0076] 

or, by Equation 10.43, 

(N - k ) He ( 31 - 4) ( 11. 943 ) F = ---'--------'----"--- = ------''---------'--'-------'--- = 5.95 

Here, 

(k - 1)( N - 1 - He) (4 - 1) (31 - I - 11.943) 

FO.05( 1 }.32li = 2.98 

Reject Ho. 
0.0025 < P < 0.005 [P = 0.0031] 

In 

~ t = ~ (li1 - Ii), 
;=1 

(10.42) 

where Ii is the number of ties in the ith group of ties, and m is the number of 
groups of tied ranks. He will differ little from H when the Ii'S are very small com­
pared to N. 

Kruskal and Wallis (1952) give two approximations that are better than chi-square 
when the n; 's are small or when significance levels less than 1 % are desired: but 
they are relatively complicated to use. The chi-square approximation is slightly 
conservative for a = 0.05 or 0.10 (i.e., the true Type I probability is a little less than 
a) and more conservative for a = 0.01 (Gabriel and Lachenbruch, 1969): it performs 
better with larger nj's. Fahoome (2002) found the probability of a Type I error to be 
between 0.045 and 0.055 when employing this approximation at the 0.05 significance 
level if each sample size is at least 11, and between 0.009 and 0.011 when testing at 
a = 0.01 when each ni ~ 22. 

Because the X2 approximation tends to be conservative, other approximations 
have been proposed that are better in having Type I error probabilities closer to a. 
A good alternative is to calculate 

F= (N-k)H , 
(k - 1 )(N - 1 - H) 

(10.43) 

which is also the test statistic that would be obtained by applying the parametric 
ANOV A of Section 10.1 to the ranks of the data (lman, Quade and Alexander, 
1975). For the Kruskal-Wallis test, this F gives very good results, being only slightly 
liberal (with the probability of a Type I error only a little larger than the specified 
a), and the preferred critical values are F for the given a and degrees of freedom 
of VI = k - 1 and V2 = N - k - 1.* This is demonstrated at the end of 
Example 10.11. 

* A slightly better approximation in some, but not all. cases is to compare 

H [1 + N - k ] 10 _( k __ 1 )_F_Il<.:...I..:...}.k_-_I_.N_-_k_+_X...:;;::..:..k;..._...;.1 

2 N-J-H 2 
( 1O.43a) 
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S TESTING FOR DIFFERENCE AMONG SEVERAL MEDIANS 

Section 8.12 presented the median test for the two-sample case. This procedure may 
be expanded to multisample considerations (Mood. 1950: 398-399). The method 
requires the determination of the grand median of all observations in all k samples 
considered together. The numbers of data in each sample that are above and below 
this median are tabulated, and the significance of the resultant 2 x k contingency 
table is then analyzed, generally by chi-square (Section 23.1), alternatively by the G 
test (Section 23.7). For example, if there were four populations being compared, the 
statistical hypotheses would be Ho: all four populations have the same median, and 
HA: all four populations do not have the same median. The median test would be the 
testing of the following contingency table: 

Sample I Sample 2 Sample 3 Sample 4 Total 

Above medial1 
Below median 

Total 

til 
hi 

11 

This muItisample median test is demonstrated in Example 10.12. Section 8.12 
discusses situations where one or more data in the sample are equal to the grand 
median. Recommended sample sizes are those described is Section 23.4. If Ho is 
rejected, than the method of Section 11.7 can be used to attempt to conclude which 
population medians are different from which. 

EXAMPLE 10.12 The Multisample Median Test 

Ho: Median elm tree height is the same on all four sides of a building. 
H A: Median elm tree height is not the same on all four sides of a building. 

A total of 48 seedlings of the same size were planted at the same time, 12 on 
each of a building's four sides. The heights. after several years of growth, were as 
follows: 

North East South West 

7.1 m 6.9m 7.8m 6.4m 
7.2 7.0 7.9 6.6 
7.4 7.1 8.1 6.7 
7.6 7.2 8.3 7.1 
7.6 7.3 8.3 7.6 
7.7 7.3 8.4 7.8 
7.7 7.4 8.4 8.2 
7.9 7.6 8.4 8.4 
8.1 7.8 8.6 8.6 
8.4 8.1 8.9 8.7 
8.5 8.3 9.2 8.8 
8.8 8.5 9.4 8.9 

medians: 7.7m 7.35 m 8.4 m 8.0m 
grand median = 7.9 m 
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The 2 x 4 contingency table is as follows, with expected frequencies (see Section 
23.1) in parentheses: 

North East South West 

Above median 4 (5.5000) 3 (6.0000) 10 (5.5000) 6 (6.0000) 23 
Below median 7 (5.5000) 9 (6.0000) 1 (5.5000) 6 (6.0000) 23 

Total 11 12 11 12 46 

X2 = 11.182 

xi.1l5.3 = 7.815 

Reject Ho. 
0.0005 < P < 0.001 [P = 0.00083] 

If the k samples came from populations having the same variance and shape, then 
the Kruskal-Wallis test may be used as a test for difference among the k population 
medians. 

10.6 HOMOGENEITY OF VARIANCES 

Section 8.5 discussed testing the null hypothess Ho: uT = u~ against the alternate, 
H A: UT =1= u~. This pair of two-sample hypotheses can be extended to more than 
two samples (i.e., k > 2) to ask whether all k sample variances estimate the same 
population variance. The null and alternate hypotheses would then be Ho: uT = 
u~ = ... = lT~ and Ho: the k population variances are not all the same. The 
equality of variances is called homogeneity of variances. or homoscedasticity: variance 
heterogeneity is called heteroscedasticity. * 

(a) Bartlett's Test. A commonly encountered method employed to test for.homo­
geneity of variances is Bartlett's testt (Bartlett, 1937a, 1937b; based on a principle of 
Neyman and Pearson, 1931). In this procedure, the test statistic is 

B ~ (Ins;>(~ v) -~ Vi1nsi, (10.44) 

where Vi = ni - 1 and ni is the size of sample i. The pooled variance, s~, is calculated 

as before as I.7= I SSi/ I.~= I Vi. Many researchers prefer to operate with common 
logarithms (base 10), rather than with natural logarithms (base e):* so Equation 10.44 
may be written as 

B ~ 2.30259[(IOg.,~)(~ Vi) - ~ v;logsil. (10.45) 

The distribution of B is approximated by the chi-square distribution. § with k -
1 degrees of freedom (Appendix Table B.1), but a more accurate chi-square 

*The two terms were introduced by K. Pearson in 1905 (Walker, 1929: IRI): since then they 
have occasionally been spelled homoskedasticity and heteroskedllsticity. respectively. 

tMaurice Stevenson Bartlett (19\0-2002), English statistician. 
*See footnote in Section 8.7. 
Ii A summary of approximations is given by Nagasenker (1984). 
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approximation is obtained by computing a correction factor. 

c = 1 + 
k 1 
L-
i= I Vi 3(k - 1) 

with the corrected test statistic being 

B Be =-. 
C 

1 
k 

LVi 
i=1 

(10.46) 

(10.47) 

Example 10.13 demonstrates these calculations. The null hypothesis for testing 
the homogeneitl of the variances of four populations may be written symbolically 
as Ho: ui = u2 = U} = u~, or, in words, as "the four population variances are 
homogeneous (i.e., are equal)." The alternate hypothesis can be stated as "The four 
population variances are not homogeneous (i.e., they are not all equal)," or "There is 
difference (or heterogeneity) among the four population variances." If Ho is rejected, 
the further testing of Section 11.8 will allow us to ask which popUlation variances are 
different from which. 

Bartlett's test is powerful if the sampled populations are normal. but it is very badly 
affected by non normal populations (Box, 1953; Box and Anderson, 1955; Gartside, 
1972). If the population distribution is platykurtic, the true ex is less than the stated ex 
(i.e., the test is conservative and the probability of a Type II error is increased); if it 
is leptokurtic, the true ex is greater than the stated ex (i.e., the probability of a Type I 
error is increased). 

When k = 2 and n[ = n2, Bartlett's test is equivalent to the variance-ratio test of 
Section 8.5a. However, with two samples of unequal size. the two procedures may 
yield different results; one will be more powerful in some cases. and the other more 
powerful in others (Maurais and Ouimet. 1986). 

(b) Other Multisample Tests for Variances. Section 8.5b noted that there are other 
tests for heterogeneity (Levene's test and others) but that all are undesirable in many 
situations. The Bartlett test remains commendable when the sampled populations are 
normal, and no procedure is especially good when they are not. 

Because of the poor performance of tests for variance homogeneity and the 
robustness of analysis of variance for multisample testing among means (Section 10.1). 
it is not recommended that the former be performed as tests of the underlying 
assumptions of the latter. 

HOMOGENEITY OF COEFFICIENTS OF VARIATION 

The two-sample procedure of Section 8.8 has been extended by Feltz and Miller 
(1996) for hypotheses where k ~ 3 and each coefficient of variation ( Vi) is positive: 

k 

L lIiV; 
i=1 

(± ViVi)2 
1=[ 

k 

LVi 
x2 = __ --::-__ ---=-i =--:1---=-_ 

V~( 0.5 + Vfo) 
(10.48) 
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EXAMPLE 10.13 Bartlett's Test for Homogeneity of Variances 
Nineteen pigs were divided into four groups, and each group was raised on 
a different food. The data, which are those of Example 10.1, are weights, in 
kilograms, and we wish to test whether the variance of weights is the same for pigs 
fed on all four feeds. 

Ho: CTT = CT~ = CT~ = CT~ 
HA : The four population variances are not all equal (i.e., are heterogeneous). 

a = 0.05 

Feed J Feed 2 
60.8 68.7 
67.0 67.7 
65.0 75.0 
68.6 73.3 
61.7 71.8 

i 1 2 
ni 5 5 

IIi 4 4 

SSi 44.768 37.660 

s? 11.192 9.415 
, 2 

1.0489 0.9738 logsi 

IIi log sf 4.1956 3.8952 

l/Vi 0.250 0.250 

S2 = ~ SSj = 140.750 = 9.3833 
p ~ Vi 15 

log S~ = 0.9724 

B = 2.30259 [ (log ~)(~ Vi) 

- ~ IIi log sT )] 

Feed 3 
69.6 
77.1 
75.2 
71.5 

3 
4 

3 

34.970 

11.657 
1.0666 

3.1998 

0.333 

= 2.30259[(0.9724)( 15) - 14.3558J 

= 2.30259( 0.2302 ) 

Feed 4 

61.9 
64.2 
63.1 
66.7 
60.3 

4 
5 

k 
4 ~Vi = 15 

i= 1 
k 

23.352 ~ SSj = 140.750 
i=1 

5.838 
0.7663 

k 
3.0652 ~ Vi log sf = 14.3558 

i= 1 
k 

0.250 ~ l/v; = 1.083 
i= 1 

c = 1 + 1 
3(k - 1) 

x(~~ __ I) 
Vi ~ Vi 

= 1 + _1_ (1.083 _ 1.-) 
3(3) 15 

=1.113 

B. = B = 0.530 = 0.476 
( C 1.113 

X5.05.3 = 7.815 

= 0.530 Do not reject Ho. 

0.90 < P < 0.95 [P = 0.92] 
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EXERCISES 

The following data are ",eights of food (in kilo­
grams) consumed per day by adult deer collected 
at different times of the year. Test the null hypoth­
esis that food consumption is the same for all the 
months tested. 

Feb. May Aug. Nov. 

4.7 4.6 4.8 4.9 
4.9 4.4 4.7 5.2 
5.0 4.3 4.6 5.4 
4.8 4.4 4.4 5.1 
4.7 4.1 4.7 5.6 

4.2 4.8 

L2. An experiment is to have its results examined by 
analysis of variance. The variable is temperature 
(in degrees Celsius), with 12 measurements to be 
taken in each of five experimental groups. From 

, previous experiments. we estimate the within­
groups variability. u 2, to be 1.54(0C)2. If the 5% 
level of significance is employed, what is the prob­
ability of the ANOV A detecting a difference as 

. small as 2.0'C between population means? 
IJ. For the experiment of Exercise 10.2, how many 

replicates are needed in each of the five groups 
to detect a difference as small as 2.00 C between 
population means, with 95% power'? 

W. For the experiment of Exercise to.2. what is the 
, smallest difference between population means that 

we are 95% likely to detect with an ANOV A using 
10 replicates per group? 

10.5. Using the Kruskal-Wallis test. lest nonparametri­
cally the appropriate hypotheses for the data of 
Exercise 10.1. 

10.6. Three different methods were used to determine 
the dissolved-oxygen content of lake water. Each 
of the three methods was applied to a sample of 
water six times. with the following results. Test 
the null hypothesis that the three methods yield 
equally variable results (ui = u~ = u~). 

Method I MetllOd 2 Method 3 
(mglkg) (mglkg) (mg/kg) 

10.96 10.88 10.73 
10.77 10.75 10.79 
10.90 10.80 10.78 
10.69 10.81 10.82 
10.87 10.70 10.88 
10.60 10.82 10.81 

10.7. The following statistics were obtained from mea­
surements of the circumferences of trees of four 
species. Test whether the coefficients of variation 
of circumferences are the same among the four 
species. 

Species B Species A Species Q Species H 

II: 40 54 58 32 
X (m): 2.126 1.748 1.350 1.392 
~1 (m2): 0.488219 0.279173 0.142456 0.203208 

prakash
Rectangle

prakash
Rectangle

prakash
Rectangle
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where the common coefficient of variation is 

k 
L VjVj 

Vp = -j=-~--

L Vj 
j= 1 

(10.49) 

This test statistic approximates the chi-square distribution with k - 1 degrees of 
freedom (Appendix Table B. t) and its computation is shown in Example 10.14. When 
k = 2, the test yields results identical to the two-sample test using Equation 8.42 (and 
X2 = Z2). As with other tests, the power is greater with larger sample size; for a given 
sample size, the power is greater for smaller coefficients of variation and for greater 
differences among coefficients of variation. If the null hypothesis of equal population 
coefficients of variation is not rejected, then Vp is the best estimate of the coefficient 
of variation common to all k populations. 

EXAMPLE 10.14 Testing for Homogeneity of Coefficients of Variation 

For the data of Example 10.1: 

Ho: The coefficients of the four sampled populations are the same; i.e .• 
(TTl f.Ll = (T~/ f.L2 = (TV f.L3 = (T~/ f.L4· 

HA: The coefficients of variation of the four populations are not all the 
same. 

Feed 1 Feed 2 Feed 3 Feed 4 

ni 5 5 4 5 

Vi 4 4 3 4 

Xi (kg) 64.62 68.30 73.35 66.64 

sJ (kg2) 11.192 16.665 11.657 9.248 

Si (kg) 3.35 4.08 3.41 3.04 

Vj 0.0518 0.0597 0.0465 0.0456 

II 

LVi = 4 + 4 + 3 + 4 = 15 
j= 1 

" 
LViVj = (4)(0.0518) + (4)(0.0597) + (3)(0.0465) + (4)(0.0456) = 0.7679 
j= I 

L VjVj 

Vp = = 0.7679 = 0.05119 
LVj 15 

V~ = (0.7679)2 = 0.002620 
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" Lvvl 
;=1 

= (4)(0.0518)2 + (4)(0.0597)2 + (3)(0.0465)2 + (4)(0.0456)2 

= 0.03979 

0.03979 _ (0.7679)2 
_____ ---'1=5 __ = 0.0004786 = 0.363 
0.OO2620( 0.5 + 0.(02620) 0.001317 

For chi-square: v = 4 - I = 3: X6.05.3 = 7.815. Do not reject Ho. 

0.90 < P < 0.95 [P = 0.948] 

Miller and Feltz (1997) reported that this test works best if each sample size (n; 
is at least 10 and each coefficient of variation (V;) is no greater than 0.33: and the: 
describe how the power of the test (and, from such a calculation, the minimun 
detectable difference and the required sample size) may be estimated. 

10.8 CODING DATA 

In the parametric ANOV A. coding the data by addition or subtraction of a constan 
causes no change in any of the sums of squares or mean squares (recall Section 4.8) 
so the resultant F and the ensuing conclusions are not affected at all. If the coding i: 
performed by multiplying or dividing all the data by a constant, the sums of square: 
and the mean squares in the ANOV A each will be altered by an amount equal to the 
square of that constant. but the F value and the associated conclusions will remail 
unchanged. 

A test utilizing ranks (such as the Kruskal-Wallis procedure) will not be affecte( 
at all by coding of the raw data. Thus. the coding of data for analysis of variance 
either parametric or nonparametric, may be employed with impunity. and cod 
ing frequently renders data easier to manipulate. Neither will coding of data alte' 
the conclusions from the hypothesis tests in Chapter 11 (multiple comparisons) 0: 

Chapters 12, 14, 15, or 16 (further analysis-of-variance procedures). Bartlett's tes 
is also unaffected by coding. The testing of coefficients of variation is unaffecte( 
by coding by multiplication or division, but coding by addition or subtractiOI 
may not be used. The effect of coding is indicated in Appendix C for man~ 
statistics. 

10.9 MULTISAMPLE TESTING FOR NOMINAL-SCALE DATA 

A 2 x c contingency table may be analyzed to compare frequency distributions 0 

nominal data for two samples. In a like fashion. an r X c contingency table ma~ 
be set up to compare frequency distributions of nominal-scale data from r samples 
Contingency table procedures are discussed in Chapter 23. 

Other procedures have been proposed for muItisample analysis of nominal-scale 
data (e.g., Light and Margolin. 1971: Windsor, 1948). 
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The Model I single-factor analysis of variance (ANOY A) of Chapter 10 tests the null 
hypothesis Ho: J.LI = J.L2 = ... = J.Lk. However. the rejection of Ho does not imply 
that all k population means are different from one another, and we don't know how 
many differences there are or where differences lie among the k means. For example, 
if k = 3 and Ho: J.LI = V2 = J.LJ is rejected. we are not able to conclude whether there 
is evidence of J.LI -=I- V2 = J.LJ or of J.LI = V2 -=I- J.LJ or of J.LI -=I- V2 -=I- J.LJ. 

The introduction to Chapter to explained that it is invalid to employ multiple 
two-sample t tests to examine the difference among more than two means, for to 
do so would increase the probability of a Type I error (as shown in Table 10.\). 
This chapter presents statistical procedures that may be used to compare k means 
with each other; they are called mUltiple-comparison procedures" (MCPs). Except 
for the procedure known as the least significance difference test, all of the tests 
referred to in this chapter may be performed even without a preliminary analysis of 
variance. Indeed, power may be lost if a multiple-comparison test is performed only 
if the ANOYA concludes a significant difference among means (Hsu. 1996: 177-178; 
Myers and Well. 2003: 261). And all except the Scheffe test of Section 11.4 are for a 
set of comparisons to be specified before the collection of data. 

The most common principle for multiple-comparison testing is that the significance 
level. ll'. is the probability of committing at least one Type I error when making 
all of the intended comparisons for a set of data. These arc said to be a family of 
comparisons, and this error is referred to as fllmilywise error (FWE) or. sometimes, 
experimentwise error. Much less common are tests designed to express comparisol1lvise 
error, the prohahility of a Type 1 error in a single comparison. 

A great deal has been written about numerous multiple-comparison tests with 
various objectives, and the output of many statistical computer packages enhances 
misuse of them (Hsu. 1996: xi). Although there is not unanimity regarding what the 
"best" procedure is for a givcn situation, this chapter will present some frequently 
encountered highly regarded tests for a variety of purposes. 

If the desire is to test for differences between members of all possible pairs of 
means. then the procedures of Section 11.1 would he appropriate, using Section 1 1.1 a 

*Thc term nIlllliple ('oll1/1ariS(lIIS was introduced by D. E. Duncan in 1951 (David. 1995). 



Section 11.1 Testing All Pairs of Means 227 

if sample sizes are unequal and Section 11.1 b if variances are not the same. If the data 
are to be analyzed to compare the mean of one group (typically called the control) 
to each of the other group means, then Section 11.3 would be applicable. And if the 
researcher wishes to examine sample means after the data are collected and compare 
specific means. or groups of means, of interest, then the testing in Section 11.4 is 
called for. 

Just as with the parametric analysis of variance. the testing procedures of Sections 
11.1-11.4 are premised upon there being a normal distribution of the population 
from which each of the k samples came; but. like the ANOY A. these tests are 
somewhat robust to deviations from that assumption. However. if it is suspected that 
the underlying distributions are far from normal, then the analyses of Section 11.5. or 
data transformations (Chapter 13). should be considered. Multiple-comparison tests 
are adversely affected by heterogeneous variances among the sampled populations. 
in the same manner as in ANOY A (Section 10.1 g) (Keselman and Toothaker. 1974; 
Petrinovich and Hardyck. 1969), though to a greater extent (Tukey, 1993). 

In multiple-comparison testing-except when comparing means to a control­
equal sample sizes are desirable for maximum power and robustness, but the pro­
cedures presented can accommodate unequal n·s. Petrinovich and Hardyck (1969) 
caution that the power of the tests is low when sample sizes are less than 10. 

This chapter discusses multiple comparisons for the single-factor ANOV A exper­
imental design (Chapter 10).* Applications for other situations are found in Section 
12.5 (for the two-factor ANOYA design), 12.711 (for the nonparamctric randomized­
block ANOYA design), 12.9 (for dichotomous data in randomized blocks), 14.6 
(for the multiway ANOYA design). 18.6 and 18.7 (for regression), and 19.8 (for 
correlation ) . 

. 11.1 TESTING ALL PAIRS OF MEANS 

There are k( k - I )/2 different ways to obtain pairs of means from a total of k 
means. t For example. if k = 3. the k(k - 1)/2 = 3(2)/2 = 3 pairs are J.LI and J.L2. 
J.LI and W3, and J.L2 and J.L3: and for k = 4. the k( k - 1 )/2 = 4{ 3 )/2 = 6 pairs are 
J.LI and J.L2. J.LI and J.L3, J.LI and J.L4, J.L2 and J.L3, J.L2 and J.L4, and J.L3 and J.L4. So each 
of k(k - 1 )/2 null hypotheses may be tested, referring to them as Ho: J.LB = J.LA, 
where the subscripts A and B represent each pair of subscripts: each corresponding 
alternate hypothesis is Ho: J.LB *- J.LA. 

An excellent way to address these hypotheses is with the Tl/key test (Tukey, 
1953), also known as the honestly significant difference test (HSD test) or wholly 
significant difference test (WSD test). Example 11.1 demonstrates the Tukey test, 
utilizing an ANOY A experimental design similar to that in Example 10.1, except that 
all groups have equal numbers of data (i.e., all of the nj's are equal). The first step 
in examining these multiple-comparison hypotheses is to arrange and number all five 
sample means in order of increasing magnitude. Then pairwise differences between 
the means, X It - X 8, are tabulated. Just as a difference between means, divided by 

* For nonparametric testing. Conover and Iman (II)XI) recommend applying methods as those 
in Sections 11.1-11.4 on the ranks or the data. However Hsu (1996: 177); Sawilowsky. Blair. and 
Higgins (1999): and Toothaker (1991: 1(1) caution against doing so. 

tThe number of combinations of k groups taken 2 at a timc is (by Equation 5.10): 

c = k! = k(k - 1 )(k - 2)! = k(k - 1) 
k 2 2!(k _ 2)! 2!(k - 2)! 2 

(11.1) 
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EXAMPLE 11.1 Tukey Multiple Comparison Test with Equal Sample Sizes. 

The data are strontium concentrations (mg/ml) in five different bodies of water. 
First an analysis of variance is performed. 

Ho: ILl = IL2 = IL3 = IL4 = IL:.· 

HA: Mean strontium concentrations are not the same in all five bodies of 
water. 

er = 0.05 

GraysolI's POlld Beaver Lake AI/Kla's Cove Applelrt'e Lake Rock Rhw 

2K2 39.6 46.3 41.0 56.3 

33.2 40.X 42.1 44.1 54.1 

36.4 37.9 43.5 46.4 59.4 

34.6 37.1 4KH 40.2 62.7 

29.1 43.6 43.7 3K6 60.0 

31.0 42.4 40.1 36.3 57.3 

XI = 32.1 mg/ml X 2 = 40.2 mglml XJ = 44.1 mg/ml X4 = 41.1 mglml X:. = 5K3 mglml 

III = 6 "2 = 6 "3 = 6 1/4 = 6 II; = 6 

Source of variation SS OF MS 

Total 2437.5720 29 
Groups 2193.4420 4 548.3605 
Error 244.1300 25 9.7652 

k = 5. n = 6 

Samples number (i) of ranked means: 2 4 3 5 

Ranked sample mean (Xi): 32.1 40.2 41.1 44.1 58.3 

To test each Ho: ILU = ILA, 

SE = )9.7:52 = J1.6275 = 1.28. 

As Qn.o5.2:'.k does not appear in Appendix Table B.5, the critical value with the 
next lower OF is used: l/O.05.245=4.ltm. 
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Comparison D~rrerence 

B vs. A (XH - X A ) SE q Conclllsioll 

S vs. I 58.3 32.1 = 26.2 1.28 20.47 Reject 110: JL5 = JL I 
5 vs. 2 5R.3 - 40.2 = 18.1 1.28 14.14 Reject Ho: JL5 = JLl 
5 vs. 4 58.3 - 41.1 = 17.2 1.28 13.44 Reject Ho: w, = JL~ 
5 vs. 3 58.3 44.1 = 14.2 1.28 11.09 Reject lIo: JL5 = JL.< 
3 vs. I 44.1 32.1 = 12.0 1.28 9.38 Reject lIo: JLJ = JLI 

3 vs. 2 44.1 - 40.2 = 3.9 1.28 3.05 Do not re.iect lIo: JL3 = JLl 
3 vs. 4 Do not test 
4 vs. 1 44.1 - 32.1 = 9.0 1.28 7.03 Reject Ho: JL4 = JL I 
4 vs. 2 Do not test 
2 vs. 1 40.2 - 32.1 = 8.1 1.28 6.33 Reject 110: JL2 = JL I 

Thus. we conclude that JLI is different from the other means. that JL5 is different 
from the other means. and that JL2. JL~. and JL3 arc indistinguishable from each 
other: JL I t= JL2 = JL4 = JL3 t= JL5· 

the appropriate standard error. yields a t value (Section 8.1). the Tukey test statistic. 
q. is calculated by dividing a difference between two means by 

SE = {;2. (11.2) V-;; 
where 11 is the number of data in each of groups Band A. and .\'2 is the error mean 
square by ANOVA computation (Equation IO.14). Thus 

X8 - XA 
q = SE (11.3 ) 

which is known as the stlldemized /'lInge* (and is sometimes designated as T). The 
null hypothesis Ho: X 8 = X A is rejected if q is equal to or greater than the critical 
value. l]a.I'.k. from Appendix Table B.S. where v is the error degrees of freedom (via 
Equation IO.15. which is N - k). 

The signifkance level, lX. is the probability of committing at least one Type I error 
(i.e .. the probability of incorrectly rejecting at least one Ho) during the course of 
comparing all pairs of means. And the Tukey test has good power and maintains the 
probability of the familywise Type I error at or below the stated lX. 

The conclusions reached by this multiple-comparison testing may depend upon the 
order in which the pairs of means are compared. The proper procedure is to compare 
first the largest mean against the smallest. then the largest against the next smallest. and 
so on. until the largest has been compared with the second largest. Then one compares 
the second largest with the smallest. the second largest with the next smallest. and 
so on. Another important procedural rule is that if no significant difference is found 

*E. S. Pearson C1nu H. O. Hartley first used this term in 11.)53 (David. 191.)5). 
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between two means, then it is concluded that no significant difference exists between 
any means enclosed by those two, and no differences between enclosed means 
are tested for. Thus, in Example 11.1. because we conclude no difference between 
population means 3 and 2, no testing is performed to judge the difference between 
means 3 and 4, or between means 4 and 2. The conclusions in Example 11.1 are that 
Sample 1 came from a population having a mean different from that of any of the 
other four sampled populations: likewise. it is concluded that the population mean 
from which Sample 5 came is different from any of the other population means, and 
that samples 2, 4, and 3 came from populations having the same means. Therefore, 
the overall conclusion is that /-Lt :I: J.L2 = J.L4 = J.L3 :I: /-L5' As a visual aid in Example 
11.1, each time a null hypothesis was not rejected, a line was drawn beneath means 
to connect the two means tested and to encompass any means between them. 

The null hypothesis Ho: /-LB = /-LA may also be written as J.LB - J.LA = O. The 
hypothesis /-LB - /-LA = J.tO, where /-L() :I: 0, may also be tested: this is done by replacing 
X B - X A with I X B - X A I - J.Lo in the numerator of Equation 11.3. 

Occasionally, a multiple-comparison test, especially if nB :I: /lA, wiJI yield ambiguous 
results in the form of conclusions of overlapping spans of nonsignificance. For 
example, one might arrive at the following: 

Xl X2 X3 X4 

for an experimental design consisting of four groups of data. Here the four samples 
seem to have come from populations among which there were two different population 
means: Samples 1 and 2 appear to have been taken from one population, and Samples 
2,3, and 4 from a different population. But this is clearly impossible, for Sample 2 has 
been concluded to have come from both populations. Because the statistical testing 
was not able to conclude decisively from which population Sample 2 came, at least 
one Type II error has been committed. Therefore, it can be stated that /-Lt :I: /-L3 :I: ,.1.4, 
but it cannot be concluded from which of the two populations Sample 2 came (or jf 
it came from a third population). Repeating the data collection and analysis with a 
larger number of data might yield more conclusive results. 

(a) Multiple Comparisons with Unequal Sample Sizes. If the sizes of the k samples 
are not equal, the Tukcy-Kramer procedure (Kramer, 1956; supported by Dunnett, 
1980a; Stoline, 1981: Jaccard. Becker. and Wood, 1984)* is desirable to maintain 
the probability of a Type I error near a and to operate with good power. For each 
comparison involving unequal /l'S, the standard error for use in Equation 11.3 is 
calculated as 

SE = S2 ( 1 1 ) 
"2 nB + /lA ' 

(11.4) 

which is inserting the harmonic mean of nB and nA (Section 3.4b) in place of n in 
Equation 11.2;t and Equation 11.4 is equivalent to 11.2 when nB = nA. This test is 
shown in Example 11.2, using the data of Example 10.1. 

*This procedure has heen shown to he excellent (e.g., Dunnett. 1980a; Hayter. 1984; Keselman. 
Murray, and Rogan, 1976; Smith, 1971; Somerville. 1993: Stoline. 1(81). with the probability ora 
familywise Type I error no greater than the stated a. 

tSome researchers have replaced 11 in Equation 11.2 with the harmonic mean of all k samples 
or with the median or arithmetic mcan of the pair of means examined. Dunnett (1980a); Kcselman, 
Murray. and Rogan (1976); Keselman and Rogan (1977): and Smith (1971) concluded the Kramer 
approach to be superior to those methods, and it is analogous to Equation 8.7a. which is used for 

__________ --"tw.n.!.[o-~sa<UmlULlDIc...Ltestin2. 
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EXAMPLE 11.2 The Tukey-Kramer Test with Unequal Sample Sizes 

The data (in kg) are those from Equation 10.1. 

k=4 

s2 = Error MS = 9.383 

Error OF = 15 

qO.ns.ls,4 = 4.076 

Samplc number (i) of ranked means: 

Ranked samplc mean (Xj): 

Sample sizes (nj): 

4 2 3 

63.24 64.62 71.30 73.35 

4 5 5 5 

If nB = nA (call it n), then SE = fs2 = )9.383 = J2.i11 = 1.453. \j -;; 5 

+ _1 ) 0.383 (! + !) 
nA 2 5 4 

= -/1.877 = 1.370. 

Comparison Difference 

8vs.A (X8 - X,d SE q Conclusion 

3 vs. 4 73.35 63.24 = 10.11 1.453 6.958 Reject Ho: JL3 = JL4 
3 vs. 1 73.35 64.62 = 8.73 1.370 6.371 Reject Hn: JL3 = JLI 
3 vs. 2 73.35 71.30 = 2.05 1.370 1.496 Do not reject Ho: JL3 = JL2 
2 vs. 4 71.30 63.24 = 8.06 1.453 5.547 Reject Ho: JL2 = JL4 
2 vs. 1 71.30 - 64.62 = 6.68 1.370 4.876 Reject Ho: JL2 = JLI 
1 vs.4 64.62 63.24 = 1.38 1.453 0.950 Do not reject Ho: JLI = JL4 

Thus, we conclude that JL4 and JLI are indistinguishable, that JL2 and JL3 
are indistinguishable. and that JL4 and JLI are different from JL2 and JL3: 

JL4 = JLI #: JL2 = JL3· 

(b) Multiple Comparisons with Unequal Variances. Although the Tukey test can 
withstand some deviation from normality (e.g., Jaccard, Becker, and Wood. 1984), 
it is less resistant to heterogeneous variances. especially if the sample sizes are not 
equal. The test is conservative if small n's are associated with small variances and 
undesirably liberal if small samples come from populations with large variances, and 
in the presence of both nonnormalily and heteroscedasticity the test is very liberal. 
Many investigations· have determined that the Tukey-Kramer test is also adversely 
affected by heterogeneous variances. 

*These include those of Dunnell (l9XOh. 19X2): Games and Howell (1976): Jaccard. Becker, 
and Wood (1984); Kcse1man, Games, and Rogan (1979); Keselman and Rogan (l97X); Keselman 
and Toothaker (1974): Keselman. Toothaker. and Shooter (1975); Ramseyer and Tcheng (1973): 
Jenkdon and Tamhane (1979). 
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As a solution to this problem, Games and Howell (1976) proposed the use of the 
Welch approximation (Section 8.1 b) to modify Equation 11.4 to be appropriate when 
the k population variances are not assumed to be the same or similar: 

SE = ! (s~ + s~). 
2 n8 nA 

( 11.5) 

and q will be associated with the degrees of freedom of Equation 8.12; but each 
sample size should be at least 6. This test maintains the probability of a familywise 
Type I error around ex (though it is sometimes slightly liberal) and it has good power 
(Games, Keselman, and Rogan. 1981; Keselman. Games, and Rogan, 1979; Kcselman 
and Rogan. 1978; Tamhane, 1979). If the population variances are the same, then the 
Tukey or Tukey-Kramer test is preferable (Kirk, 1995: 147-148). If there is doubt 
about whether there is substantial heteroscedacity, it is safer to use the Games and 
Howell procedure. for if the underlying popUlations do not have similar variances, 
that test will be far superior to the Tukey-Kramer test; and if the population variances 
are similar, the former will have only a little less power than the latter (Levy, 1978c). 

(c) Other Multiple-Comparison Methods. Methods other than the Tukey and 
Tukey-Kramer tests have been employed by statisticians to examine pairwise dif­
ferences for more than two means. The Newman-Keul\' test (Newman, 1939; Keuls, 
1952), also referred to as the Student-Newman-Keuls test. is employed as is the Tukey 
test, except that the critical values from Appendix Table B.5 are those for qa.IIJ1 

instead of qa.II.k, where p is the range of means for a given Ho. So. in Example 11.2, 
comparing means 3 and 4 would use p = 4, comparing means 3 and 1 would call 
for p = 3, and so on (with p ranging from 2 to k). This type of multiple-comparison 
test is called a mUltiple-range test. There is considerable opinion against using this 
procedure (e.g., by Einot and Gabriel. 1975; Ramsey, 1978) because it may falsely 
declare differences with a probability undesirably greater than ex. 

The Duncan test (Duncan, 1955) is also known as the Duncan new multiple range 
test because it succeeds an earlier procedure (Duncan, 1951). It has a different 
theoretical basis, one that is not as widely accepted as that of Tukey's test, and it has 
been declared (e.g., by Carmer and Swanson. 1973; Day and Quinn, 1899) to perform 
poorly. This procedure is executed as is the Student-Newman-Keuls test. except that 
different critical-value tables are required. 

Among other tests, there is also a procedure called the least significant difference 
test (LSD), and there are other tests, such as with Dunn or Bonferroni in their names 
(e.g .• Howell, 2007: 356-363). The name wholly significant difference test (WSD test) 
is sometimes applied to the Tukey test (Section 11.1) and sometimes as a compromise 
between the Tukey and Student-Newman-Keuls procedures by employing a critical 
value midway between qa.J •• k and qa.II.p. The Tukey test is preferred here because of its 
simplicity and generally good performance with regard to Type I and Type II errors. 

11.2 CONFIDENCE INTERVALS FOR MULTIPLE COMPARISONS 

Expressing a 1 - ex confidence interval using a sample mean denotes that there is 
a probability of 1 - ex that the interval encloses its respective population mean. 
Once multiple-comparison testing has concluded which of three or more sample 
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means are significantly different. confidence intervals may be calculated for each 
different population mean. If one sample mean (Xi) is concluded to be signifi­
cantly different from all others. then Equation 10.31 (introduced in Section 10.2) 
is used: _ $,2 

Xi ± tu (2).JI -. 
ni 

(10.31) 

In these calculations. s2 (essentially a pooled variance) is the same as the error mean 
square would be for an analysis of variance for these groups of data. If two or more 
sample means are not concluded to be significantly different. then a pooled mean of 
those samples is the best estimate of the mean of the population from which those 
samples came: 

(11.6) 

where the summation is over all samples concluded to have come from the same 
popUlation. Then the confidence interval is 

Xp ± t.(') .• ~ i'n/ (11.6a) 

again summing over all samples whose means are concluded to be indistinguishable. 
This is analogous to the two-sample situation handled by Equation 8.16. and it is 
demonstrated in Example 11.3. 

I f a pair of population means, /LB and /LA. are concluded to be different. the 1 - a 
confidence interval for the difference (/LB - /LA) may be computed as 

(11.7) 

Here. as in Section 11.1. II is the error degrees of freedom appropriate to an ANOV A. 
k is the total number of means, and SE is obtained from either Equation 11.2 or 
Equation 11.4. depending upon whether nB and nA are equal. or Equation 11.5 if 
the underlying population variances are not assumed to be equal. This calculation is 
demonstrated in Example 11.3 for the data in Example 11.1. 

(a) Sample Size and Estimation of the Difference between Two Population Means. 
Section 8.3 showed how to estimate the sample size required to obtain a confidence 
interval of specified width for a difference between the two population means 
associated with the two-sample t test. In a multisample situation. a similar procedure 
may be used with the difference between population means, employing q instead of 
the t statistic. As in Section 8.3, iteration is necessary, whereby n is determined such 
that 

(11.8) 

Here, d is the half-width of the 1 - a confidence interval, s2 is the estimate of error 
variance. and k is the total number of means; II is the error degrees of freedom with 
the estimated n. namely 11 = k(n - 1). 
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EXAMPLE 11.3 
Example 11.1 

Confidence Intervals (CI) for the Population Means from 

It was concluded in Example 11.1 that ILl "# IL2 = IL4 = IL3 "# ILs. Therefore, we 
may calculate confidence intervals for ILl for IL2.4,3 and for ILS (where IL2.4.3 indicates 
the mean of the common population from which Samples 2, 4, and 3 came). 

Using Equation 10.31: 

95% CIfor ILl = XI ± 10.0S(2).2S~ = 32.1 ± (2.060)~9.7:52 
= 32.1 mglml ± 2.6 mglml. 

Again using Equation 10.31: 

~
-

-- s2 
95% CI for ILs = Xs ± 10.05(2).25 - = 58.3 mglml ± 2.6 mglml. 

n5 

Using Equation 11.6: 

= (6)(40.2) + (6)(41.1) + (6)(44.1) = 41.8mglml. 
6 + 6 + 6 

Using Equation 11.6a: 

-- I s2 
95% CI for IL2.4,3 = X2.4.3 ± lo.05(2).2S\j 6 + 6 + 6 = 41.8 mglml 

±1.5 mglml. 

Using Equation 11.7: 

95% CI for ILS - IL2.4.3 -- -- S2( 1 1) 
= Xs - X2.4.3 ± qo.OS.2S.5 \ 2' ns + n2 + n4 + n3 

= 58.3 - 41.8 ± (4.166)( 1.04) 

= 16.5 mglml ± 4.3 mglml. 

Using Equation 11.7: 

95 % CI for IL2.4.3 - IL I = X 2.4.3 - X I ± QO.OS.2S.S S22 ( 1 + 1) 
\ n2 + n4 + n3 nl 

= 41.8 - 32.1 ± (4.166)(1.04) 
= 9.7 mglml ± 4.3 mglml. 

11.3 TESTING A CONTROL MEAN AGAINST EACH OTHER MEAN 

Sometimes means are obtained from k groups with the a priori objective of concluding 
whether the mean of one group. commonly designated as a control, differs signifi­
cantly from each of the means of the other k - 1 groups. Dunnett (1955) provided 
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an excellent procedure for such testing. Thus, whereas the data descrihed in Section 
11.1 were collected with the intent of comparing each sample mean with each other 
sample mean. the Dunnett test is for multisample data where the ohjective of the 
analysis was stated as comparing the control group's mean to the mean of each other 
group. Tukey's test could be used for this purpose. hut it would he less powerful 
(Myers and Well, 2003: 255). If k = 2, Dunnett's test is equivalent to the two-sample 
I test (Section 8.1). 

As in the previous section, s2 denotes the error mean square, which is an estimate 
of the common population variance underlying each of the k samples. The Dunnett's 
test statistic (analogous to that of Equation 11.3) is 

q' = Xconlrol - XA 

SE 

where the standard error, when the sample sizes are equal. is 

(2;2 
SE = \j --;;. 

and when the sample sizes are not equal, it is 

and when the variances are not equal: 

SE = 
52 ) 
-.A.. + S~ol1lrol 

nA nconlrol 

(I \.9) 

(I 1.10) 

(11.11) 

(1I.1Ia) 

For a two-tailed test, critical values. q~(2).".k' are given in Appendix Tahle B.7. If 
Iq'l 2: q~(2).".k' then H(): J.Lconlrol = J.LA is rejected. Critical values for a one-sample 
test, q~( I ).".k' are given in Appendix Tahle B.6. In a one-tailed test. Ho: J.Lcontrol =5 J.LA 

is rejected if q' 2: q~( I ).".k: and Ho: J.Lcontrol 2: J.LA is rejected if Iq' I 2:q~( 1).1,.k and 

X control < J.LA (i.e., if q =5 -q~( I }.".k)· This is demonstrated in Example 1 1.4. These 
critical values ensure that the familywise Type I error = a. 

The null hypothesis Ho: J.Lcontrol = J.LA is a special case of Ho: J.Lcontrol - 0 = J.LO 
where J.LO = O. However, other values of J.L() may be placed in the hypothesis, and 
Dunnett's test would proceed by placing I X control - X A - J.LO I in the numerator 
of the q' calculation. In an analogous manner, Ho: J.Lcontrol - J.Lo =5 J.L (or Ho: 
J.Lcontrol - J.L() 2: J.L) may be tested. 

When comparison of group means to a control mean is the researcher's stated 
desire, the sample from the group designated as the control ought to contain more 
observations than the samples representing the other groups. Dunnett (1955) showed 
that the optimal size of the control sample typically should he a little less than 
~ times the size of each other sample. 

(a) Sample Size and Estimation of the Difference between One Population Mean 
and the Mean of a Control Population. This situation is similar to that discussed in 
Section 11.2a. but it pertains specifically to one of the k means heing designated as 
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EXAMPLE 11.4 Dunnett's Test for Comparing the Mean of a Control 
Group to the Mean of Each Other Group 

The yield (in metric tons per hectare) of each of several plots (24 plots. as 
explained below) of potatoes has been determined after a season's application of a 
standard fertilizer. Likewise. the potato yields from several plots (14 of them) were 
determined for each of four new fertilizers. A manufacturer wishes to promote at 
least one of these four fertilizers by claiming a resultant increase in crop yield. A 
total of 80 plots is available for use in this experiment. 

Optimum allocation of plots among the five fertilizer groups will be such that the 
control group (let us say that it is group 2) has a little less than ..,Ii(::l = J4 =: 2 
times as many data as each of the other groups. Therefore. it was decided to use 
n2 = 24 and III = n3 =: n4 = 1115 = 14, for a total N of 80. 

Using analysis-of-variance calculations, the error MS (s2) was found to be 10.42 
(metric tons/ha)2 and the error OF = 75. 

10.42 (1.- + 1.-) = 1.1 metric tons/acre 
14 24 

SE = 

Group number (i) of ranked means: 2 3 4 5 

Ranked group mean (X;): 17.3 21.7 22.1 23.6 27.8 

As the control group (i.e .. the group with the standard fertilizer) is group 2, each 
Ho: IL2 ;::: ILA will be tcsted against H A: IL2 < ILA. And for each hypothesis test. 
q' = q' - . a.I'./i. 1 1.05 ( I ).7).5 

Comparison 
B vs.A 

Difference 
(X2 - X A ) SE Iq'l Conclusion 

2 vs. 1 21.7 - 17.3 = 4.4 Because X2 > XI. 

2 vs. 5 
2 vs. 4 
2 vs. 3 

do not reject Ho: IL2 ;::: ILl 
21.7 - 27.8 = -6.1 1.1 5.55 Reject Ho: IL2 ;::: IL5 
21.7 - 23.6 = -1.9 1.1 1.73 Reject Ho: IL2 ;::: IL4 

Do not test 

We conclude that only fertilizer 5 produces a yield greater than the yield from the 
control fertilizcr (fertilizer 2). 

from a control group. The procedure uses this modification of Equation 11.8: 

2s2(q~"k)2 n = .. 
d2 

( 11.12) 

(b) Confidence Intervals for Differences between Control and Other Group Means. 
Using Dunnett's q' statistic and the SE of Equation 11.10. 11.1 Lor 11.11a. two-tailed 
confidence limits can be calculated for the difference between the control mean and 
each of the other group means: 

1- aClforJLcuntrol - ILA = (Xcontrol - XA) ± (q:r(2).v.k)(SE). (11.13) 
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One-tailed confidence limits are also possible. The 1 - a confidence can be 
expressed that a difference, JLconlrol - JLA. is not less than (i.e .. is at least as large as) 

(Xconlrol - XA) - (q:(I).I'.d(SE). (11.14) 

or it might be desired to state that the difference is no greater than 

(Xcontrol - XA) + (q:(I).I1.k)(SE). (11.15) 

, MULTIPLE CONTRASTS 

Inspecting the sample means after performing an analysis of variance can lead to a 
desire to compare combinations of samples to each other, by what are called multiple 
contrasts. The method of Scheffe* (1953; 1959: Sections 3.4, 3.5) is an excellent way 
to do this while ensuring a familywise Type I error rate no greater than a. 

The data in Example 11.1 resulted in ANOV A rejection of the null hypothesis 
Ho: JLI = JL2 = JL3 = JL4 = JLS; and. upon examining the five sample means, perhaps 
by arranging them in order of magnitude (XI < X2 < X 4 < X3 < Xs), the 
researcher might then want to compare the mean strontium concentration in the 
river (group 5) with that of the bodies of water represented by groups 2. 4, and 3. 
The relevant null hypothesis would be Ho: (JL2 + JL4 + IL3 )/3 = ILs, which can also 
be expressed as Ho: JL2/3 + JL4/3 + JL3/3 - JLS = O. The Scheffe test considers 
that each of the four JL's under consideration is associated with a coefficient, Ci: 

C2 = j. C4 = j, C3 = j, and Cs = -1 (and the sum of these coefficients is always 
zero). The test statistic, S, is calculated as 

(11.16) 

where 

(11.17) 

and the critical value of the test is 

Sa = J(k - I )Fa(I).k-I.N-k . (11.18) 

Also. with these five groups of data, there might be an interest in testing Ho: 
JLI - (JL2 + JL4 + JL3)/3 = 0 or Hn: (JLI + JLs)/2 - (JL2 + JL4 + IL3)/3 = 0 
orHo: {ILl + JL4)/2 - (JL2 + JL3)/2 = O.orothercontrasts.Anynumberofsuch 
hypotheses may be tested, and the familywise Type 1 error rate is the probability 
of falsely rejecting at least one of the possible hypotheses. A significant F from an 
ANOV A of the k groups indicates that there is at least one significant contrast among 
the groups, although the contrasts that are chosen may not include one to be rejected 
by the Scheffe test. And if F is not significant, testing multiple contrasts need not be 
done, for the probability of a Type I error in that testing is not necessarily at a (Hays, 
1994: 458). The testing of several of these hypotheses is shown in Example 11.5. In 
employing the Scheffe test. the decision of which means to compare with which others 
occurs after inspecting the data. so this is referred to as an a posteriori, or post hoc test. 

* Henry Scheffe (1907-1977). American statistician. 
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EXAMPLE 11.5 Scheffe's Test for Multiple Contrasts, Using the Data of Example 11.1 

For ex = 0.05. the critical value. Sc" for each contrast is (via Equation I 1.1 X) J( k - I )Foo:;( I ).k - I.N- k 

=J(5 - I)Fo.05(1)..t.25 

= J4(2.76) 

= 3.32. 

Example 11.1 showed,\'2 = 9.7652 and 11 = 6. 

COlllrtlS/ SE .II Cm/<"illsioll 

: . CY O/+Gt (I )21 x, + X3 + x~ X5 1'1.7052 t ~ = 1.47 11.22 Reject 110: - j. + 
.3 I 1 0 6 6 (, 

= 41./l - 5/l.3 ~ J /J.2 + /J.3 + /J.~ 

3 
= -16.5 -/J.5 = 0 

I 

i 

XI X2 + X3 + X" 
} 7",' 

( I )2 
-I 

(n2 or 
--+-- + G/ 1 

= 1.47 6.N' Reject Ilu: -
3 0 0 0 0 

= .'1.1 - 41./l I /J.I - /J.2 ... /J..' + /J.4 
.3 

= -9.7 =0 
I 

0/ 0/ oY oY C)2 ! - -
XI + X5 

'1.7652 + + + - 1.10 2.93 Accept 110: ---+--
2 6 0 6 6 6 

j X2 r X3 + X4 /J.I + /J.5 - \ 
.3 2 

= 45.2 - 41.R _~L +f.L~~ 
3 

= .3.4 =0 

XI + X4 X2 ::. X3 '1.7652 uY + uY+uY + 
U)2 i 

~ 1.2/l 4.34 Rejeci 1'0: /J.I + /J.~ - --
2 2 

= 36.6 - 42.15 

= -5.55 

6 6 6 /1 + 2 
- /J.2 /J.3 = 0 

\ 2 

The Scheffe test may also be used to compare one mean with one other. It is then 
testing the same hypotheses as is the Tukey test. It is less sensitive than the Tukey 
test to nonnormality and heterogeneity of variances (Hays. 1994: 458. 458: Sahai and 
Aged. 2000: 77): but is less powerful and it is recommended that it not be used for pair­
wisc comparisons (e.g .• Carmer and Swanson. 1973: Kirk. 1995: 154: Toothaker. 1991: 
51. 77. 89-90). Shaffer (1977) described a procedure. morc powerful than Schefff·s. 
specifically for comparing a combination of groups to a group specilied as a control. 

(a) Multiple Contrasts with Unequal Variances. The Schcffc test is suitable when 
the samples in the contrast each came from populations with the same variance. 
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When the population variances differ but the sample sizes arc equal. the probability 
of a Type T error can be different from 0.05 when a is set at 0.05. If the variances 
£Illd the sample sizes arc uneljual. then (as with the ANOYA. Section 1O.1g) the 
test will be very conservative if the large variances are associated with large sample 
sizes and very liberal if the small samples come from the populations with the large 
variances (Keselman and Toothaker. 1974). If the uJ's cannot be assumed to be the 
same or similar. the procedure of Brown and Forsythe (1974b) may be employed. 
This is done in a fashion analogous to the two-sample Welch modification of the (test 
(Section Ric). using 

(' = 

with degrees of freedom of 

.. ~ 

~ c';s,; 
kJ _'_I 

Ilj 

( 11.19) 

( 11.20) 

(b) Confidence Intervals for Contrasts. The Scheffc procedure enables the estab­
lishment of I - a confidence limits for a contrast: 

(11.21 ) 

(with SE from Equation 11.17). Shaffer's (1977) method produces confidence intervals 
for a different kind of contrast. that of a group of means with the mean of a control 
group. 

Example 11.6 demonstrates the determination of conlidence intervals for two of 
the statistically significant contrasts of Example 11.5. 

11.5 NONPARAMETRIC MULTIPLE COMPARISONS 

In the multisample situation where the nonparametric Kruskal-Wallis test (Section 
10.4) is appropriate, the researcher usually will desire to conclude which of the 
samples are significantly different from which others, and the experiment will be 
run with that goal. This may be done in a fashion paralleling the Tukey test of 
Section 11.1. by using rank sums instead of means, as demonstrated in Example 
11.7. The rank sums. determined as in the Kruskal-Wallis test. are arranged in 
increasing order of magnitude. Pairwise differences between rank sums are then 
tabulated. starting with the difference between the largest and smallest rank sums. 
and proceeding in the same sequence as described in Section 11.1. The standard error 
is calculated as 

SE = \ 
11 ( Ilk )( 11k + 1) 

,., (11.22) 
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(Nemenyi, 1963; Wilcoxon and Wilcox, 1964: 10),* and the Studentized range 
(Appendix Table 8.5 to be used is qa.oo.K') 

EXAMPLE 11.6 Confidence Intervals for Multiple Contrasts 

The critical value, Sa, for each confidence interval is that of Equation 11.8: 
~(k - I)Fa(I).k-l.N-k, and for a = 0.05, Sa = 3.32 and s2 = 9.7652 as in 

Example 11.5. 

(a) A confidence interval for J.L2 + ~." + J.L4 - J.L5 would employ SE = 1.47 

from Example 11.5, and the 95% confidence interval is I 

(b) 

eX" + ~3 + X4 - xs) ± SaSE ~ -16.5 ± (3.32)( 1.47) 

= -16.5 mg/ml ± 4.9 mg/ml 

LI = -21.4 mg/ml 

L2 = -11.6 mg/mt. 

A confidence interval for J.Ll - J.L2 + P-'J + J.L4 would employ SE = 1.47 
3 

from Example 11.5, and the 95% confidence interval is 

(XI - X, + ~3 + X4) ± SaSE ~ -9.7 ± (3.32)(1.47) 

= -9.7 mg/ml ± 4.9 mg/ml 

Ll = -14'.6 mg/ml 

L2 = -4.8 mg/mt. 

(a) Nonparametric Multiple Comparisons with Unequal Sample Sizes. Multiple­
comparison testing such as in Example 11.7 requires that there be equal numbers of 
data in each of the k groups. If such is not the case, then we may use the procedure 
of Section 11.7, but a more powerful test is that proposed by Dunn (1964), using a 
standard error of 

SE= N(N + 1)(...!.. +..!..) 
12 nA nB 

(11.24) 

for a test statistic we shall call 

(11.25) 

*Some authors (e.g .• Miller 1981: 166) perform this test in an equivalent fashion by considering 
the difference between mean ranks (RA and RIJ) rather than rank sums (RA and RIJ). in which case 
the appropriate standard error would be 

SE= jk(nk + 1). 
\ J? 

( 11.23) 
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EXAMPLE 11.7 Nonparametric Tukey-Type Multiple Comparisons, Using 
the Nemenyi Test 

The data are those from Example 10.10. 

SE = n(nk)(nk + 1) = 5( 15)(16) = J100 = to.oo 

Comparison 

(8 vs. A) 

1 vs.3 

1 vs. 2 

2 vs. 3 

12 12 

Sample number (i) of ranked rank sums: 3 2 
Rank sum (Rj): 

Difference 

(RB - RA) SE 

26 30 64 

q QO.IlS.oo.3 Conclusion 

64 - 26 = 38 10.00 3.80 3.314 Reject Ho: Fly abundance 
is the same at vegetation 
heights 3 and 1. 

64 - 30 = 34 10.00 3.40 3.314 Reject Ho: Fly abundance 
is the same at vegetation 
heights 2 and 1. 

30 - 26 = 4 10.00 0.40 3.314 Do not reject Ho: Fly abundance 
is the same at vegetation 
heights 3 and 2. 

Overall conclusion: Fly abundance is the same at vegetation heights 3 and 2 but is 
different at height 1. 

where R indicates a mean rank (i.e .• RA = RAinA and R8 = RBII7H). Critical values 
for this test. Qa.k. are given in Appendix Table B.15. Applying this procedure to the 
situation of Example 11.7 yields the same conclusions, but this will not always be the 
case as this is only an approximate method and conclusions based upon a test statistic 
very near the critical value should be expressed with reservation. It is advisable to 
conduct studies that have equal sample sizes so Equation 11.22 or 11.23 may be 
employed. 

If tied ranks are present, then the following is an improvement over Equation 11.24 
(Dunn. 1964): 

SE = ( N(N + 1) _ ~I )( 1 1 ) 
12 12(N - 1) IlA + nB . 

(11.26) 

In the latter equation, 21 is used in the Kruskal-Wallis test when ties are present and 
is defined in Equation 10.42. The testing procedure is demonstrated in Example 11.8: 
note that it is the mean ranks (Rj). rather than the ranks sums (Rj). that are arranged 
in order of magnitude. 

A procedure developed independently by Steel (1960, 1961b) and Dwass (1960) is 
somewhat more advantageous than the tests of Nemenyi and Dunn (Critchlow and 
Fligner, 1991: Miller, 1981: 168-169). but it is less convenient to use and it tends 
to be very conservative and less powerful (Gabriel and Lachenbruch. 1969). And 
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EXAMPLE 11.8 
pie Sizes 

Nonparametric Multiple Comparisons with Unequal Sam-

The data are those from Example 10.11. where the Kruskal-Wallis test rejected 
the null hypothesis That water pH was the same in all four ponds examined 

L t = 168. as in Example 10.11. 

For nA = 8 and 118 = 8. 

SE = C~(~2+1) 12(~~1)) (II~ + II~) 

= (31(32) _ ~)(l + ~) 
12 12(30) X 0 

J20.5500 = 4.53 

For nA = 7 and nu = 8. 

SE = ( 31(32) _ ~)(! + ~) = J22.0179 = 4.69. 
12 12(311) 7 0 

Sample number (i) of ranked means: 2 4 3 
Rank sum (Ri ): 63.24 64.62 71.30 73.35 
Sample size (11;): 8 5 8 7 

Mean rank CR;) 6.88 16.56 20.44 20.71 

To test at the 0.05 significance level. the critical value is QO.05A = 2.639. 

Comparisol1 Difference 

Bvs.A CRu - RA ) SE Q Conclusion 

3 vs. I 20.71 - 6.88 = 13.831 4.69 2.95 Reject Ho: Water pH is the 
same in ponds 3 and 1. 

3 vs. 2 20.71 - 16.56 = 4.15 4.69 0.88 Do not reject Ho: Water pH is 

the same in ponds 3 and 2. 
3 vs. 4 Do not test 

4 vs. I 20.44 - 6.88 = 13.56 4.53 2.99 Reject Ho: Water pH is the 

same in ponds 4 and I. 
4 vs. 2 Do not test 
2 vs. I 16.56 - 6.88 = 9.68 4.53 2.14 Do not reject Ho: Water pH is 

the same in ponds 2 and 1. 

Overall conclusion: Water pH is the same in ponds 4 and 3 but is different in 
pond I. and the relationship of pond 2 to the others is unclear. 
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this test can lose control of Type J error if the data come from skewed populations 
(Toothaker. 1991: 108). 

(b) Nonparametric Comparisons of a Control to Other Groups. Subsequent to 
a Kruskal-Wallis test in which Ho is rejected, a nonparametric analysis may be 
performed to seek either one-tailed or two-tailed significant differences between one 
group (designated as the "control") and each of the other groups of data. This is done 
in a manner paralleling that of the procedure of Section 11.4, but using group rank 
sums instead of group means. The standard error to be calculated is 

SE = 
n(nk )(nk + 1) 

6 
( 11.27) 

(Wilcoxon and Wilcox, 1964: 11), and one uses as critical values either q:( I ).oo.k 

or q:(2).oo.k (from Appendix Table B.6 or Appendix Table 8.7, respectively) for 
one-tailed or two-tailed hypotheses, respectively. * 

The preceding nonparametric test requires equal sample sizes. If the n's are not 
all equal, then the procedure suggested by Dunn (1964) may be employed. By this 
method, group B is considered to be the control and uses Equation 11.27, where the 
appropriate standard error is that of Equation 11.26 or 11.28, depending on whether 
there are ties or no ties, respectively. We shall refer to critical values for this test, which 
may be two tailed or one tailed, as Q~.k: and they are given in Appendix Table B.16. 
The test presented by Steel (1959) has drawbacks compared to the procedures above 
(Miller, 1981: 133). 

11.6 NONPARAMETRIC MULTIPLE CONTRASTS 

Multiple contrasts, introduced in Section 11.4, can be tested nonparametrically using 
the Kruskal-Wallis H statistic instead of the Fstatistic. As an analogof Equation 11.16, 
we compute 

(11.29) 

where Cj is as in Section 11.4. and 

SE = (N(N + 1 »)(~ CT), 
12 IZj 

(11.30) 

unless there are tied ranks, in which cases we use 

SE= (N(N+ 1) _ ~I )(~cT), 
12 12(N - 1) nj 

(11.31) 

*If mean ranks. instead of rank sums. are used. then 

(11.28) 
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where L ( is as in Equation 10.42. The critical value for these multiple contrasts is 
JH(Orl.1I1 .... ' using Appendix Table B.13 to obtain the critical value of H. If the needed 

critical value of H is not on that table. then X~r.( k _ I ) may be used. 

11.7 MULTIPLE COMPARISONS AMONG MEDIANS 

If the null hypothesis is rejected in a multisamplc median test (Section 10.5), then it 
is usually desirable to ascertain among which groups significant differences exist. A 
Tukey-type multiple comparison test has been provided by Levy (1979). using 

q = fIB - !IA. 

SE 
( 11.32) 

As shown in Example 11.19. we employ the values of flj for each group. where 
!Ij is the number of data in group j that arc greater than the grand median. (The 
values of !Ij are the observed frequencies in the first row in the contingency table 
used in the multisample median tcst of Section I n.5.) The values offlj arc ranked, 
and pairwise differences among the ranks arc examined as in other Tukey-type tests. 
The appr;)priatc standard error. when N (the total number of data in all groups) is an 
even number. is 

SE = ~ n( N + I). 
4N 

and, when N is an odd number. the standard error is 

SE = ~ nN 
, 4( N - 1)' 

( 11.33) 

( 11.34) 

The critical values to be used are q".(~.k' This multiple-comparison test appears to 
possess low statistical power. If the sample sizes are slightly unequal. as in Example 
11.9, the test can be used by employing the harmonic mean (see Section 3.4b) of the 
sample sizes, 

k 
n=--k • 

Ll 
j= I nj 

( \1.35) 

for an approximate result. 

11.8 MULTIPLE COMPARISONS AMONG VARIANCES 

If the null hypothesis that k population variances are all equal (see Section 10.6) is 
rejected. then we may wish to determine which of the variances differ from which 
others. Levy (1975a, 1975c) suggests multiple-comparison procedures for this purpose 
based on a logarithmic transformation of sample variances. 

A test analogous to the Tukey test of Section 11.1 is performed by calculating 

Ins1 - Ins;, 
q = -

SE 
(11.36) 
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EXAMPLE 11.9 Tukey-Type Multiple Comparison for Differences among 
Medians, Using the Data of Example 10.12 

Sample number U) of samples ranked by Ilj : 2 

Ranked/lj: 2 
Sample size (IIi) : 12 

k=4 
N = II + 12 + II + 12 = 46 
n = 12 
By Equation 11.35, 

4 
It = ----=-----:----=-1---1:- = 11.48 

+ + + 

By Equation 11.36. 

12 11 12 II 

SE = j(I1.4H)(46) = 1.713. 
\j 4(46 - I) 

4 3 

3 6 9 
11 12 1 1 

Ho: Median of population B = Median of population A. 
H A: Median of population B '# Median of population A. 

Comparison IIH - IIA SE q l/u.o5.4:x.· Conclusion 

3 vs. 2 I} - 2 = 7 1.713 4.0H6 3.633 Reject Hu. 

3 vs. I I} - 3 = 6 1.713 3.503 3.633 Do not reject Ho. 
3 vs. 4 Do not test 

4 vs. 2 6 - 2 = 4 1.713 2.335 3.633 Do not reject Ho. 

4 vs. I Do not test 

1 vs.2 Do not test 

Overall conclusion: The medians of populations 3 and 2 (i.e .. south and east-see 
Example 10.12) are not the same: but the test lacks the power to allow clear 
conclusions about the medians of populations 4 and I. 

where 

SE = l. (11.37) 

if both samples heing compared are of equal size. If VA '# VII. we can employ 

SE = j J... + _I . 
\j VB VA 

( 11.3H) 
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EXAMPLE 11.10 Tukey-Type Multiple Comparison Test for Differences 
among Four Variances (i.e., k = 4) 

s~ 
I ni Vi Insf 

1 2.74 g2 50 49 1.0080 

2 2.83 g2 48 47 1.0403 

3 2.20 g2 50 49 0.7885 

4 6.42 g2 50 49 1.8594 

Sample ranked by variances (i): 3 2 4 
Logorithm of ranked sample variance (In sf): 0.7885 1.0080 1.0403 1.8594 

Sample degrees of freedom (Vi): 49 49 47 49 

Coml'"rislm Di1J('r"I/('(! 

(8 vs. A) (In s7J - Ins~) SE l/ l/U.05.ocA C(mcl"siems 

4 vs. 3 I.H594 - O.78X5 = 1.0709 0.202* :'i.30 I 3.633 Reject Ho: IT~ = fT~ 

4 vs. I I.H594 - I.<KIXO = O.H514 0.202 4.215 3.033 Reject Ho: fT~ = ITT 

4 vs. 2 I.H594 - 1.0403 = (UW)1 0.204'· 4.015 3.033 Reject Ho: fT~ = IT~ 
2 vs. 3 1.(1403 - 0.7HX5 = 0.251 X O.2(J4 1.234 3.633 Do not reject 110: (T~ = IT~ 
2 vs. I Do not test 
I vs.3 Do not test 

* As V4 = v~ : SE = II = IT = 0.202. . ~; ~49 

t As V4 1= V2 : SE = I ~ + ~ = ) ~ V V4 V2 49 

I + - = 0.204. 
47 

Overall conclusion: u~ = ui = u~ 1= u~. 

Just as in Sections 11.1 and 11.2, the subscripts A and B refer to the pair of groups 
being compared; and the sequence of pairwise comparisons must follow that given in 
those sections. This is demonstrated in Example 11.10.* The critical value for this test 
is If(r.:x.k (from Appendix Table B.5). 

A Newman-Keuls-type test can also be performed using the logarithmic trans­
formation. For this test, we calculate q using Equation 11.36: but the critical value, 

*Recall (as in Section 10.6) that "In" refers to natural logarithms (i.e .. logarithms using hase ('). 
If one prefers using common logarithms ("'Iog"; logarithms in base 10). then 

2.30259(logs7J - logs~) 
l/ = SE (11.39) 
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4 are the same as the means of groups 2 
and 3. 

(b) Test the hypothesis that the means of groups 
2 and 4 are the same as the mean of group 3. 

11.6. The following ranks result in a significant Kruskal­
Wallis test. Employ nonparametric multiple-range 
testing to conclude between which of the three 
groups population differences exist. 

Group 1 

8 
4 
3 
5 
1 

Group 2 Group 3 

10 14 
6 13 
9 7 

11 12 
2 15 


